1
|
Chouleur T, Emanuelli A, Souleyreau W, Derieppe MA, Leboucq T, Hardy S, Mathivet T, Tremblay ML, Bikfalvi A. PTP4A2 Promotes Glioblastoma Progression and Macrophage Polarization under Microenvironmental Pressure. CANCER RESEARCH COMMUNICATIONS 2024; 4:1702-1714. [PMID: 38904264 PMCID: PMC11238266 DOI: 10.1158/2767-9764.crc-23-0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/07/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Phosphatase of regenerating liver 2 (also known as PTP4A2) has been linked to cancer progression. Still, its exact role in glioblastoma (GBM), the most aggressive type of primary brain tumor, remains elusive. In this study, we report that pharmacologic treatment using JMS-053, a pan-phosphatase of regenerating liver inhibitor, inhibits GBM cell viability and spheroid growth. We also show that PTP4A2 is associated with a poor prognosis in gliomas, and its expression correlates with GBM aggressiveness. Using a GBM orthotopic xenograft model, we show that PTP4A2 overexpression promotes tumor growth and reduces mouse survival. Furthermore, PTP4A2 deletion leads to increased apoptosis and proinflammatory signals. Using a syngeneic GBM model, we show that depletion of PTP4A2 reduces tumor growth and induces a shift in the tumor microenvironment (TME) toward an immunosuppressive state. In vitro assays show that cell proliferation is not affected in PTP4A2-deficient or -overexpressing cells, highlighting the importance of the microenvironment in PTP4A2 functions. Collectively, our results indicate that PTP4A2 promotes GBM growth in response to microenvironmental pressure and support the rationale for targeting PTP4A2 as a therapeutic strategy against GBM. SIGNIFICANCE High levels of PTP4A2 are associated with poor outcomes in patients with glioma and in mouse models. PTP4A2 depletion increases apoptosis and proinflammatory signals in GBM xenograft models, significantly impacts tumor growth, and rewires the TME in an immunocompetent host. PTP4A2 effects in GBM are dependent on the presence of the TME.
Collapse
Affiliation(s)
- Tiffanie Chouleur
- INSERM U1312 BRIC, Université de Bordeaux, Pessac, France.
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada.
| | | | | | - Marie-Alix Derieppe
- Animalerie Mutualisée, Service Commun des Animaleries, Université de Bordeaux Bordeaux, France.
| | - Téo Leboucq
- INSERM U1312 BRIC, Université de Bordeaux, Pessac, France.
| | - Serge Hardy
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada.
| | | | - Michel L. Tremblay
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada.
| | | |
Collapse
|
2
|
Niu MY, Liu YJ, Shi JJ, Chen RY, Zhang S, Li CY, Cao JF, Yang GJ, Chen J. The Emerging Role of Ubiquitin-Specific Protease 36 (USP36) in Cancer and Beyond. Biomolecules 2024; 14:572. [PMID: 38785979 PMCID: PMC11118191 DOI: 10.3390/biom14050572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
The balance between ubiquitination and deubiquitination is instrumental in the regulation of protein stability and maintenance of cellular homeostasis. The deubiquitinating enzyme, ubiquitin-specific protease 36 (USP36), a member of the USP family, plays a crucial role in this dynamic equilibrium by hydrolyzing and removing ubiquitin chains from target proteins and facilitating their proteasome-dependent degradation. The multifaceted functions of USP36 have been implicated in various disease processes, including cancer, infections, and inflammation, via the modulation of numerous cellular events, including gene transcription regulation, cell cycle regulation, immune responses, signal transduction, tumor growth, and inflammatory processes. The objective of this review is to provide a comprehensive summary of the current state of research on the roles of USP36 in different pathological conditions. By synthesizing the findings from previous studies, we have aimed to increase our understanding of the mechanisms underlying these diseases and identify potential therapeutic targets for their treatment.
Collapse
Affiliation(s)
- Meng-Yao Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Shun Zhang
- Ningbo No.2 Hospital, Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China;
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Jia-Feng Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
- Ningbo No.2 Hospital, Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China;
| |
Collapse
|
3
|
Xiao S, Chen H, Bai Y, Zhang ZY, Liu Y. Targeting PRL phosphatases in hematological malignancies. Expert Opin Ther Targets 2024; 28:259-271. [PMID: 38653737 DOI: 10.1080/14728222.2024.2344695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Phosphatase of regenerating liver (PRL) family proteins, also known as protein tyrosine phosphatase 4A (PTP4A), have been implicated in many types of cancers. The PRL family of phosphatases consists of three members, PRL1, PRL2, and PRL3. PRLs have been shown to harbor oncogenic potentials and are highly expressed in a variety of cancers. Given their roles in cancer progression and metastasis, PRLs are potential targets for anticancer therapies. However, additional studies are needed to be performed to fully understand the roles of PRLs in blood cancers. AREAS COVERED In this review, we will summarize recent studies of PRLs in normal and malignant hematopoiesis, the role of PRLs in regulating various signaling pathways, and the therapeutic potentials of targeting PRLs in hematological malignancies. We will also discuss how to improve current PRL inhibitors for cancer treatment. EXPERT OPINION Although PRL inhibitors show promising therapeutic effects in preclinical studies of different types of cancers, moving PRL inhibitors from bench to bedside is still challenging. More potent and selective PRL inhibitors are needed to target PRLs in hematological malignancies and improve treatment outcomes.
