1
|
Chiappini E, Turrini S, Zanon M, Marangon M, Borgomaneri S, Avenanti A. Driving Hebbian plasticity over ventral premotor-motor projections transiently enhances motor resonance. Brain Stimul 2024; 17:211-220. [PMID: 38387557 DOI: 10.1016/j.brs.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/23/2023] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Making sense of others' actions relies on the activation of an action observation network (AON), which maps visual information about observed actions onto the observer's motor system. This motor resonance process manifests in the primary motor cortex (M1) as increased corticospinal excitability finely tuned to the muscles engaged in the observed action. Motor resonance in M1 is facilitated by projections from higher-order AON regions. However, whether manipulating the strength of AON-to-M1 connectivity affects motor resonance remains unclear. METHODS We used transcranial magnetic stimulation (TMS) in 48 healthy humans. Cortico-cortical paired associative stimulation (ccPAS) was administered over M1 and the ventral premotor cortex (PMv), a key AON node, to induce spike-timing-dependent plasticity (STDP) in the pathway connecting them. Single-pulse TMS assessed motor resonance during action observation. RESULTS Before ccPAS, action observation increased corticospinal excitability in the muscles corresponding to the observed movements, reflecting motor resonance in M1. Notably, ccPAS aimed at strengthening projections from PMv to M1 (PMv→M1) induced short-term enhancement of motor resonance. The enhancement specifically occurred with the ccPAS configuration consistent with forward PMv→M1 projections and dissipated 20 min post-stimulation; ccPAS administered in the reverse order (M1→PMv) and sham stimulation did not affect motor resonance. CONCLUSIONS These findings provide the first evidence that inducing STDP to strengthen PMv input to M1 neurons causally enhances muscle-specific motor resonance in M1. Our study sheds light on the plastic mechanisms that shape AON functionality and demonstrates that exogenous manipulation of AON connectivity can influence basic mirror mechanisms that underlie social perception.
Collapse
Affiliation(s)
- Emilio Chiappini
- Department of Clinical and Health Psychology, University of Vienna, 1010, Vienna, Austria; Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors (IfADo), 44139, Dortmund, Germany.
| | - Sonia Turrini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, United States
| | - Marco Zanon
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Neuroscience Area, International School for Advanced Studies (SISSA), 34136, Trieste, Italy
| | - Mattia Marangon
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Dipartimento di Neuroscienze, Biomedicina e Scienze del Movimento, Sezione di Fisiologia e Psicologia, Università di Verona, 37124, Verona, Italy
| | - Sara Borgomaneri
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas (CINPSI Neurocog), Universidad Católica Del Maule, 346000, Talca, Chile.
| |
Collapse
|
2
|
Sasaki R, Miyaguchi S, Onishi H. Effect of brain-derived neurotrophic factor gene polymorphisms on motor performance and motor learning: A systematic review and meta-analysis. Behav Brain Res 2021; 420:113712. [PMID: 34915075 DOI: 10.1016/j.bbr.2021.113712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/08/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) gene polymorphisms may modulate neurotransmitter efficiency, thereby influencing motor performance and motor learning. However, studies to date have provided no consensus regarding the genetic influence of BDNF genotypes (i.e., Val/Val, Val/Met, or Met/Met type). This study aimed to investigate the effect of BDNF genotype on motor performance and motor learning in healthy human adults via a systematic review and meta-analysis. A total of 19 relevant studies were identified using PubMed and Web of Science search for articles published between 2000 and 2021 with motor performance or motor learning as the primary outcome measures. The results of our systematic review suggest that the BDNF genotype is unlikely to contribute to motor performance and motor learning abilities because only 2/32 datasets (6.3%) from 16 studies on motor performance and 3/19 datasets (17.6%) from 13 studies on motor learning indicated a significant genetic effect. Moreover, a meta-analysis of motor learning publications involving 17 datasets from 11 studies revealed that there was no significant difference in the learning score normalized using baseline data between Val/Val and Met carriers (Val/Met + Met/Met or Val/Met; standardized mean differences = 0.08, P = 0.37) with zero heterogeneity (I2 = 0) and a relatively low risk of publication bias. Taken together, the BDNF genotype may have only a minor impact on individual motor performance and motor learning abilities.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia.
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan.
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan.
