1
|
Buzalewicz I, Kaczorowska A, Fijałkowski W, Pietrowska A, Matczuk AK, Podbielska H, Wieliczko A, Witkiewicz W, Jędruchniewicz N. Quantifying the Dynamics of Bacterial Biofilm Formation on the Surface of Soft Contact Lens Materials Using Digital Holographic Tomography to Advance Biofilm Research. Int J Mol Sci 2024; 25:2653. [PMID: 38473902 DOI: 10.3390/ijms25052653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The increase in bacterial resistance to antibiotics in recent years demands innovative strategies for the detection and combating of biofilms, which are notoriously resilient. Biofilms, particularly those on contact lenses, can lead to biofilm-related infections (e.g., conjunctivitis and keratitis), posing a significant risk to patients. Non-destructive and non-contact sensing techniques are essential in addressing this threat. Digital holographic tomography emerges as a promising solution. This allows for the 3D reconstruction of the refractive index distribution in biological samples, enabling label-free visualization and the quantitative analysis of biofilms. This tool provides insight into the dynamics of biofilm formation and maturation on the surface of transparent materials. Applying digital holographic tomography for biofilm examination has the potential to advance our ability to combat the antibiotic bacterial resistance crisis. A recent study focused on characterizing biofilm formation and maturation on six soft contact lens materials (three silicone hydrogels, three hydrogels), with a particular emphasis on Staphylococcus epidermis and Pseudomonas aeruginosa, both common culprits in ocular infections. The results revealed species- and time-dependent variations in the refractive indexes and volumes of biofilms, shedding light on cell dynamics, cell death, and contact lens material-related factors. The use of digital holographic tomography enables the quantitative analysis of biofilm dynamics, providing us with a better understanding and characterization of bacterial biofilms.
Collapse
Affiliation(s)
- Igor Buzalewicz
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
- Research and Development Centre, Regional Specialist Hospital in Wroclaw, 73A H. M. Kamienskiego St., 51-124 Wroclaw, Poland
| | - Aleksandra Kaczorowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 14a F. Joliot-Curie St., 50-383 Wroclaw, Poland
| | | | - Aleksandra Pietrowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Anna Karolina Matczuk
- Department of Pathology, Division of Microbiology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 31 C.K. Norwida St., 51-375 Wroclaw, Poland
| | - Halina Podbielska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Alina Wieliczko
- Department of Epizootiology and Veterinary Administration with Clinic of Infectious Diseases, Wroclaw University of Environmental and Life Sciences, 45 Grunwaldzki Square, 50-366 Wroclaw, Poland
| | - Wojciech Witkiewicz
- Research and Development Centre, Regional Specialist Hospital in Wroclaw, 73A H. M. Kamienskiego St., 51-124 Wroclaw, Poland
| | - Natalia Jędruchniewicz
- Research and Development Centre, Regional Specialist Hospital in Wroclaw, 73A H. M. Kamienskiego St., 51-124 Wroclaw, Poland
| |
Collapse
|
2
|
Campigotto A, Campbell RJ, Lai Y. Correlation between corneal and contact lens deformation with changes in intraocular pressure for wearable monitoring systems. Eye (Lond) 2023; 37:2055-2060. [PMID: 36302975 PMCID: PMC10333185 DOI: 10.1038/s41433-022-02285-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/11/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE The aim of this work is to evaluate the extent to which the eye's curvature deformation, due to changes in the intraocular pressure (IOP), can be directly tracked by an overlying contact lens. METHOD In this experimental study, using 12 cadaveric eyes, the IOP was increased from 10 to 36 mmHg, while video imaging was used to capture the three experimental variations. The deformation of the bare eye was used as a control, while the deformation of an overlying silicone grided contact lens and an overlying microfluidic IOP-sensing contact lens were examined and compared. RESULTS The relation between the slope of the radius of corneal curvature versus the IOP for both the bare eye and the marker contact lens yielded a linear relationship with a R2 value of 0.83. The microfluidic contact lens resulted in an average performance of 0.40 mm indicator movement/mmHg (SD 0.006). Comparing the slope of the marker contact lens deformation, to the performance of the microfluidic contact lens resulted in a R2 value of 0.78. The strain map of the overlaying grided contact lens showed most deformation occurring along the outer edge of the lens with increased deformation as increase IOP occurs; as well as with some negative, compressive movement near the central points. CONCLUSION The deformation from the curvature of the eye is significant enough from 10 to 36 mmHg that a silicone contact lens can capture and mimic those changes. The results show promise for optimization in contact lens-based IOP monitoring.
Collapse
Affiliation(s)
- Angelica Campigotto
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON, Canada
| | - Robert J Campbell
- Department of Ophthalmology, Queen's University, Kingston, ON, Canada
- Department of Ophthalmology, Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Yongjun Lai
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
3
|
Hsiao FT, Chien HJ, Chou YH, Peng SJ, Chung MH, Huang TH, Lo LW, Shen CN, Chang HP, Lee CY, Chen CC, Jeng YM, Tien YW, Tang SC. Transparent tissue in solid state for solvent-free and antifade 3D imaging. Nat Commun 2023; 14:3395. [PMID: 37296117 PMCID: PMC10256715 DOI: 10.1038/s41467-023-39082-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Optical clearing with high-refractive-index (high-n) reagents is essential for 3D tissue imaging. However, the current liquid-based clearing condition and dye environment suffer from solvent evaporation and photobleaching, causing difficulties in maintaining the tissue optical and fluorescent features. Here, using the Gladstone-Dale equation [(n-1)/density=constant] as a design concept, we develop a solid (solvent-free) high-n acrylamide-based copolymer to embed mouse and human tissues for clearing and imaging. In the solid state, the fluorescent dye-labeled tissue matrices are filled and packed with the high-n copolymer, minimizing scattering in in-depth imaging and dye fading. This transparent, liquid-free condition provides a friendly tissue and cellular environment to facilitate high/super-resolution 3D imaging, preservation, transfer, and sharing among laboratories to investigate the morphologies of interest in experimental and clinical conditions.
Collapse
Affiliation(s)
- Fu-Ting Hsiao
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Hung-Jen Chien
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ya-Hsien Chou
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Shih-Jung Peng
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Mei-Hsin Chung
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Pathology, National Taiwan University Hospital-Hsinchu Branch, Hsinchu, Taiwan
| | - Tzu-Hui Huang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Li-Wen Lo
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Ning Shen
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiu-Pi Chang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Yuan Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Chia Chen
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Wen Tien
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Shiue-Cheng Tang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan.
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan.