Collapse
Affiliation(s)
- Shiyu Xiao
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hongxia Chen
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Hematology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yunpeng Bai
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Institute for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA
| | - Zhong-Yin Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Institute for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA
| | - Yan Liu
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
4
|
Nguele Meke F, Bai Y, Ruiz-Avila D, Carlock C, Ayub J, Miao J, Hu Y, Li Q, Zhang ZY. Inhibition of PRL2 Upregulates PTEN and Attenuates Tumor Growth in Tp53-deficient Sarcoma and Lymphoma Mouse Models. CANCER RESEARCH COMMUNICATIONS 2024; 4:5-17. [PMID: 38047587 PMCID: PMC10764713 DOI: 10.1158/2767-9764.crc-23-0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/22/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The phosphatases of regenerating liver (PRL) are oncogenic when overexpressed. We previously found that PRL2 deletion increases PTEN, decreases Akt activity, and suppresses tumor development in a partial Pten-deficient mouse model. The current study aims to further establish the mechanism of PTEN regulation by PRL2 and expand the therapeutic potential for PTEN augmentation mediated by PRL2 inhibition in cancers initiated without PTEN alteration. The TP53 gene is the most mutated tumor suppressor in human cancers, and heterozygous or complete deletion of Tp53 in mice leads to the development of sarcomas and thymic lymphomas, respectively. There remains a lack of adequate therapies for the treatment of cancers driven by Tp53 deficiency or mutations. We show that Prl2 deletion leads to PTEN elevation and attenuation of Akt signaling in sarcomas and lymphomas developed in Tp53 deficiency mouse models. This results in increased survival and reduced tumor incidence because of impaired tumor cell proliferation. In addition, inhibition of PRL2 with a small-molecule inhibitor phenocopies the effect of genetic deletion of Prl2 and reduces Tp53 deficiency-induced tumor growth. Taken together, the results further establish PRL2 as a negative regulator of PTEN and highlight the potential of PRL2 inhibition for PTEN augmentation therapy in cancers with wild-type PTEN expression. SIGNIFICANCE Prl2 deletion attenuates Tp53 deficiency-induced tumor growth by increasing PTEN and reducing Akt activity. Targeting Tp53-null lymphoma with PRL inhibitors lead to reduced tumor burden, providing a therapeutic approach via PTEN augmentation.
Collapse
Affiliation(s)
- Frederick Nguele Meke
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Diego Ruiz-Avila
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Colin Carlock
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Jinan Ayub
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Jinmin Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Yanyang Hu
- Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - Qinglin Li
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Department of Chemistry, Purdue University, West Lafayette, Indiana
- Institute for Cancer Research, Purdue University, West Lafayette, Indiana
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
| |
Collapse
|
5
|
Kim JY, Kim SH, Seok J, Bae SH, Hwang SG, Kim GJ. Increased PRL-1 in BM-derived MSCs triggers anaerobic metabolism via mitochondria in a cholestatic rat model. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:512-524. [PMID: 36865088 PMCID: PMC9970868 DOI: 10.1016/j.omtn.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
Mesenchymal stem cell (MSC) therapy in chronic liver disease is associated with mitochondrial anaerobic metabolism. Phosphatase of regenerating liver-1 (PRL-1), known as protein tyrosine phosphatase type 4A, member 1 (PTP4A1), plays a critical role in liver regeneration. However, its therapeutic mechanism remains obscure. The aim of this study was to establish genetically modified bone marrow (BM)-MSCs overexpressing PRL-1 (BM-MSCsPRL-1) and to investigate their therapeutic effects on mitochondrial anaerobic metabolism in a bile duct ligation (BDL)-injured cholestatic rat model. BM-MSCsPRL-1 were generated with lentiviral and nonviral gene delivery systems and characterized. Compared with naive cells, BM-MSCsPRL-1 showed an improved antioxidant capacity and mitochondrial dynamics and decreased cellular senescence. In particular, mitochondrial respiration in BM-MSCsPRL-1 generated using the nonviral system was significantly increased as well as mtDNA copy number and total ATP production. Moreover, transplantation of BM-MSCsPRL-1 generated using the nonviral system had predominantly antifibrotic effects and restored hepatic function in a BDL rat model. Decreased cytoplasmic lactate and increased mitochondrial lactate upon the administration of BM-MSCsPRL-1 indicated significant alterations in mtDNA copy number and ATP production, activating anaerobic metabolism. In conclusion, BM-MSCsPRL-1 generated by a nonviral gene delivery system enhanced anaerobic mitochondrial metabolism in a cholestatic rat model, improving hepatic function.
