1
|
Wang F, Keating CR, Xu Y, Hou W, Malnassy G, Boedeker K, Perera A, Ham E, Patel D, Ding X, Qiu W. Suppression of Hepatocellular Carcinoma by Deletion of SIRT2 in Hepatocytes via Elevated C/EBPβ/GADD45γ. Cell Mol Gastroenterol Hepatol 2025:101494. [PMID: 40081570 DOI: 10.1016/j.jcmgh.2025.101494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND & AIMS There is a gap in our understanding of mechanisms promoting hepatocellular carcinoma (HCC), and this limits our ability to provide targeted therapy interventions for HCC. In HCC samples, NAD-dependent deacetylase sirtuin 2 (SIRT2) levels are increased and associated with a significantly worse prognosis, but the role of SIRT2 in hepatocarcinogenesis remains controversial. METHODS To assess the role of SIRT2 in hepatocarcinogenesis, we used a hepatocyte-specific knockout of SIRT2 and 3 plasmid overexpression HCC models: c-MET (MET)/β-catenin (CAT) and protein kinase B (AKT)/Nras. RNA sequencing of mouse liver tissue was performed, and mechanistic findings were confirmed using immunohistochemistry (IHC), quantitative polymerase chain reaction, Western blot, and Cell Counting Kit-8. RESULTS Using the MET/CAT and AKT/Nras models, we found that SIRT2 is a significant mediator of liver tumorigenesis, with the knockout of SIRT2 delaying tumor growth. RNA sequencing of MET/CAT-driven tumor tissue showed an increase in growth arrest and DNA-damage-inducible protein gamma (GADD45γ) in SIRT2 knockout mice compared with wild-type. GADD45γ is a known tumor suppressor, but the regulation of GADD45γ by SIRT2 has not been shown. CCAAT/enhancer-binding protein beta (C/EBPβ) proteins are known to regulate GADD45γ expression, and we found that C/EBPβ expression was increased in SIRT2 knockout livers and HCC cells. Also, C/EBPβ knockdown reversed GADD45γ expression and growth suppression following SIRT2 inhibition. Finally, C/EBPβ or GADD45γ overexpression significantly suppressed MET/CAT-induced HCC development. CONCLUSIONS SIRT2 is a potent tumor promotor in HCC that negatively regulates GADD45γ expression through C/EBPβ. The SIRT2-C/EBPβ-GADD45γ pathway elucidates a novel mechanism in HCC and establishes SIRT2 as a therapeutic target for patients with HCC.
Collapse
Affiliation(s)
- Fang Wang
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Claudia Rose Keating
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Yingchen Xu
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wei Hou
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Greg Malnassy
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Kyle Boedeker
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Aldeb Perera
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Eugene Ham
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Diya Patel
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Xianzhong Ding
- Department of Pathology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Wei Qiu
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois.
| |
Collapse
|
2
|
Graham RE, Zheng R, Wagner J, Unciti-Broceta A, Hay DC, Forbes SJ, Gadd VL, Carragher NO. Single-cell morphological tracking of cell states to identify small-molecule modulators of liver differentiation. iScience 2025; 28:111871. [PMID: 39995868 PMCID: PMC11848441 DOI: 10.1016/j.isci.2025.111871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/24/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
We have developed a single-cell assay that combines Cell Painting-a morphological profiling assay-with trajectory inference analysis. We have applied this morphological trajectory inference to the bi-potent HepaRG liver progenitor cell line allowing us to track liver cell fate and map small-molecule-induced changes using a morphological atlas of liver cell differentiation. Our overarching goal is to demonstrate the potential of Cell Painting to study biological processes as continuous trajectories at the single-cell level, enhancing resolution and biological understanding. This work has identified small-molecule Src family kinase inhibitors that promote the differentiation of HepaRG cells toward a hepatocyte-like lineage as well as primary human hepatic progenitor cells toward a hepatocyte-like phenotype in vitro. These findings could significantly advance research on liver cell regeneration mechanisms and facilitate the development of cell-based and small-molecule therapies.
