1
|
Wuri L, Zarutskie PW, Arosh JA, Banu SK. Employment of a Newly Defined In Vitro Fertilization Protocol to Determine the Cytoskeletal Machinery, DNA Damage, and Subsequent DNA Repair Resulting from Endocrine Disruption by Hexavalent Chromium in Rat Metaphase II Oocytes. Curr Protoc 2024; 4:e70060. [PMID: 39711520 DOI: 10.1002/cpz1.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
These protocols describe a detailed method to determine the DNA damage and F-actin and microtubule defects of metaphase II oocytes caused by hexavalent chromium, Cr(VI), an endocrine disrupting chemical (EDC). The protocol provides systematic steps to determine protein expression encoded by pluripotency proteins such as Oct4, Nanog, and Cdx2 during early embryonic development. Occupational or environmental exposure to EDCs has significantly increased infertility in both men and women. The urinary concentration of the EDC bisphenol A in patients undergoing in vitro fertilization (IVF) is directly related to decreased implantation rates and the number of metaphase II oocytes recovered. This protocol outlines crucial steps in assessing the structure of F-actin and microtubules, DNA damage, and repair mechanisms in metaphase II oocytes as well as pluripotency protein markers of early-stage embryos. IVF techniques to achieve fertility goals in both humans and animals are of paramount importance. The interplay between F-actin and microtubules is crucial for bipolar spindle assembly and correct partitioning of the nuclear genome in mammalian oocyte meiosis. EDCs induce DNA damage and impair DNA repair mechanisms, compromising oocyte quality. In human IVF, this results in failure to implant, early miscarriage, and live births with congenital disorders, thus decreasing success rates and increasing poor outcomes. The application of IVF protocols in rats to understand EDC-mediated defects in the cytoskeletal network of metaphase II oocytes is not well established. We present a newly defined rat IVF protocol and demonstrate outcomes using these protocols to determine the adverse effects of Cr(VI) on metaphase II oocytes. Basic Protocol 1 includes steps to superovulate rats, dissect ampullae, retrieve oocytes/eggs, perform immunofluorescence staining of cytoskeletal machinery (microtubules and F-actin), and assess expression of the DNA double-strand break marker γ-H2AX and the DNA repair protein RAD51 in control and Cr(VI)-exposed rats. Basic Protocol 2 describes methods for detecting the pluripotency proteins Oct4, Nanog, and Cdx2 during early embryonic development in control rats. © 2024 Wiley Periodicals LLC. Basic Protocol 1: In vivo EDC treatment of rats and immunostaining of treated oocytes Basic Protocol 2: In vitro fertilization and immunostaining of early-stage embryos.
Collapse
Affiliation(s)
- Liga Wuri
- Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Paul W Zarutskie
- Department of Clinical Medicine & Primary Care, Sam Houston State University College of Osteopathic Medicine, Conroe, Texas
| | - Joe A Arosh
- Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Sakhila K Banu
- Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
2
|
Sun F, Ali NN, Londoño-Vásquez D, Simintiras CA, Qiao H, Ortega MS, Agca Y, Takahashi M, Rivera RM, Kelleher AM, Sutovsky P, Patterson AL, Balboula AZ. Increased DNA damage in full-grown oocytes is correlated with diminished autophagy activation. Nat Commun 2024; 15:9463. [PMID: 39487138 PMCID: PMC11530536 DOI: 10.1038/s41467-024-53559-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/14/2024] [Indexed: 11/04/2024] Open
Abstract
Unlike mild DNA damage exposure, DNA damage repair (DDR) is reported to be ineffective in full-grown mammalian oocytes exposed to moderate or severe DNA damage. The underlying mechanisms of this weakened DDR are unknown. Here, we show that moderate DNA damage in full-grown oocytes leads to aneuploidy. Our data reveal that DNA-damaged oocytes have an altered, closed, chromatin state, and suggest that the failure to repair damaged DNA could be due to the inability of DDR proteins to access damaged loci. Our data also demonstrate that, unlike somatic cells, mouse and porcine oocytes fail to activate autophagy in response to DNA double-strand break-inducing treatment, which we suggest may be the cause of the altered chromatin conformation and inefficient DDR. Importantly, autophagy activity is further reduced in maternally aged oocytes (which harbor severe DNA damage), and its induction is correlated with reduced DNA damage in maternally aged oocytes. Our findings provide evidence that reduced autophagy activation contributes to weakened DDR in oocytes, especially in those from aged females, offering new possibilities to improve assisted reproductive therapy in women with compromised oocyte quality.
Collapse
Affiliation(s)
- Fei Sun
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Nourhan Nashat Ali
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Physiology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | | | - Constantine A Simintiras
- School of Animal Sciences, Agricultural Center, Louisiana State University, Baton Rouge, LA, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - M Sofia Ortega
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuksel Agca
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Masashi Takahashi
- Research Faculty of Agriculture, Hokkaido University, Hokkaido, Japan
| | - Rocío M Rivera
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Andrew M Kelleher
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Amanda L Patterson
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Ahmed Z Balboula
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
3
|
Zhou Z, Wu Z, Zhang L, Dai Y, Shao G, Ren C, Huang P. Mitophagy in mammalian follicle development and health. Reprod Biol 2024; 24:100889. [PMID: 38733657 DOI: 10.1016/j.repbio.2024.100889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Mitophagy, the cellular process that removes damaged mitochondria, plays a crucial role in maintaining normal cell functions. It is deeply involved in the entire process of follicle development and is associated with various ovarian diseases. This review aims to provide a comprehensive overview of mitophagy regulation, emphasizing its role at different stages of follicular development. Additionally, the study illuminates the relationship between mitophagy and ovarian diseases, including ovary aging (OA), primary ovarian insufficiency (POI), and polycystic ovary syndrome (PCOS). A detailed understanding of mitophagy could reveal valuable insights and novel strategies for managing female ovarian reproductive health.