Collapse
Affiliation(s)
- Jae Yeon Kim
- Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si 13488, Republic of Korea,Research Institute of Placental Science, CHA University, Seongnam 13488, Republic of Korea
| | - Se Ho Kim
- Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si 13488, Republic of Korea
| | - Jin Seok
- Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si 13488, Republic of Korea,Research Institute of Placental Science, CHA University, Seongnam 13488, Republic of Korea
| | - Si Hyun Bae
- Department of Internal Medicine, Catholic University Medical College, Seoul 03312, Republic of Korea
| | - Seong-Gyu Hwang
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si 13488, Republic of Korea,Research Institute of Placental Science, CHA University, Seongnam 13488, Republic of Korea,Corresponding author Gi Jin Kim, Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si 13488, Republic of Korea.
| |
Collapse
|
6
|
Hwang B, Kwon MG, Cho MJ, Lee NK, Lee J, Lee JW, Oh KJ, Bae KH, Hwang JH, Min JK, Park JG. Hepatic PTP4A1 ameliorates high-fat diet-induced hepatosteatosis and hyperglycemia by the activation of the CREBH/FGF21 axis. Theranostics 2023; 13:1076-1090. [PMID: 36793871 PMCID: PMC9925322 DOI: 10.7150/thno.79434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
Precise regulation of kinases and phosphatases is crucial for human metabolic homeostasis. This study aimed to investigate the roles and molecular mechanisms of protein tyrosine phosphatase type IVA1 (PTP4A1) in regulating hepatosteatosis and glucose homeostasis. Method: Ptp4a1-/- mice, adeno-associated virus encoding Ptp4a1 under liver-specific promoter, adenovirus encoding Fgf21, and primary hepatocytes were used to evaluate PTP4A1-mediated regulation in the hepatosteatosis and glucose homeostasis. Glucose tolerance test, insulin tolerance test, 2-deoxyglucose uptake assay, and hyperinsulinemic-euglycemic clamp were performed to estimate glucose homeostasis in mice. The staining, including oil red O, hematoxylin & eosin, and BODIPY, and biochemical analysis for hepatic triglycerides were performed to assess hepatic lipids. Luciferase reporter assays, immunoprecipitation, immunoblots, quantitative real-time polymerase chain reaction, and immunohistochemistry staining were conducted to explore the underlying mechanism. Results: Here, we found that deficiency of PTP4A1 aggravated glucose homeostasis and hepatosteatosis in mice fed a high-fat (HF) diet. Increased lipid accumulation in hepatocytes of Ptp4a1-/- mice reduced the level of glucose transporter 2 on the plasma membrane of hepatocytes leading to a diminution of glucose uptake. PTP4A1 prevented hepatosteatosis by activating the transcription factor cyclic adenosine monophosphate-responsive element-binding protein H (CREBH)/fibroblast growth factor 21 (FGF21) axis. Liver-specific PTP4A1 or systemic FGF21 overexpression in Ptp4a1-/- mice fed an HF diet restored the disorder of hepatosteatosis and glucose homeostasis. Finally, liver-specific PTP4A1 expression ameliorated an HF diet-induced hepatosteatosis and hyperglycemia in wild-type mice. Conclusions: Hepatic PTP4A1 is critical for regulating hepatosteatosis and glucose homeostasis by activating the CREBH/FGF21 axis. Our current study provides a novel function of PTP4A1 in metabolic disorders; hence, modulating PTP4A1 may be a potential therapeutic strategy against hepatosteatosis-related diseases.