Collapse
Affiliation(s)
- Rebecca E. Graham
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Runshi Zheng
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Jesko Wagner
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Asier Unciti-Broceta
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
- Cancer Research UK Scotland Centre, Edinburgh EH4 2XU, UK
| | - David C. Hay
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Stuart J. Forbes
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Victoria L. Gadd
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Neil O. Carragher
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
- Cancer Research UK Scotland Centre, Edinburgh EH4 2XU, UK
| |
Collapse
|
3
|
Li Q, Xu Q, Shi J, Dong W, Jin J, Zhang C. FAK inhibition delays liver repair after acetaminophen-induced acute liver injury by suppressing hepatocyte proliferation and macrophage recruitment. Hepatol Commun 2024; 8:e0531. [PMID: 39761008 PMCID: PMC11495758 DOI: 10.1097/hc9.0000000000000531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/13/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Overdose of acetaminophen (APAP), a commonly used antipyretic analgesic, can lead to severe liver injury and failure. Current treatments are only effective in the early stages of APAP-induced acute liver injury (ALI). Therefore, a detailed examination of the mechanisms involved in liver repair following APAP-induced ALI could provide valuable insights for clinical interventions. METHODS 4D-label-free proteomics analysis was used to identify dysregulated proteins in the liver of APAP-treated mice. RNA-Seq, hematoxylin-eosin staining, immunohistochemical staining, immunofluorescence staining, quantitative PCR, western blotting, transwell were used to explore the underlying mechanisms. RESULTS Utilizing high throughput 4D-label-free proteomics analysis, we observed a notable increase in proteins related to the "focal adhesion" pathway in the livers of APAP-treated mice. Inhibiting focal adhesion kinase (FAK) activation with a specific inhibitor, 1,2,4,5-Benzenetetraamine tetrahydrochloride (also called Y15), resulted in reduced macrophage numbers, delayed necrotic cell clearance, and inhibited liver cell proliferation in the necrotic regions of APAP-treated mice. RNA-Seq analysis demonstrated that Y15 downregulated genes associated with "cell cycle" and "phagosome" pathways in the livers of APAP-treated mice. Furthermore, blocking extracellular matrix (ECM)-integrin activation with a competitive peptide inhibitor, Gly-Arg-Gly-Asp-Ser (GRGDS), suppressed FAK activation and liver cell proliferation without affecting macrophage recruitment to necrotic areas. Mechanistically, ECM-induced FAK activation upregulated growth-promoting cell cycle genes, leading to hepatocyte proliferation, while CCL2 enhanced FAK activation and subsequent macrophage recruitment via F-actin rearrangement. CONCLUSIONS Overall, these findings underscore the pivotal role of FAK activation in liver repair post-APAP overdose by promoting liver cell proliferation and macrophage recruitment.