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
4
|
Tie BSH, Halligan E, Zhuo S, Keane G, Geever L. Synthesis of NVCL-NIPAM Hydrogels Using PEGDMA as a Chemical Crosslinker for Controlled Swelling Behaviours in Potential Shapeshifting Applications. Gels 2023; 9:gels9030248. [PMID: 36975697 PMCID: PMC10048785 DOI: 10.3390/gels9030248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Stimuli-responsive hydrogels have recently gained interest within shapeshifting applications due to their capabilities to expand in water and their altering swelling properties when triggered by stimuli, such as pH and heat. While conventional hydrogels lose their mechanical strength during swelling, most shapeshifting applications require materials to have mechanical strength within a satisfactory range to perform specified tasks. Thus, stronger hydrogels are needed for shapeshifting applications. Poly (N-isopropylacrylamide) (PNIPAm) and poly (N-vinyl caprolactam) (PNVCL) are the most popular thermosensitive hydrogels studied. Their close-to-physiological lower critical solution temperature (LCST) makes them superior candidates in biomedicine. In this study, copolymers made of NVCL and NIPAm and chemically crosslinked using poly (ethylene glycol) dimethacrylate (PEGDMA) were fabricated. Successful polymerisation was proven via Fourier transform infrared spectroscopy (FTIR). The effects of incorporating comonomer and crosslinker on the LCST were found minimal using cloud-point measurements, ultraviolet (UV) spectroscopy, and differential scanning calorimetry (DSC). Formulations that completed three cycles of thermo-reversing pulsatile swelling are demonstrated. Lastly, rheological analysis validated the mechanical strength of PNVCL, which was improved due to the incorporation of NIPAm and PEGDMA. This study showcases potential smart thermosensitive NVCL-based copolymers that can be applied in the biomedical shapeshifting area.
Collapse
Affiliation(s)
- Billy Shu Hieng Tie
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Centre, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Elaine Halligan
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Centre, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Shuo Zhuo
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Centre, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Gavin Keane
- Centre for Industrial Service & Design, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Luke Geever
- Applied Polymer Technologies Gateway, Materials Research Institute, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| |
Collapse
|
5
|
Zhao H, Pan S, Natalia A, Wu X, Ong CAJ, Teo MCC, So JBY, Shao H. A hydrogel-based mechanical metamaterial for the interferometric profiling of extracellular vesicles in patient samples. Nat Biomed Eng 2023; 7:135-148. [PMID: 36303008 DOI: 10.1038/s41551-022-00954-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 09/15/2022] [Indexed: 11/09/2022]
Abstract
The utility of mechanical metamaterials for biomedical applications has seldom been explored. Here we show that a metamaterial that is mechanically responsive to antibody-mediated biorecognition can serve as an optical interferometric mask to molecularly profile extracellular vesicles in ascites fluid from patients with cancer. The metamaterial consists of a hydrogel responsive to temperature and redox activity functionalized with antibodies to surface biomarkers on extracellular vesicles, and is patterned into micrometric squares on a gold-coated glass substrate. Through plasmonic heating, the metamaterial is maintained in a transition state between a relaxed form and a buckled state. Binding of extracellular vesicles from the patient samples to the antibodies on the hydrogel causes it to undergo crosslinking, induced by free radicals generated via the activity of horseradish peroxidase conjugated to the antibodies. Hydrogel crosslinking causes the metamaterial to undergo fast chiral re-organization, inducing amplified changes in its mechanical deformation and diffraction patterns, which are detectable by a smartphone camera. The mechanical metamaterial may find broad utility in the sensitive optical immunodetection of biomolecules.
Collapse
Affiliation(s)
- Haitao Zhao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Sijun Pan
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Auginia Natalia
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore.,Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Xingjie Wu
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Chin-Ann J Ong
- Division of Surgical Oncology, National Cancer Centre, Singapore, Singapore
| | - Melissa C C Teo
- Division of Surgical Oncology, National Cancer Centre, Singapore, Singapore
| | - Jimmy B Y So
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Division of Surgical Oncology, National University Cancer Institute, Singapore, Singapore
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore. .,Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore. .,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
6
|
Formulation development and evaluation of therapeutic contact lens loaded with ganciclovir. Int Ophthalmol 2023:10.1007/s10792-022-02618-6. [PMID: 36593425 DOI: 10.1007/s10792-022-02618-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/10/2022] [Indexed: 01/03/2023]
Abstract
PURPOSE In the present investigation ganciclovir (GAN) loaded microparticles dispersed in hydrogel-based contact lenses were fabricated, characterized and evaluated for eye irritation. METHODS GAN-Hydroxy Propyl Methyl Cellulose (HPMC) microparticles were prepared by solvent evaporation method and evaluated for entrapment efficiency, drug content and drug release. The Polyhydroxyethylmethacrylate (pHEMA) contact lenses were synthesized by free radical polymerization reaction using crosslinkers like ethylene glycoldimethacrylate and photoinitiator such as IRGACURE 1173®, in UVB light, λ 365 nm. The GAN-HPMC microparticles when incorporated into the premonomer mixture and polymerized together give rise to a particle dispersion system in the hydrogel contact lenses. The contact lenses were studied for surface morphology, transmittance, swelling, drug release, Na+ion permeability and hens egg test chorioallantoic membrane assay (HETCAM). RESULTS Hydrogel contact lens exhibited satisfactory surface morphology, transmittance, swelling, Na+ion permeability (3.72 × 106 mm2/min) and a release of 48 h suggesting a potential for prolonged ocular drug delivery. Furthermore, HETCAM exhibited no signs of ocular irritation. CONCLUSION The developed delivery platform is a promising alternative to conventional dosage forms like eye drops, suspensions and ointments due to its increase in the residence time attributed to its prolonged release profile.
Collapse
|
7
|
Yang C, Wang M, Wang W, Liu H, Deng H, Du Y, Shi X. Electrodeposition induced covalent cross-linking of chitosan for electrofabrication of hydrogel contact lenses. Carbohydr Polym 2022; 292:119678. [DOI: 10.1016/j.carbpol.2022.119678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/19/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022]
|
8
|
Zhang L, Jia K, Wang J, Zhao J, Tang J, Hu J. Stretchable and transparent ionogel-based heaters. MATERIALS HORIZONS 2022; 9:1911-1920. [PMID: 35532948 DOI: 10.1039/d1mh01775f] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transparent heaters (THs) are widely used for various applications, such as in smart windows, deicers, defoggers, displays, and thermotherapy pads. The rapid development of flexible electronics has led to a demand for flexible and even stretchable THs. At present, most stretchable THs are designed using a combination of electronically conductive networks and flexible polymer materials. Electronic THs still face common challenges, such as a transparency-conductance trade-off, non-uniform heating, and poor interfacial adhesion. In this work, an ionic TH is reported based on a stretchable and transparent ionogel. Joule heating from an ionic current induced by alternating voltage functions as the heating source. This ionogel-based TH exhibits excellent and steady mechanical, optical, electrical, and thermal properties, simultaneously solving the abovementioned three problems relating to electronic THs. Two simple applications of this ionogel-based TH are demonstrated: deicing and boiling water. This reported ionogel-based TH provides a new material choice and heating principle to compete with conventional electronic TH technology.