Collapse
Affiliation(s)
- Byungtae Hwang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Min-Gi Kwon
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.,Department of Bioscience, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Min Ji Cho
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Nam-Kyung Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jangwook Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeong Woong Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jung Hwan Hwang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.,Department of Bioscience, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.,Department of Bioscience, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Lohani S, Funato Y, Akieda Y, Mizutani K, Takai Y, Ishitani T, Miki H. A novel role of PRL in regulating epithelial cell density by inducing apoptosis at confluence. J Cell Sci 2021; 135:273809. [PMID: 34931244 DOI: 10.1242/jcs.258550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
Maintaining proper epithelial cell density is essential for the survival of multicellular organisms. While regulation of cell density through apoptosis is well known, its mechanistic details remain elusive. Here, we report the involvement of membrane-anchored phosphatase of regenerating liver (PRL), originally known for its role in cancer malignancy, in this process. In epithelial MDCK cells, upon confluence, doxycycline-induced expression of PRL upregulated apoptosis, reducing the cell density. This could be circumvented by artificially reducing the cell density via stretching the cell-seeded silicon chamber. Moreover, siRNA-mediated knockdown of endogenous PRL blocked apoptosis, leading to greater cell density. Mechanistically, PRL promoted apoptosis by upregulating the translation of E-cadherin and activating TGF-β pathway. Morpholino-mediated inhibition of PRL expression in zebrafish embryos caused developmental defect with reduced apoptosis and increased epithelial cell density during convergent extension. This study revealed a novel role of PRL in regulating density-dependent apoptosis in vertebrate epithelium.
Collapse
Affiliation(s)
- Sweksha Lohani
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yosuke Funato
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuki Akieda
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kiyohito Mizutani
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
| | - Tohru Ishitani
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroaki Miki
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Gehring K, Kozlov G, Yang M, Fakih R. The double lives of phosphatases of regenerating liver: A structural view of their catalytic and noncatalytic activities. J Biol Chem 2021; 298:101471. [PMID: 34890645 PMCID: PMC8728433 DOI: 10.1016/j.jbc.2021.101471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
Phosphatases of regenerating liver (PRLs) are protein phosphatases involved in the control of cell growth and migration. They are known to promote cancer metastasis but, despite over 20 years of study, there is still no consensus about their mechanism of action. Recent work has revealed that PRLs lead double lives, acting both as catalytically active enzymes and as pseudophosphatases. The three known PRLs belong to the large family of cysteine phosphatases that form a phosphocysteine intermediate during catalysis. Uniquely to PRLs, this intermediate is stable, with a lifetime measured in hours. As a consequence, PRLs have very little phosphatase activity. Independently, PRLs also act as pseudophosphatases by binding CNNM membrane proteins to regulate magnesium homeostasis. In this function, an aspartic acid from CNNM inserts into the phosphatase catalytic site of PRLs, mimicking a substrate–enzyme interaction. The delineation of PRL pseudophosphatase and phosphatase activities in vivo was impossible until the recent identification of PRL mutants defective in one activity or the other. These mutants showed that CNNM binding was sufficient for PRL oncogenicity in one model of metastasis, but left unresolved its role in other contexts. As the presence of phosphocysteine prevents CNNM binding and CNNM-binding blocks catalytic activity, these two activities are inherently linked. Additional studies are needed to untangle the intertwined catalytic and noncatalytic functions of PRLs. Here, we review the current understanding of the structure and biophysical properties of PRL phosphatases.
Collapse
Affiliation(s)
- Kalle Gehring
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada.
| | - Guennadi Kozlov
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - Meng Yang
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - Rayan Fakih
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Qiu W, Cai X, Xu K, Song S, Xiao Z, Hou Y, Qi X, Liu F, Chen Y, Yang H, Chu L, Liu J. PRL1 Promotes Glioblastoma Invasion and Tumorigenesis via Activating USP36-Mediated Snail2 Deubiquitination. Front Oncol 2021; 11:795633. [PMID: 35111679 PMCID: PMC8801937 DOI: 10.3389/fonc.2021.795633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Regenerating liver phosphatase 1 (PRL1) is an established oncogene in various cancers, although its biological function and the underlying mechanisms in glioblastoma multiforme (GBM) remain unclear. Here, we showed that PRL1 was significantly upregulated in glioma tissues and cell lines, and positively correlated with the tumor grade. Consistently, ectopic expression of PRL1 in glioma cell lines significantly enhanced their tumorigenicity and invasion both in vitro and in vivo by promoting epithelial-mesenchymal transition (EMT). Conversely, knocking down PRL1 blocked EMT in GBM cells, and inhibited their invasion, migration and tumorigenic growth. Additionally, PRL1 also stabilized Snail2 through its deubiquitination by activating USP36, thus revealing Snail2 as a crucial mediator of the oncogenic effects of PRL1 in GBM pathogenesis. Finally, PRL1 protein levels were positively correlated with that of Snail2 and predicted poor outcome of GBMs. Collectively, our data support that PRL1 promotes GBM progression by activating USP36-mediated Snail2 deubiquitination. This novel PRL1/USP36/Snail2 axis may be a promising therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Wenjin Qiu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiaomin Cai