Collapse
Affiliation(s)
- Zhengrong Zhou
- School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhipeng Wu
- School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Liufang Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Yue Dai
- School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Genbao Shao
- School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Caifang Ren
- School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Pan Huang
- School of Medicine, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
4
|
Feng X, Li C, Zhang H, Zhang P, Shahzad M, Du W, Zhao X. Heat-Stress Impacts on Developing Bovine Oocytes: Unraveling Epigenetic Changes, Oxidative Stress, and Developmental Resilience. Int J Mol Sci 2024; 25:4808. [PMID: 38732033 PMCID: PMC11084174 DOI: 10.3390/ijms25094808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Extreme temperature during summer may lead to heat stress in cattle and compromise their productivity. It also poses detrimental impacts on the developmental capacity of bovine budding oocytes, which halt their fertility. To mitigate the adverse effects of heat stress, it is necessary to investigate the mechanisms through which it affects the developmental capacity of oocytes. The primary goal of this study was to investigate the impact of heat stress on the epigenetic modifications in bovine oocytes and embryos, as well as on oocyte developmental capacity, reactive oxygen species, mitochondrial membrane potential, apoptosis, transzonal projections, and gene expression levels. Our results showed that heat stress significantly reduced the expression levels of the epigenetic modifications from histone H1, histone H2A, histone H2B, histone H4, DNA methylation, and DNA hydroxymethylation at all stages of the oocyte and embryo. Similarly, heat stress significantly reduced cleavage rate, blastocyst rate, oocyte mitochondrial-membrane potential level, adenosine-triphosphate (ATP) level, mitochondrial DNA copy number, and transzonal projection level. It was also found that heat stress affected mitochondrial distribution in oocytes and significantly increased reactive oxygen species, apoptosis levels and mitochondrial autophagy levels. Our findings suggest that heat stress significantly impacts the expression levels of genes related to oocyte developmental ability, the cytoskeleton, mitochondrial function, and epigenetic modification, lowering their competence during the summer season.
Collapse
Affiliation(s)
- Xiaoyi Feng
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.F.); (C.L.); (H.Z.); (P.Z.); (M.S.); (W.D.)
- College of Animal Science and Technology, Qingdao Agricultural University (QAU), Qingdao 266000, China
| | - Chongyang Li
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.F.); (C.L.); (H.Z.); (P.Z.); (M.S.); (W.D.)
| | - Hang Zhang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.F.); (C.L.); (H.Z.); (P.Z.); (M.S.); (W.D.)
| | - Peipei Zhang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.F.); (C.L.); (H.Z.); (P.Z.); (M.S.); (W.D.)
| | - Muhammad Shahzad
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.F.); (C.L.); (H.Z.); (P.Z.); (M.S.); (W.D.)
| | - Weihua Du
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.F.); (C.L.); (H.Z.); (P.Z.); (M.S.); (W.D.)
| | - Xueming Zhao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.F.); (C.L.); (H.Z.); (P.Z.); (M.S.); (W.D.)
| |
Collapse
|
5
|
Sahota JS, Thakur RS, Guleria K, Sambyal V. RAD51 and Infertility: A Review and Case-Control Study. Biochem Genet 2024; 62:1216-1230. [PMID: 37563467 DOI: 10.1007/s10528-023-10469-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023]
Abstract
RAD51 is a highly conserved recombinase involved in the strand invasion/exchange of double-stranded DNA by homologous single-stranded DNA during homologous recombination repair. Although a majority of existing literature associates RAD51 with the pathogenesis of various types of cancer, recent reports indicate a role of RAD51 in maintenance of fertility. The present study reviews the role of RAD51 and its interacting proteins in spermatogenesis/oogenesis and additionally reports the findings from the molecular genetic screening of RAD51 135 G > C polymorphism in infertile cases and controls. Fifty-nine articles from PubMed and Google Scholar related to the reproductive role of RAD51 were reviewed. For case-control study, the PCR-RFLP method was used to screen the RAD51 135 G > C polymorphism in 201 infertile cases (100 males, 101 females) and 201 age- and gender-matched healthy controls (100 males, 101 females) from Punjab, North-West India. The review of literature shows that RAD51 is indispensable for spermatogenesis and oogenesis in animal models. Reports on the role of RAD51 in human fertility are limited, however it is involved in the pathogenesis of infertility in both males and females. Molecular genetic analyses in the infertile cases and healthy controls showed no statistically significant difference in the genotypic and allelic frequencies for RAD51 135 G > C polymorphism, even after segregation of the cases by type of infertility (primary/secondary). Therefore, the present study concluded that the RAD51 135 G > C polymorphism was neither associated with male nor female infertility in North-West Indians. This is the first report on RAD51 135 G > C polymorphism and infertility.