Collapse
Affiliation(s)
- Qing Li
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin, Guangxi, China
| | - Qi Xu
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Jialin Shi
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Wei Dong
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junfei Jin
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin, Guangxi, China
| | - Chong Zhang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
4
|
Malila Y, Uengwetwanit T, Thanatsang KV, Arayamethakorn S, Srimarut Y, Petracci M, Soglia F, Rungrassamee W, Visessanguan W. Insights Into Transcriptome Profiles Associated With Wooden Breast Myopathy in Broilers Slaughtered at the Age of 6 or 7 Weeks. Front Physiol 2021; 12:691194. [PMID: 34262480 PMCID: PMC8273767 DOI: 10.3389/fphys.2021.691194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
Transcriptomes associated with wooden breast (WB) were characterized in broilers at two different market ages. Breasts (Pectoralis major) were collected, 20-min postmortem, from male Ross 308 broilers slaughtered at 6 and 7 weeks of age. The breasts were classified as "non-WB" or "WB" based on palpation hardness scoring (non-WB = no abnormal hardness, WB = consistently hardened). Total RNA was isolated from 16 samples (n = 3 for 6 week non-WB, n = 3 for 6 week WB; n = 5 for 7 week non-WB, n = 5 for 7 week WB). Transcriptome was profiled using a chicken gene expression microarray with one-color hybridization technique, and compared between non-WB and WB samples of the same age. Among 6 week broilers, 910 transcripts were differentially expressed (DE) (false discovery rate, FDR < 0.05). Pathway analysis underlined metabolisms of glucose and lipids along with gap junctions, tight junction, and focal adhesion (FA) signaling as the top enriched pathways. For the 7 week broilers, 1,195 transcripts were identified (FDR < 0.05) with regulation of actin cytoskeleton, mitogen-activated protein kinase (MAPK) signaling, protein processing in endoplasmic reticulum and FA signaling highlighted as the enriched affected pathways. Absolute transcript levels of eight genes (actinin-1 - ACTN1, integrin-linked kinase - ILK, integrin subunit alpha 8 - ITGA8, integrin subunit beta 5 - ITGB5, protein tyrosine kinase 2 - PTK2, paxillin - PXN, talin 1 - TLN1, and vinculin - VCL) of FA signaling pathway were further elucidated using a droplet digital polymerase chain reaction. The results indicated that, in 6 week broilers, ITGA8 abundance in WB was greater than that of non-WB samples (p < 0.05). Concerning 7 week broilers, greater absolute levels of ACTN1, ILK, ITGA8, and TLN1, accompanied with a reduced ITGB5 were found in WB compared with non-WB (p < 0.05). Transcriptional modification of FA signaling underlined the potential of disrupted cell-cell communication that may incite aberrant molecular events in association with development of WB myopathy.
Collapse
Affiliation(s)
- Yuwares Malila
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| | - Tanaporn Uengwetwanit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| | - Krittaporn V. Thanatsang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| | - Sopacha Arayamethakorn
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| | - Yanee Srimarut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Cesena, Italy
| | - Francesca Soglia
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Cesena, Italy
| | - Wanilada Rungrassamee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| | - Wonnop Visessanguan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| |
Collapse
|
5
|
Shang N, Wang H, Bank T, Perera A, Joyce C, Kuffel G, Zilliox MJ, Cotler SJ, Ding X, Dhanarajan A, Breslin P, Qiu W. Focal Adhesion Kinase and β-Catenin Cooperate to Induce Hepatocellular Carcinoma. Hepatology 2019; 70:1631-1645. [PMID: 31069844 PMCID: PMC6819211 DOI: 10.1002/hep.30707] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/02/2019] [Indexed: 12/17/2022]
Abstract
There is an urgent need to understand the molecular signaling pathways that drive or mediate the development of hepatocellular carcinoma (HCC). The focal adhesion kinase (FAK) gene protein tyrosine kinase 2 is amplified in 16.4% of The Cancer Genome Atlas HCC specimens, and its amplification leads to increased FAK mRNA expression. It is not known whether the overexpression of FAK alone is sufficient to induce HCC or whether it must cooperate in some ways with other oncogenes. In this study, we found that 34.8% of human HCC samples with FAK amplification also show β-catenin mutations, suggesting a co-occurrence of FAK overexpression and β-catenin mutations in HCC. We overexpressed FAK alone, constitutively active forms of β-catenin (CAT) alone, or a combination of FAK and CAT in the livers of C57/BL6 mice. We found that overexpression of both FAK and CAT, but neither FAK nor CAT alone, in mouse livers was sufficient to lead to tumorigenesis. We further demonstrated that FAK's kinase activity is required for FAK/CAT-induced tumorigenesis. Furthermore, we performed RNA-sequencing analysis to identify the genes/signaling pathways regulated by FAK, CAT, or FAK/CAT. We found that FAK overexpression dramatically enhances binding of β-catenin to the promoter of androgen receptor (AR), which leads to increased expression of AR in mouse livers. Moreover, ASC-J9, an AR degradation enhancer, suppressed FAK/CAT-induced HCC formation. Conclusion: FAK overexpression and β-catenin mutations often co-occur in human HCC tissues. Co-overexpression of FAK and CAT leads to HCC formation in mice through increased expression of AR; this mouse model may be useful for further studies of the molecular mechanisms in the pathogenesis of HCC and could lead to the identification of therapeutic targets.