- Department of Neurosurgery, School of Medicine, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Kaya Xu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shibin Song
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zumu Xiao
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yunan Hou
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Feng Liu
- Department of Neurosurgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yimin Chen
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hua Yang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Liangzhao Chu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Jian Liu, ; Liangzhao Chu,
| | - Jian Liu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China
- *Correspondence: Jian Liu, ; Liangzhao Chu,
| |
Collapse
|
10
|
Mechanism of PRL2 phosphatase-mediated PTEN degradation and tumorigenesis. Proc Natl Acad Sci U S A 2020; 117:20538-20548. [PMID: 32788364 DOI: 10.1073/pnas.2002964117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tumor suppressor PTEN (phosphatase and tensin homologue deleted on chromosome 10) levels are frequently found reduced in human cancers, but how PTEN is down-regulated is not fully understood. In addition, although a compelling connection exists between PRL (phosphatase of regenerating liver) 2 and cancer, how this phosphatase induces oncogenesis has been an enigma. Here, we discovered that PRL2 ablation inhibits PTEN heterozygosity-induced tumorigenesis. PRL2 deficiency elevates PTEN and attenuates AKT signaling, leading to decreased proliferation and increased apoptosis in tumors. We also found that high PRL2 expression is correlated with low PTEN level with reduced overall patient survival. Mechanistically, we identified PTEN as a putative PRL2 substrate and demonstrated that PRL2 down-regulates PTEN by dephosphorylating PTEN at Y336, thereby augmenting NEDD4-mediated PTEN ubiquitination and proteasomal degradation. Given the strong cancer susceptibility to subtle reductions in PTEN, the ability of PRL2 to down-regulate PTEN provides a biochemical basis for its oncogenic propensity. The results also suggest that pharmacological targeting of PRL2 could provide a novel therapeutic strategy to restore PTEN, thereby obliterating PTEN deficiency-induced malignancies.
Collapse
|
11
|
Gonadal development and sex determination in mouse. Reprod Biol 2020; 20:115-126. [DOI: 10.1016/j.repbio.2020.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 12/18/2022]
|
12
|
Aguilar-Sopeña O, Hernández-Pérez S, Alegre-Gómez S, Castro-Sánchez P, Iglesias-Ceacero A, Lazo JS, Roda-Navarro P. Effect of Pharmacological Inhibition of the Catalytic Activity of Phosphatases of Regenerating Liver in Early T Cell Receptor Signaling Dynamics and IL-2 Production. Int J Mol Sci 2020; 21:E2530. [PMID: 32260565 PMCID: PMC7177812 DOI: 10.3390/ijms21072530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
We have previously shown the delivery of phosphatase of regenerating liver-1 (PRL-1) to the immunological synapse (IS) and proposed a regulatory role of the catalytic activity of PRLs (PRL-1, PRL-2 and PRL-3) in antigen-induced IL-2 production. Nonetheless, the expression in T cells and delivery to the IS of the highly homologous PRL-3, as well as the role of the catalytic activity of PRLs in antigen-induced early signaling, has not been investigated. Here, the expression of PRL-3 protein was detected in primary CD4 T cells and in the CD4 T cell line Jurkat (JK), in which an overexpressed GFP-PRL-3 fluorescent fusion protein trafficked through the endosomal recycling compartment and co-localized with PLCγ1 signaling sites at the IS. Pharmacological inhibition was used to compare the role of the catalytic activity of PRLs in antigen-induced early signaling and late IL-2 production. Although the phosphatase activity of PRLs was not critical for early signaling triggered by antigen, it seemed to regulate signaling dynamics and was necessary for proper IL-2 production. We propose that enzymatic activity of PRLs has a higher significance for cytokine production than for early signaling at the IS. However, further research will be necessary to deeply understand the regulatory role of PRLs during lymphocyte activation and effector function.
Collapse
Affiliation(s)
- Oscar Aguilar-Sopeña
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Spain and 12 de Octubre Health Research Institute (imas12), 28040 Madrid, Spain; (O.A.-S.); (S.H.-P.); (S.A.-G.); (P.C.-S.); (A.I.-C.)
| | - Sara Hernández-Pérez
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Spain and 12 de Octubre Health Research Institute (imas12), 28040 Madrid, Spain; (O.A.-S.); (S.H.-P.); (S.A.-G.); (P.C.-S.); (A.I.-C.)
| | - Sergio Alegre-Gómez
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Spain and 12 de Octubre Health Research Institute (imas12), 28040 Madrid, Spain; (O.A.-S.); (S.H.-P.); (S.A.-G.); (P.C.-S.); (A.I.-C.)