Collapse
Affiliation(s)
- Jatinder Singh Sahota
- Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University (GNDU), Amritsar, 143005, Punjab, India
| | - Ranveer Singh Thakur
- Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University (GNDU), Amritsar, 143005, Punjab, India
| | - Kamlesh Guleria
- Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University (GNDU), Amritsar, 143005, Punjab, India
| | - Vasudha Sambyal
- Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University (GNDU), Amritsar, 143005, Punjab, India.
| |
Collapse
|
6
|
Xu J, Guo Y, Tan Z, Ban W, Tian J, Chen K, Xu H. Molecular cloning and expression analysis of rad51 gene associated with gametogenesis in Chinese soft-shell turtle (Pelodiscus sinensis). Gene 2023; 887:147729. [PMID: 37619650 DOI: 10.1016/j.gene.2023.147729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Rad51 is a recA-like recombinase that plays a crucial role in repairing DNA double-strand breaks through homologous recombination during mitosis and meiosis in mammals and other organisms. However, its role in reptiles remains largely unclear. In this study, we aimed to investigate the physiological role of the rad51 gene in reptiles, particularly in Pelodiscus sinensis. Firstly, the cDNA of rad51 gene was cloned and analyzed in P. sinensis. The cloned cDNA contained an open reading frame (ORF) of 1020 bp and encodeed a peptide of 339 amino acids. The multiple alignments and phylogenetic tree analysis of Rad51 showed that P. sinensis shares the high identity with Chelonia mydas (97.95%) and Mus musculus (95.89%). Secondly, reverse transcription-polymerase chain reaction (RT-PCR) and real-time quantitative polymerase chain reaction (RT-qPCR) analysis showed that rad51 mRNA was highly expressed in both ovary and testis, while being weak in the somatic tissues examined in this study. Furthermore, chemical in situ hybridization (CISH) was performed to examine the expression profile of rad51 mRNA in germ cells at different stages. In the testis, rad51 mRNA expression was found to be stronger in the germ cells at early stages, specifically in spermatogonia and spermatocytes, but it was undetectable in spermatids. In the ovary, rad51 mRNA exhibited a uniform distribution in the cytoplasm of oocytes at early stages. The signal intensity of rad51 mRNA was highest in primary oocytes and gradually declined during oogenesis as the oocytes developed. These results suggest that rad51 plays a vital role in the development of germ cells, particularly during the early stages of gametogenesis in P. sinensis. The dynamic expression pattern of rad51 mRNA provides insights into the mechanisms underlying germ cell development and differentiation into gametes in turtles, even in reptiles.
Collapse
Affiliation(s)
- Jianfei Xu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Yonglin Guo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Zhimin Tan
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Wenzhuo Ban
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Jiaming Tian
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Kaili Chen
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Hongyan Xu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China.
| |
Collapse
|
7
|
Kim HJ, Cho HB, Lee S, Lyu J, Kim HR, Lee S, Park JI, Park KH. Strategies for accelerating osteogenesis through nanoparticle-based DNA/mitochondrial damage repair. Am J Cancer Res 2022; 12:6409-6421. [PMID: 36168629 PMCID: PMC9475457 DOI: 10.7150/thno.77089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/18/2022] [Indexed: 11/05/2022] Open
Abstract
The efficiency of gene therapy is often dictated by the gene delivery system. Cationic polymers are essential elements of gene delivery systems. The relatively cheap cationic polymer, polyethyleneimine, has high gene delivery efficiency and is often used for gene delivery. However, the efficiency of gene therapy with polyethyleneimine-pDNA polyplex (PEI) is low. Human mesenchymal stem cells transfected with polyethyleneimine and a plasmid carrying the important osteogenic differentiation gene runt-related transcription factor 2 (RUNX2) accumulated DNA double-strand breaks and mitochondrial damage proportional to the amount of polyethyleneimine, reducing viability. Genomic/cellular stabilizer mediating RUNX2 delivery (GuaRD), a new reagent incorporating RS-1 NPs developed in this study, promoted DNA repair and prevented the accumulation of cell damage, allowing the delivery of pRUNX2 into hMSCs. while maintaining genome and mitochondrial stability. DNA damage was significantly lower and the expression of DNA repair-related genes significantly higher with GuaRD than with PEI. In addition, GuaRD improved mitochondrial stability, decreased the level of reactive oxygen species, and increased mitochondrial membrane potential. Osteogenic extracellular matrix (ECM) expression and calcification were higher with GuaRD than with PEI, suggesting improved osteogenic differentiation. These results indicate that lowering the cytotoxicity of PEI and improving cell stability are key to overcoming the limitations of conventional gene therapy, and that GuaRD can help resolve these limitations.
Collapse
Affiliation(s)
- Hye Jin Kim
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Hui Bang Cho
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Sujin Lee
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Jiyon Lyu
- School of Medicine, CHA University, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Hye-Ryoung Kim
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Sujeong Lee
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Ji-In Park
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Keun-Hong Park
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea
| |
Collapse
|
8
|
Pailas A, Niaka K, Zorzompokou C, Marangos P. The DNA Damage Response in Fully Grown Mammalian Oocytes. Cells 2022; 11:cells11050798. [PMID: 35269420 PMCID: PMC8909749 DOI: 10.3390/cells11050798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
DNA damage in cells can occur physiologically or may be induced by exogenous factors. Genotoxic damage may cause cancer, ageing, serious developmental diseases and anomalies. If the damage occurs in the germline, it can potentially lead to infertility or chromosomal and genetic aberrations in the developing embryo. Mammalian oocytes, the female germ cells, are produced before birth, remaining arrested at the prophase stage of meiosis over a long period of time. During this extensive state of arrest the oocyte may be exposed to different DNA-damaging insults for months, years or even decades. Therefore, it is of great importance to understand how these cells respond to DNA damage. In this review, we summarize the most recent developments in the understanding of the DNA damage response mechanisms that function in fully grown mammalian oocytes.