Collapse
Affiliation(s)
- Na Shang
- Departments of Surgery and Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Hao Wang
- Departments of Surgery and Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Thomas Bank
- Departments of Surgery and Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Aldeb Perera
- Departments of Surgery and Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Cara Joyce
- Departments of Public Health Sciences, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Gina Kuffel
- Departments of Public Health Sciences, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Michael J. Zilliox
- Departments of Public Health Sciences, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Scott J. Cotler
- Departments of Medicine, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Xianzhong Ding
- Departments of Pathology, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Asha Dhanarajan
- Departments of Medicine, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Peter Breslin
- Departments of Molecular/Cellular Physiology and Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Wei Qiu
- Departments of Surgery and Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL,Correspondence: Wei Qiu, Ph.D., Department of Surgery and Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue., Bldg. 112, Rm. 338, Maywood, IL 60153, , Tel.: +1-708-327-8191
| |
Collapse
|
6
|
Wang S, Zhang C, Hasson D, Desai A, SenBanerjee S, Magnani E, Ukomadu C, Lujambio A, Bernstein E, Sadler KC. Epigenetic Compensation Promotes Liver Regeneration. Dev Cell 2019; 50:43-56.e6. [PMID: 31231040 PMCID: PMC6615735 DOI: 10.1016/j.devcel.2019.05.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/02/2019] [Accepted: 05/16/2019] [Indexed: 12/19/2022]
Abstract
Two major functions of the epigenome are to regulate gene expression and to suppress transposons. It is unclear how these functions are balanced during physiological challenges requiring tissue regeneration, where exquisite coordination of gene expression is essential. Transcriptomic analysis of seven time points following partial hepatectomy identified the epigenetic regulator UHRF1, which is essential for DNA methylation, as dynamically expressed during liver regeneration in mice. UHRF1 deletion in hepatocytes (Uhrf1HepKO) caused genome-wide DNA hypomethylation but, surprisingly, had no measurable effect on gene or transposon expression or liver homeostasis. Partial hepatectomy of Uhrf1HepKO livers resulted in early and sustained activation of proregenerative genes and enhanced liver regeneration. This was attributed to redistribution of H3K27me3 from promoters to transposons, effectively silencing them and, consequently, alleviating repression of liver regeneration genes, priming them for expression in Uhrf1HepKO livers. Thus, epigenetic compensation safeguards the genome against transposon activation, indirectly affecting gene regulation.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chi Zhang
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anal Desai
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Sucharita SenBanerjee
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; College of Arts and Sciences, Wentworth Institute of Technology, 504 Parker St., Boston, MA 02115, USA
| | - Elena Magnani
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates
| | - Chinweike Ukomadu
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kirsten C Sadler
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Program in Biology, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates.