| | - Patricia Castro-Sánchez
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Spain and 12 de Octubre Health Research Institute (imas12), 28040 Madrid, Spain; (O.A.-S.); (S.H.-P.); (S.A.-G.); (P.C.-S.); (A.I.-C.)
| | - Alba Iglesias-Ceacero
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Spain and 12 de Octubre Health Research Institute (imas12), 28040 Madrid, Spain; (O.A.-S.); (S.H.-P.); (S.A.-G.); (P.C.-S.); (A.I.-C.)
| | - John S. Lazo
- Departments of Pharmacology and Chemistry, University of Virginia, Charlottesville, VA 22908, USA;
| | - Pedro Roda-Navarro
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Spain and 12 de Octubre Health Research Institute (imas12), 28040 Madrid, Spain; (O.A.-S.); (S.H.-P.); (S.A.-G.); (P.C.-S.); (A.I.-C.)
| |
Collapse
|
13
|
Guo P, Xu X, Wang F, Yuan X, Tu Y, Zhang B, Zheng H, Yu D, Ge W, Gong Z, Yang X, Xi Y. A Novel Neuroprotective Role of Phosphatase of Regenerating Liver-1 against CO 2 Stimulation in Drosophila. iScience 2019; 19:291-302. [PMID: 31404830 PMCID: PMC6700421 DOI: 10.1016/j.isci.2019.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 12/27/2022] Open
Abstract
Neuroprotection is essential for the maintenance of normal physiological functions in the nervous system. This is especially true under stress conditions. Here, we demonstrate a novel protective function of PRL-1 against CO2 stimulation in Drosophila. In the absence of PRL-1, flies exhibit a permanent held-up wing phenotype upon CO2 exposure. Knockdown of the CO2 olfactory receptor, Gr21a, suppresses the phenotype. Our genetic data indicate that the wing phenotype is due to a neural dysfunction. PRL-1 physically interacts with Uex and controls Uex expression levels. Knockdown of Uex alone leads to a similar wing held-up phenotype to that of PRL-1 mutants. Uex acts downstream of PRL-1. Elevated Uex levels in PRL-1 mutants prevent the CO2-induced phenotype. PRL-1 and Uex are required for a wide range of neurons to maintain neuroprotective functions. Expression of human homologs of PRL-1 could rescue the phenotype in Drosophila, suggesting a similar function in humans. PRL-1 functions to protect the nervous system against olfactory CO2 stimulation PRL-1 physically interacts with Uex and controls Uex expression levels PRLs may retain a similar neuroprotective function in humans
Collapse
Affiliation(s)
- Pengfei Guo
- Institute of Genetics and Department of Genetics, Division of Human Reproduction and Developmental Genetics of the Women's Hospital, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China; College of Life Sciences, Zhejiang University, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China
| | - Xiao Xu
- Institute of Genetics and Department of Genetics, Division of Human Reproduction and Developmental Genetics of the Women's Hospital, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China; College of Life Sciences, Zhejiang University, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China
| | - Fang Wang
- College of Life Sciences, Zhejiang University, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China
| | - Xin Yuan
- Institute of Genetics and Department of Genetics, Division of Human Reproduction and Developmental Genetics of the Women's Hospital, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China
| | - Yinqi Tu
- Institute of Genetics and Department of Genetics, Division of Human Reproduction and Developmental Genetics of the Women's Hospital, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China; College of Life Sciences, Zhejiang University, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China
| | - Bei Zhang
- Institute of Genetics and Department of Genetics, Division of Human Reproduction and Developmental Genetics of the Women's Hospital, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China; College of Life Sciences, Zhejiang University, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China
| | - Huimei Zheng
- Institute of Genetics and Department of Genetics, Division of Human Reproduction and Developmental Genetics of the Women's Hospital, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China
| | - Danqing Yu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China
| | - Wanzhong Ge
- Institute of Genetics and Department of Genetics, Division of Human Reproduction and Developmental Genetics of the Women's Hospital, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China
| | - Zhefeng Gong
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China
| | - Xiaohang Yang
- Institute of Genetics and Department of Genetics, Division of Human Reproduction and Developmental Genetics of the Women's Hospital, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China; Joint Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.