Collapse
Affiliation(s)
- Alexandros Pailas
- Department of Biological Applications and Technology, School of Health Sciences, Institute of Biosciences, University Research Centre, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantina Niaka
- Department of Biological Applications and Technology, School of Health Sciences, Institute of Biosciences, University Research Centre, University of Ioannina, 45110 Ioannina, Greece
| | - Chrysoula Zorzompokou
- Department of Biological Applications and Technology, School of Health Sciences, Institute of Biosciences, University Research Centre, University of Ioannina, 45110 Ioannina, Greece
| | - Petros Marangos
- Department of Biological Applications and Technology, School of Health Sciences, Institute of Biosciences, University Research Centre, University of Ioannina, 45110 Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology, University of Ioannina Campus, 45115 Ioannina, Greece
| |
Collapse
|
9
|
Allkanjari K, Baldock RA. Beyond base excision repair: an evolving picture of mitochondrial DNA repair. Biosci Rep 2021; 41:BSR20211320. [PMID: 34608928 PMCID: PMC8527207 DOI: 10.1042/bsr20211320] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are highly specialised organelles required for key cellular processes including ATP production through cellular respiration and controlling cell death via apoptosis. Unlike other organelles, mitochondria contain their own DNA genome which encodes both protein and RNA required for cellular respiration. Each cell may contain hundreds to thousands of copies of the mitochondrial genome, which is essential for normal cellular function - deviation of mitochondrial DNA (mtDNA) copy number is associated with cellular ageing and disease. Furthermore, mtDNA lesions can arise from both endogenous or exogenous sources and must either be tolerated or corrected to preserve mitochondrial function. Importantly, replication of damaged mtDNA can lead to stalling and introduction of mutations or genetic loss, mitochondria have adapted mechanisms to repair damaged DNA. These mechanisms rely on nuclear-encoded DNA repair proteins that are translocated into the mitochondria. Despite the presence of many known nuclear DNA repair proteins being found in the mitochondrial proteome, it remains to be established which DNA repair mechanisms are functional in mammalian mitochondria. Here, we summarise the existing and emerging research, alongside examining proteomic evidence, demonstrating that mtDNA damage can be repaired using Base Excision Repair (BER), Homologous Recombination (HR) and Microhomology-mediated End Joining (MMEJ). Critically, these repair mechanisms do not operate in isolation and evidence for interplay between pathways and repair associated with replication is discussed. Importantly, characterising non-canonical functions of key proteins and understanding the bespoke pathways used to tolerate, repair or bypass DNA damage will be fundamental in fully understanding the causes of mitochondrial genome mutations and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Kathrin Allkanjari
- Formerly: Solent University Southampton, East Park Terrace, Southampton, SO14 0YN, UK
| | - Robert A. Baldock
- School of Natural and Social Sciences, University of Gloucestershire, Francis Close Hall, Swindon Road, Cheltenham GL50 4AZ, UK
| |
Collapse
|
10
|
Cheng SM, Shieh MC, Lin TY, Cheung CHA. The "Dark Side" of autophagy on the maintenance of genome stability: Does it really exist during excessive activation? J Cell Physiol 2021; 237:178-188. [PMID: 34406646 DOI: 10.1002/jcp.30555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/13/2021] [Accepted: 08/06/2021] [Indexed: 01/18/2023]
Abstract
Dysregulation of DNA damage response/repair and genomic instability promote tumorigenesis and the development of various neurological diseases. Autophagy is a dynamic catabolic process used for removing unnecessary or dysfunctional proteins and organelles in cells. Despite the consensus in the field that upregulation of autophagy promotes the initiation of the DNA damage response and assists the process of homologous recombination upon genotoxic stress, a few studies showed that upregulation of autophagy (or excessive autophagy), under certain circumstances, triggers caspase/apoptosis-independent DNA damage and promotes genomic instability in cells. As the cytoprotective and the DNA repairing roles of autophagy have been discussed extensively in different reviews, here, we mainly focus on describing the latest studies which reported the "opposite" roles of autophagy (or excessive autophagy). We will discuss whether the "dark side" (i.e., the opposite/unconventional effect) of autophagy on the maintenance of DNA integrity and genomic stability really does exist in cells and if it does, will it be one of the yet-to-be-identified causes of cancer, in this review.
Collapse
Affiliation(s)
- Siao Muk Cheng
- National Institute of Cancer Research, National Health Research Institutes (NHRI), Tainan, Taiwan
| | - Min-Chieh Shieh
- Division of General Surgery, Department of Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Tzu-Yu Lin
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chun Hei Antonio Cheung
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
11
|
GAS6 ameliorates advanced age-associated meiotic defects in mouse oocytes by modulating mitochondrial function. Aging (Albany NY) 2021; 13:18018-18032. [PMID: 34310342 PMCID: PMC8351714 DOI: 10.18632/aging.203328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/08/2021] [Indexed: 11/25/2022]
Abstract
Previously, we reported that the silencing of growth arrest-specific gene 6 (Gas6) expression in oocytes impairs cytoplasmic maturation by suppressing mitophagy and inducing mitochondrial dysfunction, resulting in fertilization failure. Here, we show that oocyte aging is accompanied by an increase in meiotic defects associated with chromosome misalignment and abnormal spindle organization. Intriguingly, decreased Gas6 mRNA and protein expression were observed in aged oocytes from older females. We further explored the effect of GAS6 on the quality and fertility of aged mouse oocytes using a GAS6 rescue analysis. After treatment with the GAS6 protein, aged oocytes matured normally to the meiosis II (MII) stage. Additionally, maternal age-related meiotic defects were reduced by GAS6 protein microinjection. Restoring GAS6 ameliorated the mitochondrial dysfunction induced by maternal aging. Ultimately, GAS6-rescued MII oocytes exhibited increased ATP levels, reduced ROS levels and elevated glutathione (GSH) levels, collectively indicating improved mitochondrial function in aged oocytes. Thus, the age-associated decrease in oocyte quality was prevented by restoring GAS6. Importantly, GAS6 protein microinjection in aged oocytes also rescued fertility. We conclude that GAS6 improves mitochondrial function to achieve sufficient cytoplasmic maturation and attenuates maternal age-related meiotic errors, thereby efficiently safeguarding oocyte quality and fertility.