Collapse
Affiliation(s)
- Limei Zhang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Kun Jia
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jiao Wang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jiayou Zhao
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jingda Tang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jian Hu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
9
|
Zhu Y, Li S, Li J, Falcone N, Cui Q, Shah S, Hartel MC, Yu N, Young P, de Barros NR, Wu Z, Haghniaz R, Ermis M, Wang C, Kang H, Lee J, Karamikamkar S, Ahadian S, Jucaud V, Dokmeci MR, Kim HJ, Khademhosseini A. Lab-on-a-Contact Lens: Recent Advances and Future Opportunities in Diagnostics and Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108389. [PMID: 35130584 PMCID: PMC9233032 DOI: 10.1002/adma.202108389] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/27/2022] [Indexed: 05/09/2023]
Abstract
The eye is one of the most complex organs in the human body, containing rich and critical physiological information (e.g., intraocular pressure, corneal temperature, and pH) as well as a library of metabolite biomarkers (e.g., glucose, proteins, and specific ions). Smart contact lenses (SCLs) can serve as a wearable intelligent ocular prosthetic device capable of noninvasive and continuous monitoring of various essential physical/biochemical parameters and drug loading/delivery for the treatment of ocular diseases. Advances in SCL technologies and the growing public interest in personalized health are accelerating SCL research more than ever before. Here, the current status and potential of SCL development through a comprehensive review from fabrication to applications to commercialization are discussed. First, the material, fabrication, and platform designs of the SCLs for the diagnostic and therapeutic applications are discussed. Then, the latest advances in diagnostic and therapeutic SCLs for clinical translation are reviewed. Later, the established techniques for wearable power transfer and wireless data transmission applied to current SCL devices are summarized. An outlook, future opportunities, and challenges for developing next-generation SCL devices are also provided. With the rise in interest of SCL development, this comprehensive and essential review can serve as a new paradigm for the SCL devices.
Collapse
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Shaopei Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Jinghang Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, 310024, China
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei Province, 430205, China
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Qingyu Cui
- Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Shilp Shah
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Martin C Hartel
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Ning Yu
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Patric Young
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | | | - Zhuohong Wu
- Department of Nanoengineering, University of California-San Diego, San Diego, CA, 92093, USA
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Canran Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Junmin Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | | | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| |
Collapse
|
10
|
Ejeromedoghene O, Hu YP, Oderinde O, Yao F, Akinremi C, Akinyeye R, Adewuyi S, Fu G. Transparent and photochromic poly(hydroxyethyl acrylate–acrylamide)/
WO
3
hydrogel with antibacterial properties against bacterial keratitis in contact lens. J Appl Polym Sci 2022. [DOI: 10.1002/app.51815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Yi Ping Hu
- School of Chemistry and Chemical Engineering Southeast University Nanjing China
| | - Olayinka Oderinde
- Department of Chemical Sciences, Faculty of Basic Medical and Applied Sciences Lead City University Ibadan Nigeria
| | - Fang Yao
- School of Chemistry and Chemical Engineering Southeast University Nanjing China
| | - Caroline Akinremi
- Department of Chemistry College of Physical Sciences, Federal University of Agriculture Abeokuta Nigeria
| | - Richard Akinyeye
- Department of Industrial Chemistry Ekiti State University Ado‐Ekiti Nigeria
| | - Sheriff Adewuyi
- Department of Chemistry College of Physical Sciences, Federal University of Agriculture Abeokuta Nigeria
| | - Guodong Fu
- School of Chemistry and Chemical Engineering Southeast University Nanjing China
| |
Collapse
|
11
|
Numerical Study of Customized Artificial Cornea Shape by Hydrogel Biomaterials on Imaging and Wavefront Aberration. Polymers (Basel) 2021; 13:polym13244372. [PMID: 34960923 PMCID: PMC8708545 DOI: 10.3390/polym13244372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
The blindness caused by cornea diseases has exacerbated many patients all over the world. The disadvantages of using donor corneas may cause challenges to recovering eye sight. Developing artificial corneas with biocompatibility may provide another option to recover blindness. The techniques of making individual artificial corneas that fit the biometric parameters for each person can be used to help these patients effectively. In this study, artificial corneas with different shapes (spherical, aspherical, and biconic shapes) are designed and they could be made by two different hydrogel polymers that form an interpenetrating polymer network for their excellent mechanical strength. Two designed cases for the artificial corneas are considered in the simulations: to optimize the artificial cornea for patients who still wear glasses and to assume that the patient does not wear glasses after transplanting with the optimized artificial cornea. The results show that the artificial corneas can efficiently decrease the imaging blur. Increasing asphericity of the current designed artificial corneas can be helpful for the imaging corrections. The differences in the optical performance of the optimized artificial corneas by using different materials are small. It is found that the optimized artificial cornea can reduce the high order aberrations for the second case.
Collapse
|
12
|
Saltan F. Preparation of poly(eugenol-co-methyl methacrylate)/polypropylene blend by creative route approach: structural and thermal characterization. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-021-00965-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
13
|
Pinho LAG, Gratieri T, Gelfuso GM, Marreto RN, Cunha-Filho M. Three-dimensional printed personalized drug devices with anatomical fit: a review. J Pharm Pharmacol 2021; 74:1391-1405. [PMID: 34665263 DOI: 10.1093/jpp/rgab146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/24/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Three-dimensional printing (3DP) has opened the era of drug personalization, promising to revolutionize the pharmaceutical field with improvements in efficacy, safety and compliance of the treatments. As a result of these investigations, a vast therapeutic field has opened for 3DP-loaded drug devices with an anatomical fit. Along these lines, innovative dosage forms, unimaginable until recently, can be obtained. This review explores 3DP-engineered drug devices described in recent research articles, as well as in patented inventions, and even devices already produced by 3DP with drug-loading potential. KEY FINDINGS 3D drug-loaded stents, implants and prostheses are reviewed, along with devices produced to fit hard-to-attach body parts such as nasal masks, vaginal rings or mouthguards. The most promising 3DP techniques for such devices and the complementary technologies surrounding these inventions are also discussed, particularly the scanners useful for mapping body parts. Health regulatory concerns regarding the new use of such technology are also analysed. SUMMARY The scenario discussed in this review shows that for wearable 3DP drug devices to become a tangible reality to users, it will be necessary to overcome the existing regulatory barriers, create new interfaces with electronic systems and improve the mapping mechanisms of body surfaces.