| | - Yongmei Xi
- Institute of Genetics and Department of Genetics, Division of Human Reproduction and Developmental Genetics of the Women's Hospital, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
14
|
Magnesium-sensitive upstream ORF controls PRL phosphatase expression to mediate energy metabolism. Proc Natl Acad Sci U S A 2019; 116:2925-2934. [PMID: 30718434 DOI: 10.1073/pnas.1815361116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Phosphatases of regenerating liver (PRL-1, PRL-2, and PRL-3, also known as PTP4A1, PTP4A2, and PTP4A3) control magnesium homeostasis through an association with the CNNM magnesium transport regulators. Although high PRL levels have been linked to cancer progression, regulation of their expression is poorly understood. Here we show that modulating intracellular magnesium levels correlates with a rapid change of PRL expression by a mechanism involving its 5'UTR mRNA region. Mutations or CRISPR-Cas9 targeting of the conserved upstream ORF present in the mRNA leader derepress PRL protein synthesis and attenuate the translational response to magnesium levels. Mechanistically, magnesium depletion reduces intracellular ATP but up-regulates PRL protein expression via activation of the AMPK/mTORC2 pathway, which controls cellular energy status. Hence, altered PRL-2 expression leads to metabolic reprogramming of the cells. These findings uncover a magnesium-sensitive mechanism controlling PRL expression, which plays a role in cellular bioenergetics.
Collapse
|
15
|
Hardy S, Kostantin E, Hatzihristidis T, Zolotarov Y, Uetani N, Tremblay ML. Physiological and oncogenic roles of thePRLphosphatases. FEBS J 2018; 285:3886-3908. [DOI: 10.1111/febs.14503] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/30/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Serge Hardy
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
| | - Elie Kostantin
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
| | - Teri Hatzihristidis
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Medicine Division of Experimental Medicine McGill University Montreal Canada
| | - Yevgen Zolotarov
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
| | - Noriko Uetani
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
| | - Michel L. Tremblay
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
- Department of Medicine Division of Experimental Medicine McGill University Montreal Canada
| |
Collapse
|
16
|
Phosphatase of regenerating liver maintains cellular magnesium homeostasis. Biochem J 2018; 475:1129-1139. [DOI: 10.1042/bcj20170756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/16/2018] [Accepted: 02/27/2018] [Indexed: 11/17/2022]
Abstract
Phosphatase of regenerating liver (PRL) is highly expressed in malignant cancers and promotes cancer progression. Recent studies have suggested its functional relationship with Mg2+, but the importance and molecular details of this relationship remain unknown. Here, we report that PRL expression is regulated by Mg2+ and PRL protects cells from apoptosis under Mg2+-depleted conditions. When cultured cells were subjected to Mg2+ depletion, endogenous PRL protein levels increased significantly. siRNA-mediated knockdown of endogenous PRL did not significantly affect cell proliferation under normal culture conditions, but it increased cell death after Mg2+ depletion. Imaging analyses with a fluorescent probe for Mg2+ showed that PRL knockdown severely reduced intracellular Mg2+ levels, indicating a role for PRL in maintaining intracellular Mg2+. We also examined the mechanism of augmented expression of PRL proteins and found that PRL mRNA transcription was stimulated by Mg2+ depletion. A series of analyses revealed the activation and the crucial importance of signal transducer and activator of transcription 1 in this process. Collectively, these results implicate PRL in maintaining cellular Mg2+ homeostasis.
Collapse
|
17
|
Yu ZH, Zhang ZY. Regulatory Mechanisms and Novel Therapeutic Targeting Strategies for Protein Tyrosine Phosphatases. Chem Rev 2018; 118:1069-1091. [PMID: 28541680 PMCID: PMC5812791 DOI: 10.1021/acs.chemrev.7b00105] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An appropriate level of protein phosphorylation on tyrosine is essential for cells to react to extracellular stimuli and maintain cellular homeostasis. Faulty operation of signal pathways mediated by protein tyrosine phosphorylation causes numerous human diseases, which presents enormous opportunities for therapeutic intervention. While the importance of protein tyrosine kinases in orchestrating the tyrosine phosphorylation networks and in target-based drug discovery has long been recognized, the significance of protein tyrosine phosphatases (PTPs) in cellular signaling and disease biology has historically been underappreciated, due to a large extent to an erroneous assumption that they are largely constitutive and housekeeping enzymes. Here, we provide a comprehensive examination of a number of regulatory mechanisms, including redox modulation, allosteric regulation, and protein oligomerization, that control PTP activity. These regulatory mechanisms are integral to the myriad PTP-mediated biochemical events and reinforce the concept that PTPs are indispensable and specific modulators of cellular signaling. We also discuss how disruption of these PTP regulatory mechanisms can cause human diseases and how these diverse regulatory mechanisms can be exploited for novel therapeutic development.