Collapse
|
12
|
Yang SG, Joe SY, Bae JW, Heo GD, Park HJ, Koo DB. Melatonin Protects Against Mdivi-1-Induced Abnormal Spindle Assembly and Mitochondrial Superoxide Production During Porcine Oocyte Maturation. Front Cell Dev Biol 2021; 9:693969. [PMID: 34307369 PMCID: PMC8297652 DOI: 10.3389/fcell.2021.693969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/07/2021] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial division inhibitor 1 (Mdivi-1) reportedly provides a close connection between oocyte maturation and mitochondrial function in pigs. N-acetyl-5-methoxy-tryptamine (melatonin) is known to be a representative antioxidant with the ability to rehabilitate meiotic maturation of porcine oocytes. However, the ability of melatonin to recover Mdivi-1-mediated disruption of spindle formation during meiotic maturation of porcine oocytes during in vitro maturation (IVM) has not been studied. Here, we first investigated changes in mitochondrial length, such as fragmentation and elongation form, in mature porcine oocytes during IVM. Mature oocytes require appropriate mitochondrial fission for porcine oocyte maturation. We identified a dose-dependent reduction in meiotic maturation in porcine oocytes following Mdivi-1 treatment (50, 75, and 100 μM). We also confirmed changes in mitochondrial fission protein levels [dynamin-related protein 1 phosphorylation at serine 616 (pDRP1-Ser616) and dynamin-related protein 1 (DRP1)], mitochondrial membrane potential, and ATP production in 75 μM Mdivi-1-treated oocytes. As expected, Mdivi-1 significantly reduced mitochondrial function and DRP1 protein levels and increased spindle abnormalities in porcine oocytes. In addition, we confirmed that melatonin restores abnormal spindle assembly and reduces meiotic maturation rates by Mdivi-1 during porcine oocyte maturation. Interestingly, the expression levels of genes that reduce DNA damage and improve tubulin formation were enhanced during porcine meiotic maturation. Taken together, these results suggest that melatonin has direct beneficial effects on meiotic maturation through tubulin formation factors during porcine oocyte maturation.
Collapse
Affiliation(s)
- Seul-Gi Yang
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea.,Institute of Infertility, Daegu University, Gyeongsan, South Korea
| | - Seung-Yeon Joe
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea.,Institute of Infertility, Daegu University, Gyeongsan, South Korea
| | - Jin-Wook Bae
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea.,Institute of Infertility, Daegu University, Gyeongsan, South Korea
| | - Gyeong-Deok Heo
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea.,Institute of Infertility, Daegu University, Gyeongsan, South Korea
| | - Hyo-Jin Park
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea.,Institute of Infertility, Daegu University, Gyeongsan, South Korea
| | - Deog-Bon Koo
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea.,Institute of Infertility, Daegu University, Gyeongsan, South Korea
| |
Collapse
|
13
|
Demirbağ-Sarikaya S, Çakir H, Gözüaçik D, Akkoç Y. Crosstalk between autophagy and DNA repair systems. ACTA ACUST UNITED AC 2021; 45:235-252. [PMID: 34377049 PMCID: PMC8313936 DOI: 10.3906/biy-2103-51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022]
Abstract
Autophagy and DNA repair are two essential biological mechanisms that maintain cellular homeostasis. Impairment of these mechanisms was associated with several pathologies such as premature aging, neurodegenerative diseases, and cancer. Intrinsic or extrinsic stress stimuli (e.g., reactive oxygen species or ionizing radiation) cause DNA damage. As a biological stress response, autophagy is activated following insults that threaten DNA integrity. Hence, in collaboration with DNA damage repair and response mechanisms, autophagy contributes to the maintenance of genomic stability and integrity. Yet, connections and interactions between these two systems are not fully understood. In this review article, current status of the associations and crosstalk between autophagy and DNA repair systems is documented and discussed.
Collapse
Affiliation(s)
| | - Hatice Çakir
- SUNUM Nanotechnology Research and Application Center, İstanbul Turkey
| | - Devrim Gözüaçik
- SUNUM Nanotechnology Research and Application Center, İstanbul Turkey.,Koç University School of Medicine, İstanbul Turkey.,Koç University Research Center for Translational Medicine (KUTTAM), İstanbul Turkey
| | - Yunus Akkoç
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul Turkey
| |
Collapse
|
14
|
Shen Q, Liu Y, Li H, Zhang L. Effect of mitophagy in oocytes and granulosa cells on oocyte quality†. Biol Reprod 2020; 104:294-304. [PMID: 33079172 DOI: 10.1093/biolre/ioaa194] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/10/2020] [Accepted: 10/20/2020] [Indexed: 12/25/2022] Open
Abstract
Mitophagy is the process by which cells selectively remove supernumerary or damaged mitochondria through autophagy, and is crucial for mitochondrial homeostasis and cell survival. Mitochondria play vital roles in determining the developmental competence of oocytes. During the early stages of oogenesis, aberrant mitochondria can be removed by mitophagy. After oocyte formation, mitophagy is not actively initiated to clear damaged mitochondria despite the presence of mitophagy regulators in oocytes, which leads to the transmission of dysfunctional mitochondria from the oocyte to the embryo. However, granulosa cells around oocytes can improve mitochondrial function through mitophagy, thereby improving oocyte developmental capacity. Furthermore, this review discusses recent work on the substances and environmental conditions that affect mitophagy in oocytes and granulosa cells, thus providing new directions for improving oocyte quality during assisted reproductive technology treatment.