| |
Collapse
|
7
|
Álvarez-Mercado AI, Bujaldon E, Gracia-Sancho J, Peralta C. The Role of Adipokines in Surgical Procedures Requiring Both Liver Regeneration and Vascular Occlusion. Int J Mol Sci 2018; 19:ijms19113395. [PMID: 30380727 PMCID: PMC6274984 DOI: 10.3390/ijms19113395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022] Open
Abstract
Liver regeneration is a perfectly calibrated mechanism crucial to increase mass recovery of small size grafts from living donor liver transplantation, as well as in other surgical procedures including hepatic resections and liver transplantation from cadaveric donors. Regeneration involves multiple events and pathways in which several adipokines contribute to their orchestration and drive hepatocytes to proliferate. In addition, ischemia-reperfusion injury is a critical factor in hepatic resection and liver transplantation associated with liver failure or graft dysfunction post-surgery. This review aims to summarize the existing knowledge in the role of adipokines in surgical procedures requiring both liver regeneration and vascular occlusion, which increases ischemia-reperfusion injury and regenerative failure. We expose and discuss results in small-for-size liver transplantation and hepatic resections from animal studies focused on the modulation of the main adipokines associated with liver diseases and/or regeneration published in the last five years and analyze future perspectives and their applicability as potential targets to decrease ischemia-reperfusion injury and improve regeneration highlighting marginal states such as steatosis. In our view, adipokines means a promising approach to translate to the bedside to improve the recovery of patients subjected to partial hepatectomy and to increase the availability of organs for transplantation.
Collapse
Affiliation(s)
- Ana Isabel Álvarez-Mercado
- Experimental Liver Surgery and Liver Transplantation, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain.
| | - Esther Bujaldon
- Experimental Liver Surgery and Liver Transplantation, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain.
| | - Jordi Gracia-Sancho
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas (CIBEREHD), 28029 Madrid, Spain.
- Liver Vascular Biology Research Group, IDIBAPS, 08036 Barcelona, Spain.
| | - Carmen Peralta
- Experimental Liver Surgery and Liver Transplantation, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas (CIBEREHD), 28029 Madrid, Spain.
- Facultad de Medicina, Universidad Internacional de Cataluña, 08017 Barcelona, Spain.
| |
Collapse
|
8
|
Wang F, Bank T, Malnassy G, Arteaga M, Shang N, Dalheim A, Ding X, Cotler SJ, Denning MF, Nishimura MI, Breslin P, Qiu W. Inhibition of insulin-like growth factor 1 receptor enhances the efficacy of sorafenib in inhibiting hepatocellular carcinoma cell growth and survival. Hepatol Commun 2018; 2:732-746. [PMID: 29881824 PMCID: PMC5983153 DOI: 10.1002/hep4.1181] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/01/2018] [Accepted: 03/08/2018] [Indexed: 01/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common primary cancer and second largest cause of cancer-related death worldwide. The first-line oral chemotherapeutic agent sorafenib only increases survival in patients with advanced HCC by less than 3 months. Most patients with advanced HCC have shown limited response rates and survival benefits with sorafenib. Although sorafenib is an inhibitor of multiple kinases, including serine/threonine-protein kinase c-Raf, serine/threonine-protein kinase B-Raf, vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, VEGFR-3, and platelet-derived growth factor receptor β, HCC cells are able to escape from sorafenib treatment using other pathways that the drug insufficiently inhibits. The aim of this study was to identify and target survival and proliferation pathways that enable HCC to escape the antitumor activity of sorafenib. We found that insulin-like growth factor 1 receptor (IGF1R) remains activated in HCC cells treated with sorafenib. Knockdown of IGF1R sensitizes HCC cells to sorafenib treatment and decreases protein kinase B (AKT) activation. Overexpression of constitutively activated AKT reverses the effect of knockdown of IGF1R in sensitizing HCC cells to treatment with sorafenib. Further, we found that ceritinib, a drug approved by the U.S. Food and Drug Administration for treatment of non-small cell lung cancer, effectively inhibits the IGF1R/AKT pathway and enhances the inhibitory efficacy of sorafenib in human HCC cell growth and survival in vitro, in a xenograft mouse model and in the c-Met/β-catenin-driven HCC mouse model. Conclusion: Our study provides a biochemical basis for evaluation of a new combination treatment that includes IGF1R inhibitors, such as ceritinib and sorafenib, in patients with HCC. (Hepatology Communications 2018;2:732-746).