Collapse
Affiliation(s)
- Ludmila A G Pinho
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Tais Gratieri
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Ricardo Neves Marreto
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| |
Collapse
|
14
|
Marland JRK, Gray ME, Argyle DJ, Underwood I, Murray AF, Potter MA. Post-Operative Monitoring of Intestinal Tissue Oxygenation Using an Implantable Microfabricated Oxygen Sensor. MICROMACHINES 2021; 12:810. [PMID: 34357220 PMCID: PMC8303214 DOI: 10.3390/mi12070810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/02/2022]
Abstract
Anastomotic leakage (AL) is a common and dangerous post-operative complication following intestinal resection, causing substantial morbidity and mortality. Ischaemia in the tissue surrounding the anastomosis is a major risk-factor for AL development. Continuous tissue oxygenation monitoring during the post-operative recovery period would provide early and accurate early identification of AL risk. We describe the construction and testing of a miniature implantable electrochemical oxygen sensor that addresses this need. It consisted of an array of platinum microelectrodes, microfabricated on a silicon substrate, with a poly(2-hydroxyethyl methacrylate) hydrogel membrane to protect the sensor surface. The sensor was encapsulated in a biocompatible package with a wired connection to external instrumentation. It gave a sensitive and highly linear response to variations in oxygen partial pressure in vitro, although over time its sensitivity was partially decreased by protein biofouling. Using a pre-clinical in vivo pig model, acute intestinal ischaemia was robustly and accurately detected by the sensor. Graded changes in tissue oxygenation were also measurable, with relative differences detected more accurately than absolute differences. Finally, we demonstrated its suitability for continuous monitoring of tissue oxygenation at a colorectal anastomosis over a period of at least 45 h. This study provides evidence to support the development and use of implantable electrochemical oxygen sensors for post-operative monitoring of anastomosis oxygenation.
Collapse
Affiliation(s)
- Jamie R. K. Marland
- School of Engineering, Institute for Integrated Micro and Nano Systems, University of Edinburgh, Scottish Microelectronics Centre, King’s Buildings, Edinburgh EH9 3FF, UK;
| | - Mark E. Gray
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Midlothian EH25 9RG, UK; (M.E.G.); (D.J.A.)
| | - David J. Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Midlothian EH25 9RG, UK; (M.E.G.); (D.J.A.)
| | - Ian Underwood
- School of Engineering, Institute for Integrated Micro and Nano Systems, University of Edinburgh, Scottish Microelectronics Centre, King’s Buildings, Edinburgh EH9 3FF, UK;
| | - Alan F. Murray
- School of Engineering, Institute for Bioengineering, University of Edinburgh, Faraday Building, Edinburgh EH9 3DW, UK;
| | - Mark A. Potter
- Department of Surgery, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK;
| |
Collapse
|
15
|
Photo-polymerized and thermal-polymerized silicon hydrogels with different surface microstructure and wettability. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
16
|
Next-generation contact lenses: Towards bioresponsive drug delivery and smart technologies in ocular therapeutics. Eur J Pharm Biopharm 2021; 161:80-99. [DOI: 10.1016/j.ejpb.2021.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/25/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
|
17
|
Meretoudi A, Banti CN, Raptis PK, Papachristodoulou C, Kourkoumelis N, Ikiades AA, Zoumpoulakis P, Mavromoustakos T, Hadjikakou SK. Silver Nanoparticles from Oregano Leaves' Extracts as Antimicrobial Components for Non-Infected Hydrogel Contact Lenses. Int J Mol Sci 2021; 22:3539. [PMID: 33805476 PMCID: PMC8037402 DOI: 10.3390/ijms22073539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 01/15/2023] Open
Abstract
The oregano leaves' extract (ORLE) was used for the formation of silver nanoparticles (AgNPs(ORLE)). ORLE and AgNPs(ORLE) (2 mg/mL) were dispersed in polymer hydrogels to give the pHEMA@ORLE_2 and pHEMA@AgNPs(ORLE)_2 using hydroxyethyl-methacrylate (HEMA). The materials were characterized by X-ray fluorescence (XRF) spectroscopy, X-ray powder diffraction analysis (XRPD), thermogravimetric differential thermal analysis (TG-DTA), derivative thermogravimetry/differential scanning calorimetry (DTG/DSC), ultraviolet (UV-Vis), and attenuated total reflection mode (ATR-FTIR) spectroscopies in solid state and UV-Vis in solution. The crystallite size value, analyzed with XRPD, was determined at 20 nm. The antimicrobial activity of the materials was investigated against Gram-negative bacterial strains Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli). The Gram-positive ones of the genus of Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus) are known to be involved in microbial keratitis by the means of inhibitory zone (IZ), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). The IZs, which developed upon incubation of P. aeruginosa, E. coli, S. epidermidis, and S. aureus with paper discs soaked in 2 mg/mL of AgNPs(ORLE), were 11.7 ± 0.7, 13.5 ± 1.9, 12.7 ± 1.7, and 14.3 ± 1.7 mm. When the same dose of ORLE was administrated, the IZs were 10.2 ± 0.7, 9.2 ± 0.5, 9.0 ± 0.0, and 9.0 ± 0.0 mm. The percent of bacterial viability when they were incubated over the polymeric hydrogel discs of pHEMA@AgNPs(ORLE)_2 was interestingly low (66.5, 88.3, 77.7, and 59.6%, respectively, against of P. aeruginosa, E. coli, S. epidermidis, and S. aureus) and those of pHEMA@ORLE_2 were 89.3, 88.1, 92.8, and 84.6%, respectively. Consequently, pHEMA@AgNPs(ORLE)_2 could be an efficient candidate toward the development of non-infectious contact lenses.
Collapse
Affiliation(s)
- Anastasia Meretoudi
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.); (P.K.R.)
| | - Christina N. Banti
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.); (P.K.R.)
| | - Panagiotis K. Raptis
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.); (P.K.R.)
| | | | - Nikolaos Kourkoumelis
- Medical Physics Laboratory, Medical School, University of Ioannina, 45110 Ioannina, Greece;
| | - Aris A. Ikiades
- Department of Physics, University of Ioannina, 45110 Ioannina, Greece; (C.P.); (A.A.I.)
| | - Panagiotis Zoumpoulakis
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, 11635 Attica, Greece;
| | - Thomas Mavromoustakos
- Organic Chemistry Laboratory, Department of Chemistry, University of Athens Greece, 15571 Athens, Greece;
| | - Sotiris K. Hadjikakou
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.); (P.K.R.)