Collapse
Affiliation(s)
- Zhi-Hong Yu
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907
| |
Collapse
|
18
|
Frankson R, Yu ZH, Bai Y, Li Q, Zhang RY, Zhang ZY. Therapeutic Targeting of Oncogenic Tyrosine Phosphatases. Cancer Res 2017; 77:5701-5705. [PMID: 28855209 DOI: 10.1158/0008-5472.can-17-1510] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/12/2017] [Accepted: 08/24/2017] [Indexed: 01/01/2023]
Abstract
Protein tyrosine phosphatases (PTP) are exciting and novel targets for cancer drug discovery that work in concert with protein tyrosine kinases (PTK) in controlling cellular homeostasis. Given the activating role that some PTKs play in initiating growth factor-mediated cellular processes, PTPs are usually perceived as the negative regulators of these events and therefore tumor suppressive in nature. However, mounting evidence indicate that PTPs do not always antagonize the activity of PTKs in regulating tyrosine phosphorylation, but can also play dominant roles in the initiation and progression of signaling cascades that regulate cell functions. It follows, therefore, that PTP malfunction can actively contribute to a host of human disorders, in particular, cancer, metabolic syndromes, and autoimmune diseases. The Src homology domain containing phosphatase 2 (SHP2) and the three-membered family of phosphatases of regenerating liver (PRL) are infamously oncogenic members of the PTP superfamily. Both are established regulators of major cancer pathways such as Ras/ERK1/2, Src, JAK/STAT, JNK, NF-κB, and PTEN/PI3K/AKT. Furthermore, upregulation, mutation, or other dysregulation of these PTPs has been positively correlated with cancer initiation and progression. This review will provide topical coverage of target validation and drug discovery efforts made in targeting these oncogenic PTPs as compelling candidates for cancer therapy. Cancer Res; 77(21); 5701-5. ©2017 AACR.
Collapse
Affiliation(s)
- Rochelle Frankson
- Departments of Medicinal Chemistry and Molecular Pharmacology and Chemistry, Center for Cancer Research and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
| | - Zhi-Hong Yu
- Departments of Medicinal Chemistry and Molecular Pharmacology and Chemistry, Center for Cancer Research and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
| | - Yunpeng Bai
- Departments of Medicinal Chemistry and Molecular Pharmacology and Chemistry, Center for Cancer Research and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
| | - Qinglin Li
- Departments of Medicinal Chemistry and Molecular Pharmacology and Chemistry, Center for Cancer Research and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
| | - Ruo-Yu Zhang
- Departments of Medicinal Chemistry and Molecular Pharmacology and Chemistry, Center for Cancer Research and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
| | - Zhong-Yin Zhang
- Departments of Medicinal Chemistry and Molecular Pharmacology and Chemistry, Center for Cancer Research and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
19
|
Uetani N, Hardy S, Gravel SP, Kiessling S, Pietrobon A, Wong NN, Chénard V, Cermakian N, St-Pierre J, Tremblay ML. PRL2 links magnesium flux and sex-dependent circadian metabolic rhythms. JCI Insight 2017; 2:91722. [PMID: 28679948 DOI: 10.1172/jci.insight.91722] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/23/2017] [Indexed: 11/17/2022] Open
Abstract
Magnesium (Mg2+) plays pleiotropic roles in cellular biology, and it is essentially required for all living organisms. Although previous studies demonstrated intracellular Mg2+ levels were regulated by the complex of phosphatase of regenerating liver 2 (PRL2) and Mg2+ transporter of cyclin M (CNNMs), physiological functions of PRL2 in whole animals remain unclear. Interestingly, Mg2+ was recently identified as a regulator of circadian rhythm-dependent metabolism; however, no mechanism was found to explain the clock-dependent Mg2+ oscillation. Herein, we report PRL2 as a missing link between sex and metabolism, as well as clock genes and daily cycles of Mg2+ fluxes. Our results unveil that PRL2-null animals displayed sex-dependent alterations in body composition, and expression of PRLs and CNNMs were sex- and circadian time-dependently regulated in brown adipose tissues. Consistently, PRL2-KO mice showed sex-dependent alterations in thermogenesis and in circadian energy metabolism. These physiological changes were associated with an increased rate of uncoupled respiration with lower intracellular Mg2+ in PRL2-KO cells. Moreover, PRL2 deficiency causes inhibition of the ATP citrate lyase axis, which is involved in fatty acid synthesis. Overall, our findings support that sex- and circadian-dependent PRL2 expression alter intracellular Mg2+ levels, which accordingly controls energy metabolism status.
Collapse
Affiliation(s)
| | - Serge Hardy
- Rosalind and Morris Goodman Cancer Research Centre
| | | | - Silke Kiessling
- Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, and
| | | | - Nau Nau Wong
- Rosalind and Morris Goodman Cancer Research Centre
| | | | - Nicolas Cermakian
- Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, and
| | - Julie St-Pierre
- Rosalind and Morris Goodman Cancer Research Centre.,Department of Biochemistry
| | - Michel L Tremblay
- Rosalind and Morris Goodman Cancer Research Centre.,Department of Biochemistry.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|