Collapse
Affiliation(s)
- Fang Wang
- Department of Surgery and Oncology Institute, Stritch School of MedicineLoyola University ChicagoMaywoodIL
| | - Thomas Bank
- Department of Surgery and Oncology Institute, Stritch School of MedicineLoyola University ChicagoMaywoodIL
| | - Gregory Malnassy
- Department of Surgery and Oncology Institute, Stritch School of MedicineLoyola University ChicagoMaywoodIL
| | - Maribel Arteaga
- Department of Surgery and Oncology Institute, Stritch School of MedicineLoyola University ChicagoMaywoodIL
| | - Na Shang
- Department of Surgery and Oncology Institute, Stritch School of MedicineLoyola University ChicagoMaywoodIL
| | - Annika Dalheim
- Department of Surgery and Oncology Institute, Stritch School of MedicineLoyola University ChicagoMaywoodIL
| | - Xianzhong Ding
- Pathology Department, Stritch School of MedicineLoyola University ChicagoMaywoodIL
| | - Scott J. Cotler
- Department of Medicine, Stritch School of MedicineLoyola University ChicagoMaywoodIL
| | - Mitchell F. Denning
- Pathology Department, Stritch School of MedicineLoyola University ChicagoMaywoodIL
| | - Michael I. Nishimura
- Department of Surgery and Oncology Institute, Stritch School of MedicineLoyola University ChicagoMaywoodIL
| | - Peter Breslin
- Department of Surgery and Oncology Institute, Stritch School of MedicineLoyola University ChicagoMaywoodIL
- Department of Molecular/Cellular Physiology, Stritch School of MedicineLoyola University ChicagoMaywoodIL
| | - Wei Qiu
- Department of Surgery and Oncology Institute, Stritch School of MedicineLoyola University ChicagoMaywoodIL
| |
Collapse
|
9
|
Xia T, Zhao R, Liu W, Huang Q, Chen P, Waju YN, Al-Ani MK, Lv Y, Yang L. Effect of substrate stiffness on hepatocyte migration and cellular Young's modulus. J Cell Physiol 2018; 233:6996-7006. [PMID: 29345322 DOI: 10.1002/jcp.26491] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/16/2018] [Indexed: 01/01/2023]
Abstract
Hepatic fibrosis progress accompanied by an unbalanced extracellular matrix (ECM) degradation and deposition leads to an increased tissue stiffness. Hepatocytes interplay with all intrahepatic cell populations inside the liver. However, how hepatocytes migration and cellular Young's modulus influenced by the substrate stiffness are not well understood. Here, we established a stiffness-controllable in vitro cell culture model by using a polyvinyl alcohol (PVA) hydrogel that mimicked the same physical stiffness as a fibrotic liver. Three levels of stiffness were used in our experiment that corresponded to the stiffness levels found in normal liver tissue (4.5 kPa), the early (19 kPa) and late stages (37 kPa) of fibrotic liver tissues. Cytoskeleton of hepatocyte was influenced by substrate stiffness. Soft substrate promoted the cellular migration and directionality. The cellular Young's modulus firstly increased and then decreased with increasing substrate stiffness. Integrin-β1 and β-catenin expression on cytomembrane were up-regulated and down-regulated with the increase of substrate stiffness, respectively. Our data not only suggested that hepatocytes were sensitive to substrate stiffness, but also suggested that there may be a potential relationship among substrate stiffness, cellular Young's modulus and the dynamic balance of integrin-β1 and β-catenin pathways. These results may provide us a new insight in mechanism investigation of mechano-dependent diseases, especially like fibrosis related diseases.