Collapse
Affiliation(s)
- Qiuzi Shen
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yu Liu
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Honggang Li
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Ling Zhang
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
15
|
Jeong PS, Lee S, Park SH, Kim MJ, Kang HG, Nanjidsuren T, Son HC, Song BS, Koo DB, Sim BW, Kim SU. Butylparaben Is Toxic to Porcine Oocyte Maturation and Subsequent Embryonic Development Following In Vitro Fertilization. Int J Mol Sci 2020; 21:ijms21103692. [PMID: 32456265 PMCID: PMC7279239 DOI: 10.3390/ijms21103692] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Parabens are widely used in personal care products due to their antimicrobial effects. Although the toxicity of parabens has been reported, little information is available on the toxicity of butylparaben (BP) on oocyte maturation. Therefore, we investigated the effects of various concentrations of BP (0 μM, 100 μM, 200 μM, 300 μM, 400 μM, and 500 μM) on the in vitro maturation of porcine oocytes. BP supplementation at a concentration greater than 300 μM significantly reduced the proportion of complete cumulus cell expansion and metaphase II oocytes compared to the control. The 300 μM BP significantly decreased fertilization, cleavage, and blastocyst formation rates with lower total cell numbers and a higher rate of apoptosis in blastocysts compared to the control. The BP-treated oocytes showed significantly higher reactive oxygen species (ROS) levels, and lower glutathione (GSH) levels than the control. BP significantly increased the aberrant mitochondrial distribution and decreased mitochondrial function compared to the control. BP-treated oocytes exhibited significantly higher percentage of γ-H2AX, annexin V-positive oocytes and expression of LC3 than the control. In conclusion, we demonstrated that BP impaired oocyte maturation and subsequent embryonic development, by inducing ROS generation and reducing GSH levels. Furthermore, BP disrupted mitochondrial function and triggered DNA damage, early apoptosis, and autophagy in oocytes.
Collapse
Affiliation(s)
- Pil-Soo Jeong
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Korea; (P.-S.J.); (S.L.); (S.-H.P.); (M.J.K.); (H.-G.K.); (T.N.); (H.-C.S.); (B.-S.S.)
- Department of Biotechnology, Daegu University, Gyeongsangbuk-do 38453, Korea;
| | - Sanghoon Lee
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Korea; (P.-S.J.); (S.L.); (S.-H.P.); (M.J.K.); (H.-G.K.); (T.N.); (H.-C.S.); (B.-S.S.)
| | - Soo-Hyun Park
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Korea; (P.-S.J.); (S.L.); (S.-H.P.); (M.J.K.); (H.-G.K.); (T.N.); (H.-C.S.); (B.-S.S.)
| | - Min Ju Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Korea; (P.-S.J.); (S.L.); (S.-H.P.); (M.J.K.); (H.-G.K.); (T.N.); (H.-C.S.); (B.-S.S.)
| | - Hyo-Gu Kang
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Korea; (P.-S.J.); (S.L.); (S.-H.P.); (M.J.K.); (H.-G.K.); (T.N.); (H.-C.S.); (B.-S.S.)
| | - Tsevelmaa Nanjidsuren
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Korea; (P.-S.J.); (S.L.); (S.-H.P.); (M.J.K.); (H.-G.K.); (T.N.); (H.-C.S.); (B.-S.S.)
| | - Hee-Chang Son
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Korea; (P.-S.J.); (S.L.); (S.-H.P.); (M.J.K.); (H.-G.K.); (T.N.); (H.-C.S.); (B.-S.S.)
| | - Bong-Seok Song
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Korea; (P.-S.J.); (S.L.); (S.-H.P.); (M.J.K.); (H.-G.K.); (T.N.); (H.-C.S.); (B.-S.S.)
| | - Deog-Bon Koo
- Department of Biotechnology, Daegu University, Gyeongsangbuk-do 38453, Korea;
| | - Bo-Woong Sim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Korea; (P.-S.J.); (S.L.); (S.-H.P.); (M.J.K.); (H.-G.K.); (T.N.); (H.-C.S.); (B.-S.S.)
- Correspondence: (B.-W.S.); (S.-U.K.); Tel.: +82-43-240-6321 (S.-U.K.); Fax: +82-43-240-6309 (S.-U.K.)
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Korea; (P.-S.J.); (S.L.); (S.-H.P.); (M.J.K.); (H.-G.K.); (T.N.); (H.-C.S.); (B.-S.S.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
- Correspondence: (B.-W.S.); (S.-U.K.); Tel.: +82-43-240-6321 (S.-U.K.); Fax: +82-43-240-6309 (S.-U.K.)