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
18
|
Veloso SR, Andrade RG, Castanheira EM. Review on the advancements of magnetic gels: towards multifunctional magnetic liposome-hydrogel composites for biomedical applications. Adv Colloid Interface Sci 2021; 288:102351. [PMID: 33387893 DOI: 10.1016/j.cis.2020.102351] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/11/2022]
Abstract
Magnetic gels have been gaining great attention in nanomedicine, as they combine features of hydrogels and magnetic nanoparticles into a single system. The incorporation of liposomes in magnetic gels further leads to a more robust multifunctional system enabling more functions and spatiotemporal control required for biomedical applications, which includes on-demand drug release. In this review, magnetic gels components are initially introduced, as well as an overview of advancements on the development, tuneability, manipulation and application of these materials. After a discussion of the advantages of combining hydrogels with liposomes, the properties, fabrication strategies and applications of magnetic liposome-hydrogel composites (magnetic lipogels or magnetolipogels) are reviewed. Overall, the progress of magnetic gels towards smart multifunctional materials are emphasized, considering the contributions for future developments.
Collapse
|
19
|
Sievers J, Sperlich K, Stahnke T, Kreiner C, Eickner T, Martin H, Guthoff RF, Schünemann M, Bohn S, Stachs O. Determination of hydrogel swelling factors by two established and a novel non‐contact continuous method. J Appl Polym Sci 2020. [DOI: 10.1002/app.50326] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jan Sievers
- Department of Ophthalmology Rostock University Medical Center Rostock Germany
- Institute of Physics Martin–Luther–University Halle–Wittenberg Halle (Saale) Germany
| | - Karsten Sperlich
- Department of Ophthalmology Rostock University Medical Center Rostock Germany
- Department Life, Light & Matter University of Rostock Rostock Germany
| | - Thomas Stahnke
- Department of Ophthalmology Rostock University Medical Center Rostock Germany
- Department Life, Light & Matter University of Rostock Rostock Germany
| | - Christine Kreiner
- KreCo Kreiner Consulting Gesellschaft für wissenschaftlich‐technisches Projektmanagement mbH Munich Germany
| | - Thomas Eickner
- Institute for Biomedical Engineering University Medical Center Rostock Rostock Germany
| | - Heiner Martin
- Institute for Biomedical Engineering University Medical Center Rostock Rostock Germany
| | - Rudolf F. Guthoff
- Department of Ophthalmology Rostock University Medical Center Rostock Germany
- Department Life, Light & Matter University of Rostock Rostock Germany
| | - Melanie Schünemann
- Department of Ophthalmology Rostock University Medical Center Rostock Germany
- Department Life, Light & Matter University of Rostock Rostock Germany
| | - Sebastian Bohn
- Department of Ophthalmology Rostock University Medical Center Rostock Germany
- Department Life, Light & Matter University of Rostock Rostock Germany
| | - Oliver Stachs
- Department of Ophthalmology Rostock University Medical Center Rostock Germany
- Department Life, Light & Matter University of Rostock Rostock Germany
| |
Collapse
|
20
|
Antibacterial efficiency of silver nanoparticles-loaded locust bean gum/polyvinyl alcohol hydrogels. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03418-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Sennakesavan G, Mostakhdemin M, Dkhar L, Seyfoddin A, Fatihhi S. Acrylic acid/acrylamide based hydrogels and its properties - A review. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109308] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Molina-Gutiérrez S, Dalle Vacche S, Vitale A, Ladmiral V, Caillol S, Bongiovanni R, Lacroix-Desmazes P. Photoinduced Polymerization of Eugenol-Derived Methacrylates. Molecules 2020; 25:molecules25153444. [PMID: 32751133 PMCID: PMC7435665 DOI: 10.3390/molecules25153444] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 11/18/2022] Open
Abstract
Biobased monomers have been used to replace their petroleum counterparts in the synthesis of polymers that are aimed at different applications. However, environmentally friendly polymerization processes are also essential to guarantee greener materials. Thus, photoinduced polymerization, which is low-energy consuming and solvent-free, rises as a suitable option. In this work, eugenol-, isoeugenol-, and dihydroeugenol-derived methacrylates are employed in radical photopolymerization to produce biobased polymers. The polymerization is monitored in the absence and presence of a photoinitiator and under air or protected from air, using Real-Time Fourier Transform Infrared Spectroscopy. The polymerization rate of the methacrylate double bonds was affected by the presence and reactivity of the allyl and propenyl groups in the eugenol- and isoeugenol-derived methacrylates, respectively. These groups are involved in radical addition, degradative chain transfer, and termination reactions, yielding crosslinked polymers. The materials, in the form of films, are characterized by differential scanning calorimetry, thermogravimetric, and contact angle analyses.
Collapse
Affiliation(s)
- Samantha Molina-Gutiérrez
- Institut Charles Gerhardt Montpellier (ICGM), University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (S.M.-G.); (V.L.); (S.C.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (S.D.V.); (A.V.)
| | - Sara Dalle Vacche
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (S.D.V.); (A.V.)
| | - Alessandra Vitale
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (S.D.V.); (A.V.)
| | - Vincent Ladmiral
- Institut Charles Gerhardt Montpellier (ICGM), University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (S.M.-G.); (V.L.); (S.C.)
| | - Sylvain Caillol
- Institut Charles Gerhardt Montpellier (ICGM), University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (S.M.-G.); (V.L.); (S.C.)
| | - Roberta Bongiovanni
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (S.D.V.); (A.V.)
- Correspondence: (R.B.); (P.L.-D.)
| | - Patrick Lacroix-Desmazes
- Institut Charles Gerhardt Montpellier (ICGM), University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (S.M.-G.); (V.L.); (S.C.)