Collapse
Affiliation(s)
- Tingting Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Runze Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Qiping Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Peixing Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Yasinta N Waju
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Mohanad K Al-Ani
- Department of microbiology, College of Medicine, Tikrit University, Tikrit, Iraq
| | - Yonggang Lv
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| |
Collapse
|
10
|
Mechanosensing in liver regeneration. Semin Cell Dev Biol 2017; 71:153-167. [DOI: 10.1016/j.semcdb.2017.07.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022]
|
11
|
Batmunkh B, Choijookhuu N, Srisowanna N, Byambatsogt U, Synn Oo P, Noor Ali M, Yamaguchi Y, Hishikawa Y. Estrogen Accelerates Cell Proliferation through Estrogen Receptor α during Rat Liver Regeneration after Partial Hepatectomy. Acta Histochem Cytochem 2017; 50:39-48. [PMID: 28386149 PMCID: PMC5374102 DOI: 10.1267/ahc.17003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/23/2017] [Indexed: 12/18/2022] Open
Abstract
Although estrogen is implicated in the regulation of cell growth and differentiation in many organs, the exact mechanism for liver regeneration is not completely understood. We investigated the effect of estrogen on liver regeneration in male and female Wistar rats after 70% partial hepatectomy (PHx) and performed immunohistochemistry, western blotting and Southwestern histochemistry. 17β-estradiol (E2) and ICI 182,780 were injected into male rats on the day before PHx. The proliferating cell nuclear antigen (PCNA) labeling index reached a maximum at 48 hr after PHx in males, and at 36 hr in females and E2-treated male rats. Estrogen receptor α (ERα) was expressed in zones 1 and 2 in male rats, but was found in all zones in female rats. Interestingly, ERα was not detected at 6-12 hr after PHx but was found at 24-168 hr in male rats. However, ERα expression was found at all sampling time-points in female and E2-treated male rats. The activity of estrogen responsive element binding proteins was detected from 12 hr after PHx in male rats but was found from 6 hr in female and E2-treated male rats. ERα was co-expressed with PCNA during liver regeneration. These results indicate that estrogen may play an important role in liver regeneration through ERα.
Collapse
Affiliation(s)
- Baatarsuren Batmunkh
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Narantsog Choijookhuu
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Naparee Srisowanna
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Uugantsetseg Byambatsogt
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Phyu Synn Oo
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Mohmand Noor Ali
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Yuya Yamaguchi
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Yoshitaka Hishikawa
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| |
Collapse
|
12
|
Tsai CH, Li CH, Cheng YW, Lee CC, Liao PL, Lin CH, Huang SH, Kang JJ. The inhibition of lung cancer cell migration by AhR-regulated autophagy. Sci Rep 2017; 7:41927. [PMID: 28195146 PMCID: PMC5307309 DOI: 10.1038/srep41927] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is highly expressed in multiple organs and tissues. Whereas AhR mediates the metabolism of xenobiotic and endogenous compounds, its novel function in cancer epithelial-mesenchymal transition (EMT) remains controversial. Autophagy also participates in tumour progression through its functions in cell homeostasis and facilitates adaptation to EMT progression. In the present study, we found that AhR-regulated autophagy positively modulates EMT in non-small cell lung cancer cells. The motility of A549, H1299, and CL1-5 cells were correlated with different AhR expression levels. Invasive potential and cell morphology also changed when AhR protein expression was altered. Moreover, AhR levels exerted a contrasting effect on autophagy potential. Autophagy was higher in CL1-5 and H1299 cells with lower AhR levels than in A549 cells. Both AhR overexpression and autophagy inhibition decreased CL1-5 metastasis in vivo. Furthermore, AhR promoted BNIP3 ubiquitination for proteasomal degradation. AhR silencing in A549 cells also reduced BNIP3 ubiquitination. Taken together, these results provide a novel insight into the cross-linking between AhR and autophagy, we addressed the mechanistic BNIP3 modulation by endogenous AhR, which affect cancer cell EMT progression.
Collapse
Affiliation(s)
- Chi-Hao Tsai
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Hao Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chen-Chen Lee
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Po-Lin Liao
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Hui Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shih-Hsuan Huang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jaw-Jou Kang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|