| |
Collapse
|
16
|
Peters AE, Mihalas BP, Bromfield EG, Roman SD, Nixon B, Sutherland JM. Autophagy in Female Fertility: A Role in Oxidative Stress and Aging. Antioxid Redox Signal 2020; 32:550-568. [PMID: 31892284 DOI: 10.1089/ars.2019.7986] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: The precipitous age-related decline in female fertility is intimately associated with a reduction in both the quantity and quality of the germline (oocytes). Although complex etiologies undoubtedly contribute to the deterioration of oocyte quality, increasing attention has focused on the pervasive impact of oxidative stress. Indeed, the prolonged lifespan of the meiotically arrested oocyte places this cell at heightened risk of oxidative lesions, which commonly manifest in dysregulation of protein homeostasis (proteostasis). Although oocytes are able to mitigate this threat via the mobilization of a sophisticated network of surveillance, repair, and proteolytic pathways, these defenses are themselves prone to age-related defects, reducing their capacity to eliminate oxidatively damaged proteins. Recent Advances: Here, we give consideration to the quality control mechanisms identified within the ovary that afford protection to the female germline. Our primary focus is to review recent advances in our understanding of the autophagy pathway and its contribution to promoting oocyte longevity and modulating pathophysiological responses to oxidative stress. In addition, we explore the therapeutic potential of emerging strategies to fortify autophagic activity. Critical Issues: The complex interplay of oxidative stress and autophagy has yet to be fully elucidated within the context of the aging oocyte and surrounding ovarian environment. Future Directions: Emerging evidence provides a strong impetus to resolve the causal link between autophagy and oxidative stress-driven pathologies in the aging oocyte. Such research may ultimately inform novel therapeutic strategies to combat the age-related loss of female fertility via fortification of intrinsic autophagic activity.
Collapse
Affiliation(s)
- Alexandra E Peters
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Bettina P Mihalas
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Shaun D Roman
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia.,Priority Research Centre for Drug Development, University of Newcastle, Callaghan, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Jessie M Sutherland
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia
| |
Collapse
|
17
|
Chiaratti MR, Macabelli CH, Augusto Neto JD, Grejo MP, Pandey AK, Perecin F, Collado MD. Maternal transmission of mitochondrial diseases. Genet Mol Biol 2020; 43:e20190095. [PMID: 32141474 PMCID: PMC7197987 DOI: 10.1590/1678-4685-gmb-2019-0095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/01/2019] [Indexed: 12/19/2022] Open
Abstract
Given the major role of the mitochondrion in cellular homeostasis, dysfunctions of this organelle may lead to several common diseases in humans. Among these, maternal diseases linked to mitochondrial DNA (mtDNA) mutations are of special interest due to the unclear pattern of mitochondrial inheritance. Multiple copies of mtDNA are present in a cell, each encoding for 37 genes essential for mitochondrial function. In cases of mtDNA mutations, mitochondrial malfunctioning relies on mutation load, as mutant and wild-type molecules may co-exist within the cell. Since the mutation load associated with disease manifestation varies for different mutations and tissues, it is hard to predict the progeny phenotype based on mutation load in the progenitor. In addition, poorly understood mechanisms act in the female germline to prevent the accumulation of deleterious mtDNA in the following generations. In this review, we outline basic aspects of mitochondrial inheritance in mammals and how they may lead to maternally-inherited diseases. Furthermore, we discuss potential therapeutic strategies for these diseases, which may be used in the future to prevent their transmission.
Collapse
Affiliation(s)
- Marcos R Chiaratti
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, Laboratório de Genética e Biotecnologia, São Carlos, SP, Brazil
| | - Carolina H Macabelli
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, Laboratório de Genética e Biotecnologia, São Carlos, SP, Brazil
| | - José Djaci Augusto Neto
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, Laboratório de Genética e Biotecnologia, São Carlos, SP, Brazil
| | - Mateus Priolo Grejo
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, Laboratório de Genética e Biotecnologia, São Carlos, SP, Brazil
| | - Anand Kumar Pandey
- Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Felipe Perecin
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Laboratório de Morfofisiologia Molecular e Desenvolvimento, Pirassununga, SP, Brazil
| | - Maite Del Collado
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Laboratório de Morfofisiologia Molecular e Desenvolvimento, Pirassununga, SP, Brazil
| |
Collapse
|
18
|
Hale BJ, Hager CL, Seibert JT, Selsby JT, Baumgard LH, Keating AF, Ross JW. Heat stress induces autophagy in pig ovaries during follicular development. Biol Reprod 2018; 97:426-437. [PMID: 29025092 DOI: 10.1093/biolre/iox097] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 08/24/2017] [Indexed: 12/23/2022] Open
Abstract
Hyperthermia or heat stress (HS) occurs when heat dissipation mechanisms are overwhelmed by external and internal heat production. Hyperthermia negatively affects reproduction and potentially compromises oocyte integrity and reduces developmental competence of ensuing embryos. Autophagy is the process by which cells recycle energy through the reutilization of cellular components and is activated by a variety of stressors. Study objectives were to characterize autophagy-related proteins in the ovary following cyclical HS during the follicular phase. Twelve gilts were synchronized and subjected to cyclical HS (n = 6) or thermal neutral (n = 6) conditions for 5 days during the follicular phase. Ovarian protein abundance of Beclin 1 and microtubule associated protein light chain 3 beta II were each elevated as a result of HS (P = 0.001 and 0.003, respectively). The abundance of the autophagy related (ATG)12-ATG5 complex was decreased as a result of HS (P = 0.002). Regulation of autophagy and apoptosis occurs in tight coordination, and B-cell lymphoma (BCL)2 and BCL2L1 are involved in regulating both processes. BCL2L1 protein abundance, as detected via immunofluorescence, was increased in both the oocyte (∼1.6-fold; P < 0.01) and granulosa cells of primary follicles (∼1.4-fold P < 0.05) of HS ovaries. These results suggest that ovarian autophagy induction occurs in response to HS during the follicular phase, and that HS increases anti-apoptotic signaling in oocytes and early follicles. These data contribute to the biological understanding of how HS acts as an environmental stress to affect follicular development and negatively impact reproduction.