- Correspondence: (R.B.); (P.L.-D.)
| |
Collapse
|
23
|
Agate S, Argyropoulos DS, Jameel H, Lucia L, Pal L. 3D Photoinduced Spatiotemporal Resolution of Cellulose-Based Hydrogels for Fabrication of Biomedical Devices. ACS APPLIED BIO MATERIALS 2020; 3:5007-5019. [DOI: 10.1021/acsabm.0c00517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Campigotto A, Lai Y. A novel non‐invasive wearable sensor for intraocular pressure measurement. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/mds3.10086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Angelica Campigotto
- Department of Mechanical Engineering Queen’s University Kingston Ontario Canada
| | - Yongjun Lai
- Department of Mechanical Engineering Queen’s University Kingston Ontario Canada
| |
Collapse
|
25
|
Giovanzana S, Ţălu Ş, Nicoară SD. Sagittal height differences of disposable soft contact lenses. Int Ophthalmol 2020; 40:459-465. [PMID: 31677086 DOI: 10.1007/s10792-019-01206-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE We aim to improve contact lens fitting by using an innovative and simple photogrammetry imaging system to find the sagittal height (SAG) of soft contact lenses. METHODS Eleven different types of commercially available soft contact lenses were measured, and five different lenses per package of each lens type were evaluated. The lenses were inserted in a polymethyl methacrylate cell with parallel faces containing a solution of saline and fluorescein to improve the contrast against the background. For every lens, two photographs from the top view and five photographs from the side view were taken. Using homothetic transformations, we calculated the sagittal height. RESULTS The SAG of all lenses ranged from 3450 to 3907 μm. Differences can be appreciated between SAG of different materials. Performing an ANOVA test, we confirm that the intra-packaging sagitta is reliable for every lens. Comparing the measured SAG with the calculated spherical one, we confirm that the majority of lenses, eight out of eleven, have a spherical geometry for the internal side. Finally, we are able to group the type of lenses that present similar SAG apart from the data reported on the blister. CONCLUSION Optical coherence tomography measurement of the eye sagitta over a given chord helped finding the first lens to fit, because matching contact lens sagitta and ocular sagitta is the key for a good fitting. In our work, we found that the majority of brands use single sphere geometry for internal surface of disposable soft contact lenses.
Collapse
Affiliation(s)
| | - Ştefan Ţălu
- The Directorate of Research, Development and Innovation Management (DMCDI), The Technical University of Cluj-Napoca, Constantin Daicoviciu St., No. 15, 400020, Cluj-Napoca, Cluj County, Romania
| | - Simona Delia Nicoară
- Department of Ophthalmology, Faculty of Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, 8 Victor Babeş St., 400012, Cluj-Napoca, Cluj County, Romania.
| |
Collapse
|
26
|
Driest PJ, Allijn IE, Dijkstra DJ, Stamatialis D, Grijpma DW. Poly(ethylene glycol)‐based poly(urethane isocyanurate) hydrogels for contact lens applications. POLYM INT 2019. [DOI: 10.1002/pi.5938] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Piet J Driest
- Covestro Deutschland AGCAS‐Global R&D Leverkusen Germany
- Technical Medical Centre and Faculty of Science and Technology, Department of Biomaterials Science and TechnologyUniversity of Twente Enschede The Netherlands
| | - Iris E Allijn
- Technical Medical Centre and Faculty of Science and Technology, Department of Biomaterials Science and TechnologyUniversity of Twente Enschede The Netherlands
| | | | - Dimitrios Stamatialis
- Technical Medical Centre and Faculty of Science and Technology, Department of Biomaterials Science and TechnologyUniversity of Twente Enschede The Netherlands
| | - Dirk W Grijpma
- Technical Medical Centre and Faculty of Science and Technology, Department of Biomaterials Science and TechnologyUniversity of Twente Enschede The Netherlands
| |
Collapse
|
27
|
Oliveira EP, Malysz-Cymborska I, Golubczyk D, Kalkowski L, Kwiatkowska J, Reis RL, Oliveira JM, Walczak P. Advances in bioinks and in vivo imaging of biomaterials for CNS applications. Acta Biomater 2019; 95:60-72. [PMID: 31075514 DOI: 10.1016/j.actbio.2019.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 01/03/2023]
Abstract
Due to increasing life expectancy incidence of neurological disorders is rapidly rising, thus adding urgency to develop effective strategies for treatment. Stem cell-based therapies were considered highly promising and while progress in this field is evident, outcomes of clinical trials are rather disappointing. Suboptimal engraftment, poor cell survival and uncontrolled differentiation may be the reasons behind dismal results. Clearly, new direction is needed and we postulate that with recent progress in biomaterials and bioprinting, regenerative approaches for neurological applications may be finally successful. The use of biomaterials aids engraftment of stem cells, protects them from harmful microenvironment and importantly, it facilitates the incorporation of cell-supporting molecules. The biomaterials used in bioprinting (the bioinks) form a scaffold for embedding the cells/biomolecules of interest, but also could be exploited as a source of endogenous contrast or supplemented with contrast agents for imaging. Additionally, bioprinting enables patient-specific customization with shape/size tailored for actual needs. In stroke or traumatic brain injury for example lesions are localized and focal, and usually progress with significant loss of tissue volume creating space that could be filled with artificial tissue using bioprinting modalities. The value of imaging for bioprinting technology is advantageous on many levels including design of custom shapes scaffolds based on anatomical 3D scans, assessment of performance and integration after scaffold implantation, or to learn about the degradation over time. In this review, we focus on bioprinting technology describing different printing techniques and properties of biomaterials in the context of requirements for neurological applications. We also discuss the need for in vivo imaging of implanted materials and tissue constructs reviewing applicable imaging modalities and type of information they can provide. STATEMENT OF SIGNIFICANCE: Current stem cell-based regenerative strategies for neurological diseases are ineffective due to inaccurate engraftment, low cell viability and suboptimal differentiation. Bioprinting and embedding stem cells within biomaterials at high precision, including building complex multi-material and multi-cell type composites may bring a breakthrough in this field. We provide here comprehensive review of bioinks, bioprinting techniques applicable to application for neurological disorders. Appreciating importance of longitudinal monitoring of implanted scaffolds, we discuss advantages of various imaging modalities available and suitable for imaging biomaterials in the central nervous system. Our goal is to inspire new experimental approaches combining imaging, biomaterials/bioinks, advanced manufacturing and tissue engineering approaches, and stimulate interest in image-guided therapies based on bioprinting.
Collapse
Affiliation(s)
- Eduarda P Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | | | - Dominika Golubczyk
- Dept. of Neurosurgery, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Lukasz Kalkowski
- Dept. of Neurosurgery, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Joanna Kwiatkowska
- Dept. of Neurosurgery, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Piotr Walczak
- Dept. of Neurosurgery, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland; Russell H. Morgan Dept. of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
28
|
Huang KT, Ishihara K, Huang CJ. Polyelectrolyte and Antipolyelectrolyte Effects for Dual Salt-Responsive Interpenetrating Network Hydrogels. Biomacromolecules 2019; 20:3524-3534. [DOI: 10.1021/acs.biomac.9b00796] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Kang-Ting Huang
- Department of Biomedical Sciences and Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Chun-Jen Huang
- Department of Biomedical Sciences and Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
- Department of Chemical and Materials Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, 200 Chung Pei Rd., Chung-Li City 32023, Taiwan
| |
Collapse
|
29
|
Moreddu R, Vigolo D, Yetisen AK. Contact Lens Technology: From Fundamentals to Applications. Adv Healthc Mater 2019; 8:e1900368. [PMID: 31183972 DOI: 10.1002/adhm.201900368] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/20/2019] [Indexed: 12/29/2022]
Abstract
Contact lenses are ocular prosthetic devices used by over 150 million people worldwide. Primary applications of contact lenses include vision correction, therapeutics, and cosmetics. Contact lens materials have significantly evolved over time to minimize adverse effects associated with contact lens wearing, to maintain a regular corneal metabolism, and to preserve tear film stability. This article encompasses contact lens technology, including materials, chemical and physical properties, manufacturing processes, microbial contamination, and ocular complications. The function and the composition of the tear fluid are discussed to assess its potential as a diagnostic media. The regulatory standards of contact lens devices with regard to biocompatibility and contact lens market are presented. Future prospects in contact lens technology are evaluated, with particular interest given to theranostic applications for in situ continuous monitoring the ocular physiology.
Collapse
Affiliation(s)
- Rosalia Moreddu
- Department of Chemical EngineeringImperial College London SW7 2AZ London UK
- School of Chemical EngineeringUniversity of Birmingham B15 2TT Birmingham UK
| | - Daniele Vigolo
- School of Chemical EngineeringUniversity of Birmingham B15 2TT Birmingham UK
| | - Ali K. Yetisen
- Department of Chemical EngineeringImperial College London SW7 2AZ London UK
| |
Collapse
|
30
|
Abstract
In vivo imaging of mouse retinas using two-photon or confocal laser scanning fluorescence microscopy is a powerful tool for time-lapse analyses of the dynamic movements of cell populations. However, acute and reversible opacification of the crystalline lenses of mouse eyes under anesthesia decreases the visibility of the ocular fundus. Therefore, we developed a customized contact lens for preventing cataract during continuous retinal imaging in anesthetized mice. This experimental approach will aid in the elucidation of cellular and molecular dynamics in the CNS under physiological and pathological conditions.
Collapse
|
31
|
M F M Sampaio N, D B Castilhos N, C da Silva B, C Riegel-Vidotti I, J G Silva B. Evaluation of Polyvinyl Alcohol/Pectin-Based Hydrogel Disks as Extraction Phase for Determination of Steroidal Hormones in Aqueous Samples by GC-MS/MS. Molecules 2018; 24:E40. [PMID: 30583505 PMCID: PMC6337582 DOI: 10.3390/molecules24010040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/12/2018] [Accepted: 12/21/2018] [Indexed: 01/24/2023] Open
Abstract
A new extraction phase based on hydrogel disks of polyvinyl alcohol (PVOH) and pectin was proposed, characterized and evaluated for the extraction of six steroidal hormones (estriol, estrone, 17β-estradiol, 17α-ethinylestradiol, progesterone, and testosterone) in aqueous samples with subsequent determination by gas chromatography-tandem mass spectrometry (GC-MS/MS) after the derivatization procedure. The developed extraction procedure was based on the solid phase extraction (SPE) technique, but employed hydrogel as the sorbent phase. The effects of several parameters, including the amount and composition of the sorbent phase, pH, sample volume, flow rate, and gel swelling over the extraction efficiency, were evaluated. Gels with lower swelling indexes and larger amounts of sorbent ensured higher extraction yields of analytes. The main benefits of using the PVOH/pectin-based hydrogel as the extraction phase are the ease of synthesis, low-cost preparation, and the possibility of reusing the extraction disks. Limits of quantification of 0.5 μg L-1 for estrone and 17β-estradiol, and 1 μg L-1 for testosterone, 17α-ethinylestradiol, progesterone, and estriol were obtained. Accuracy values ranged from 80% to 110%, while the inter-assay precision ranged from 0.23% to 22.2% and the intra-assay from 0.55% to 12.3%. Since the sorbent phase has an amphiphilic character, the use of hydrogels is promising for the extraction of medium-to-high polarity compounds.
Collapse
Affiliation(s)
- Naiara M F M Sampaio
- Department of Chemistry, Federal University of Paraná, Curitiba/PR 81530-900, Brazil.
| | - Natara D B Castilhos
- Department of Chemistry, Federal University of Paraná, Curitiba/PR 81530-900, Brazil.
| | - Bruno C da Silva
- Department of Chemistry, Federal University of Paraná, Curitiba/PR 81530-900, Brazil.
| | | | - Bruno J G Silva
- Department of Chemistry, Federal University of Paraná, Curitiba/PR 81530-900, Brazil.
| |
Collapse
|
32
|
Abstract
Hydrogels are used extensively in wound management. Many wounds are highly susceptible to infection and hydrogels can provide localized antibacterial delivery to treat and prevent this infection. There are several key considerations in designing antibacterial hydrogels for wound therapy, including preserving activity of encapsulated antibacterial agents, controlling drug release timescales and concentrations, and having the ability to conform to various wound configurations. In this work, we have used gellan, a U.S. Food and Drug Administration approved food additive, to develop antibiotic loaded hydrogels focusing on these criteria. These hydrogels were formed to exhibit a range of mechanical properties, which were investigated using oscillatory rheology. We denoted hydrogels formed using 1% w/v gellan and 1 mM CaCl2"ointment" hydrogels and those formed using 4% w/v gellan and 7 mM CaCl2"sheet" hydrogels. Vancomycin, a broad-spectrum antibiotic against Gram-positive bacteria, was encapsulated in these hydrogels both directly and/or in graphitized carbon black nanoparticles (CNPs). We found that vancomycin released from both sheet and ointment hydrogels at therapeutically effective concentrations over 9 days with CNPs and 6 days without CNPs. Applying the Ritger-Peppas and Peppas-Sahlin semi-empirical drug release models to sheet hydrogels, we determined that Fickian diffusion dominates release while case II relaxation also has a small contribution. The sheet hydrogels exhibited a larger overall release of the drug (83.6 ± 1.6% compared to 67.0 ± 2.6% for ointments), which was attributed to the larger swelling resulting from osmotic pressure differences between the hydrogel formulations and the release buffer. We also suggest that final drug release amounts are influenced by intermolecular interactions between vancomycin and gellan, which were observed via quartz crystal microbalance with dissipation monitoring. Lastly, we examined the potential for future in vivo translation. We demonstrated in vitro growth inhibition of Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus in the presence of these hydrogels, demonstrating that vancomycin activity is preserved upon encapsulation. We also showed that these hydrogels are non-toxic to important wound healing cells including fibroblasts and mesenchymal stem cells.