Collapse
Affiliation(s)
- Benjamin J Hale
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Candice L Hager
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Jacob T Seibert
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
19
|
Yang LL, Zhao Y, Luo SM, Ma JY, Ge ZJ, Shen W, Yin S. Toxic effects and possible mechanisms of hydrogen sulfide and/or ammonia on porcine oocyte maturation in vitro. Toxicol Lett 2017; 285:20-26. [PMID: 29292088 DOI: 10.1016/j.toxlet.2017.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/07/2017] [Accepted: 12/22/2017] [Indexed: 02/08/2023]
Abstract
Previous studies suggest that hydrogen sulfide (H2S) and ammonia (NH3) are two major air pollutants which can cause damage to porcine health. However, the mechanisms underlying toxic effects of these compounds on porcine oocyte maturation are not clear. To clarify the mechanism, we evaluated the oocyte quality by detecting some events during oocytes maturation. In our study, porcine oocytes were cultured with different concentrations of Na2S and/or NH4Cl in vitro and the rate of the first polar body extrusion decreased significantly. Also, actin filament was seriously disrupted to damage the cytoskeleton which resulted in reduced rate of oocyte maturation. We explored the reactive oxygen species (ROS) generation and found that the ROS level was increased significantly after Na2S treatment but not after NH4Cl treatment. Moreover, early stage apoptosis rate was significantly increased and autophagy protein LC3 B expression level was higher in oocytes treated with Na2S and/or NH4Cl, which might be caused by ROS elevation. Additionally, exposure to Na2S and/or NH4Cl also caused ROS generation and early apoptosis in cumulus cells, which might further affect oocyte maturation in vitro. In summary, our data suggested that exposure to H2S and/or NH3 decreased porcine oocyte maturation in vitro, which might be caused by actin disruption, ROS generation, early apoptosis and autophagy.
Collapse
Affiliation(s)
- Lei-Lei Yang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yong Zhao
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shi-Ming Luo
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jun-Yu Ma
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhao-Jia Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shen Yin
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
20
|
Yan S, Liu L, Ren F, Gao Q, Xu S, Hou B, Wang Y, Jiang X, Che Y. Sunitinib induces genomic instability of renal carcinoma cells through affecting the interaction of LC3-II and PARP-1. Cell Death Dis 2017; 8:e2988. [PMID: 28796254 PMCID: PMC5596573 DOI: 10.1038/cddis.2017.387] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/28/2017] [Accepted: 07/02/2017] [Indexed: 12/12/2022]
Abstract
Deficiency of autophagy has been linked to increase in nuclear instability, but the role of autophagy in regulating the formation and elimination of micronuclei, a diagnostic marker for genomic instability, is limited in mammalian cells. Utilizing immunostaining and subcellular fractionation, we found that either LC3-II or the phosphorylated Ulk1 localized in nuclei, and immunoprecipitation results showed that both LC3 and Unc-51-like kinase 1 (Ulk1) interacted with γ-H2AX, a marker for the DNA double-strand breaks (DSB). Sunitinib, a multi-targeted receptor tyrosine kinase inhibitor, was found to enhance the autophagic flux concurring with increase in the frequency of micronuclei accrued upon inhibition of autophagy, and similar results were also obtained in the rasfonin-treated cells. Moreover, the punctate LC3 staining colocalized with micronuclei. Unexpectedly, deprivation of SQSTM1/p62 alone accumulated micronuclei, which was not further increased upon challenge with ST. Rad51 is a protein central to repairing DSB by homologous recombination and treatment with ST or rasfonin decreased its expression. In several cell lines, p62 appeared in the immunoprecipites of Rad51, whereas LC3, Ulk1 and p62 interacted with PARP-1, another protein involved in DNA repair and genomic stability. In addition, knockdown of either Rad51 or PARP-1 completely inhibited the ST-induced autophagic flux. Taken together, the data presented here demonstrated that both LC3-II and the phosphorylated Ulk1 localized in nuclei and interacted with the proteins essential for nuclear stability, thereby revealing a more intimate relationship between autophagy and genomic stability.
Collapse
Affiliation(s)
- Siyuan Yan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Fengxia Ren
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Quan Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shanshan Xu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bolin Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yange Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xuejun Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yongsheng Che
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
21
|
Jin ZL, Kim NH. RAD51 maintains chromosome integrity and mitochondrial distribution during porcine oocyte maturation in vitro. J Reprod Dev 2017; 63:489-496. [PMID: 28757527 PMCID: PMC5649098 DOI: 10.1262/jrd.2017-078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
DNA repair protein RAD51 homolog 1 (RAD51) plays a central role in homologous recombination (HR) repair of DNA breaks. HR depends on the formation of a RAD51 recombinase filament that facilitates strand invasion. However, the role of RAD51 during porcine oocyte maturation is unknown. The objective of this study was to investigate the expression and function of RAD51 during porcine oocyte maturation in vitro. RAD51 was mainly localized to the nucleus at the germinal vesicle (GV) stage, and was widely distributed in the cytoplasm between the GV breakdown (GVBD) and metaphase II stage. DNA damage induced by etoposide was accompanied by the formation of RAD51 foci that were colocalized with γH2AX. Inhibition of RAD51 increased DNA damage and induced metaphase I arrest along with spindle defects, chromosomal misalignment, and abnormal spindle assembly checkpoint (SAC) activity. Inhibition of RAD51 also increased ROS levels and led to an abnormal mitochondrial distribution. Our results indicate that RAD51 plays a critical role in maintaining chromosome integrity and mitochondrial activity during porcine oocyte maturation.
Collapse
Affiliation(s)
- Zhe-Long Jin
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
| |
Collapse
|