Collapse
Affiliation(s)
- Shashank Shukla
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University, Providence, RI, USA.
| | | |
Collapse
|
33
|
Coughlan MF, Goncharov AV. Nonpupil adaptive optics for visual simulation of a customized contact lens. APPLIED OPTICS 2018; 57:E57-E63. [PMID: 30117922 DOI: 10.1364/ao.57.000e57] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
We present a method for determining the deformable mirror profile to simulate the optical effect of a customized contact lens in the central visual field. Using nonpupil-conjugated adaptive optics allows a wider field simulation compared to traditional pupil-conjugated adaptive optics. For a given contact lens, the mirror shape can be derived analytically using Fermat's principle of the stationary optical path or numerically using optimization in ray-tracing programs. An example of an aspheric contact lens simulation is given to illustrate the method, and the effect of eye misalignment with respect to the deformable mirror position is investigated. The optimal deformable mirror conjugation position is found to be near the posterior corneal surface. Chromatic aberration analysis is also presented, and our findings indicate that the polychromatic simulation quality is similar to that of the monochromatic case, even though the mirror is a reflective component. The limitations of a single continuous surface deformable mirror to mimic a contact lens are outlined, with some recommendations for improving the quality of simulation.
Collapse
|
34
|
Jiang N, Montelongo Y, Butt H, Yetisen AK. Microfluidic Contact Lenses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704363. [PMID: 29521022 PMCID: PMC6607692 DOI: 10.1002/smll.201704363] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Indexed: 05/24/2023]
Abstract
Contact lens is a ubiquitous technology used for vision correction and cosmetics. Sensing in contact lenses has emerged as a potential platform for minimally invasive point-of-care diagnostics. Here, a microlithography method is developed to fabricate microconcavities and microchannels in a hydrogel-based contact lens via a combination of laser patterning and embedded templating. Optical microlithography parameters influencing the formation of microconcavities including ablation power (4.3 W) and beam speed (50 mm s-1 ) are optimized to control the microconcavity depth (100 µm) and diameter (1.5 mm). The fiber templating method allows the production of microchannels having a diameter range of 100-150 µm. Leak-proof microchannel and microconcavity connections in contact lenses are validated through flow testing of artificial tear containing fluorescent microbeads (Ø = 1-2 µm). The microconcavities of contact lenses are functionalized with multiplexed fluorophores (2 µL) to demonstrate optical excitation and emission capability within the visible spectrum. The fabricated microfluidic contact lenses may have applications in ophthalmic monitoring of metabolic disorders at point-of-care settings and controlled drug release for therapeutics.
Collapse
Affiliation(s)
- Nan Jiang
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| | - Yunuen Montelongo
- Department of ChemistryImperial College LondonSouth Kensington CampusLondonSW7 2AZUK
- Universidad De La Salle BajíoLeón37150Mexico
| | - Haider Butt
- Nanotechnology LaboratorySchool of EngineeringUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Ali K. Yetisen
- Institute for Measurement Systems and Sensor TechnologyTechnische Universität MünchenTheresienstrasse 9080333MunichGermany
- School of Chemical EngineeringUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
- Institute of Translational MedicineMindelsohn Way, EdgbastonBirminghamB15 2THUK
| |
Collapse
|
35
|
Zhang P, Mocci J, Wahl DJ, Meleppat RK, Manna SK, Quintavalla M, Muradore R, Sarunic MV, Bonora S, Pugh EN, Zawadzki RJ. Effect of a contact lens on mouse retinal in vivo imaging: Effective focal length changes and monochromatic aberrations. Exp Eye Res 2018; 172:86-93. [PMID: 29604280 PMCID: PMC6417837 DOI: 10.1016/j.exer.2018.03.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/26/2018] [Accepted: 03/27/2018] [Indexed: 01/09/2023]
Abstract
For in vivo mouse retinal imaging, especially with Adaptive Optics instruments, application of a contact lens is desirable, as it allows maintenance of cornea hydration and helps to prevent cataract formation during lengthy imaging sessions. However, since the refractive elements of the eye (cornea and lens) serve as the objective for most in vivo retinal imaging systems, the use of a contact lens, even with 0 Dpt. refractive power, can alter the system’s optical properties. In this investigation we examined the effective focal length change and the aberrations that arise from use of a contact lens. First, focal length changes were simulated with a Zemax mouse eye model. Then ocular aberrations with and without a 0 Dpt. contact lens were measured with a Shack-Hartmann wavefront sensor (SHWS) in a customized AO-SLO system. Total RMS wavefront errors were measured for two groups of mice (14-month, and 2.5-month-old), decomposed into 66 Zernike aberration terms, and compared. These data revealed that vertical coma and spherical aberrations were increased with use of a contact lens in our system. Based on the ocular wavefront data we evaluated the effect of the contact lens on the imaging system performance as a function of the pupil size. Both RMS error and Strehl ratios were quantified for the two groups of mice, with and without contact lenses, and for different input beam sizes. These results provide information for determining optimum pupil size for retinal imaging without adaptive optics, and raise critical issues for design of mouse optical imaging systems that incorporate contact lenses.
Collapse
Affiliation(s)
- Pengfei Zhang
- UC Davis Eye-Pod Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, CA 95616, United States
| | - Jacopo Mocci
- CNR-Institute for Photonics and Nanotechnology, Via Trasea 7, 35131, Padova, Italy
| | - Daniel J Wahl
- Engineering Science, Simon Fraser University, Burnaby BC, V5A 1S6, Canada
| | - Ratheesh Kumar Meleppat
- UC Davis Eye-Pod Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, CA 95616, United States
| | - Suman K Manna
- UC Davis Eye-Pod Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, CA 95616, United States
| | - Martino Quintavalla
- CNR-Institute for Photonics and Nanotechnology, Via Trasea 7, 35131, Padova, Italy
| | | | - Marinko V Sarunic
- Engineering Science, Simon Fraser University, Burnaby BC, V5A 1S6, Canada
| | - Stefano Bonora
- CNR-Institute for Photonics and Nanotechnology, Via Trasea 7, 35131, Padova, Italy
| | - Edward N Pugh
- UC Davis Eye-Pod Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, CA 95616, United States; UC Davis Eye Center, Dept. of Ophthalmology & Vision Science, University of California Davis, 4860 Y Street, Suite 2400, Sacramento, CA 95817, United States
| | - Robert J Zawadzki
- UC Davis Eye-Pod Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, CA 95616, United States; UC Davis Eye Center, Dept. of Ophthalmology & Vision Science, University of California Davis, 4860 Y Street, Suite 2400, Sacramento, CA 95817, United States.
| |
Collapse
|