| |
Collapse
|
3
|
Sasaki R, Otsuru N, Miyaguchi S, Kojima S, Watanabe H, Ohno K, Sakurai N, Kodama N, Sato D, Onishi H. Influence of Brain-Derived Neurotrophic Factor Genotype on Short-Latency Afferent Inhibition and Motor Cortex Metabolites. Brain Sci 2021; 11:brainsci11030395. [PMID: 33804682 PMCID: PMC8003639 DOI: 10.3390/brainsci11030395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/01/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
The Met allele of the brain-derived neurotrophic factor (BDNF) gene confers reduced cortical BDNF expression and associated neurobehavioral changes. BDNF signaling influences the survival, development, and synaptic function of cortical networks. Here, we compared gamma-aminobutyric acid (GABA)ergic network activity in the human primary motor cortex (M1) between the Met (Val/Met and Met/Met) and non-Met (Val/Val) genotype groups. Short- and long-interval intracortical inhibition, short-latency afferent inhibition (SAI), and long-latency afferent inhibition were measured using transcranial magnetic stimulation (TMS) as indices of GABAergic activity. Furthermore, the considerable inter-individual variability in inhibitory network activity typically measured by TMS may be affected not only by GABA but also by other pathways, including glutamatergic and cholinergic activities; therefore, we used 3-T magnetic resonance spectroscopy (MRS) to measure the dynamics of glutamate plus glutamine (Glx) and choline concentrations in the left M1, left somatosensory cortex, and right cerebellum. All inhibitory TMS conditions produced significantly smaller motor-evoked potentials than single-pulses. SAI was significantly stronger in the Met group than in the Val/Val group. Only the M1 Glx concentration was significantly lower in the Met group, while the BDNF genotype did not affect choline concentration in any region. Further, a positive correlation was observed between SAI and Glx concentrations only in M1. Our findings provide evidence that the BDNF genotype regulates both the inhibitory and excitatory circuits in human M1. In addition, lower Glx concentration in the M1 of Met carriers may alter specific inhibitory network on M1, thereby influencing the cortical signal processing required for neurobehavioral functions.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia
- Correspondence: ; Tel.: +81-25-257-4445
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Hiraku Watanabe
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
| | - Ken Ohno
- Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (K.O.); (N.S.)
| | - Noriko Sakurai
- Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (K.O.); (N.S.)
| | - Naoki Kodama
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
- Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (K.O.); (N.S.)
| | - Daisuke Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| |
Collapse
|
4
|
The functional database of the ARCHI project: Potential and perspectives. Neuroimage 2019; 197:527-543. [PMID: 31063817 DOI: 10.1016/j.neuroimage.2019.04.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 04/08/2019] [Accepted: 04/20/2019] [Indexed: 02/04/2023] Open
Abstract
More than two decades of functional magnetic resonance imaging (fMRI) of the human brain have succeeded to identify, with a growing level of precision, the neural basis of multiple cognitive skills within various domains (perception, sensorimotor processes, language, emotion and social cognition …). Progress has been made in the comprehension of the functional organization of localized brain areas. However, the long time required for fMRI acquisition limits the number of experimental conditions performed in a single individual. As a consequence, distinct brain localizations have mostly been studied in separate groups of participants, and their functional relationships at the individual level remain poorly understood. To address this issue, we report here preliminary results on a database of fMRI data acquired on 78 individuals who each performed a total of 29 experimental conditions, grouped in 4 cross-domains functional localizers. This protocol has been designed to efficiently isolate, in a single session, the brain activity associated with language, numerical representation, social perception and reasoning, premotor and visuomotor representations. Analyses are reported at the group and at the individual level, to establish the ability of our protocol to selectively capture distinct regions of interest in a very short time. Test-retest reliability was assessed in a subset of participants. The activity evoked by the different contrasts of the protocol is located in distinct brain networks that, individually, largely replicate previous findings and, taken together, cover a large proportion of the cortical surface. We provide detailed analyses of a subset of regions of relevance: the left frontal, left temporal and middle frontal cortices. These preliminary analyses highlight how combining such a large set of functional contrasts may contribute to establish a finer-grained brain atlas of cognitive functions, especially in regions of high functional overlap. Detailed structural images (structural connectivity, micro-structures, axonal diameter) acquired in the same individuals in the context of the ARCHI database provide a promising situation to explore functional/structural interdependence. Additionally, this protocol might also be used as a way to establish individual neurofunctional signatures in large cohorts.
Collapse
|
5
|
Paracampo R, Pirruccio M, Costa M, Borgomaneri S, Avenanti A. Visual, sensorimotor and cognitive routes to understanding others' enjoyment: An individual differences rTMS approach to empathic accuracy. Neuropsychologia 2018; 116:86-98. [DOI: 10.1016/j.neuropsychologia.2018.01.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 01/26/2023]
|
6
|
Ticini LF, Schütz-Bosbach S, Waszak F. Mirror and (absence of) counter-mirror responses to action sounds measured with TMS. Soc Cogn Affect Neurosci 2018; 12:1748-1757. [PMID: 29036454 PMCID: PMC5691549 DOI: 10.1093/scan/nsx106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/06/2017] [Indexed: 11/14/2022] Open
Abstract
To what extent is the mirror neuron mechanism malleable to experience? The answer to this question can help characterising its ontogeny and its role in social cognition. Some suggest that it develops through sensorimotor associations congruent with our own actions. Others argue for its extreme volatility that will encode any sensorimotor association in the environment. Here, we added to this debate by exploring the effects of short goal-directed 'mirror' and 'counter-mirror' trainings (a 'mirror' training is defined as the first type of training encountered by the participants) on human auditory mirror motor-evoked potentials (MEPs). We recorded MEPs in response to two tones void of previous motor meaning, before and after mirror and counter-mirror trainings in which participants generated two tones of different pitch by performing free-choice button presses. The results showed that mirror MEPs, once established, were protected against an equivalent counter-mirror experience: they became manifest very rapidly and the same number of training trials that lead to the initial association did not suffice to reverse the MEP pattern. This steadiness of the association argues that, by serving direct-matching purposes, the mirror mechanism is a good solution for social cognition.
Collapse
Affiliation(s)
- Luca F Ticini
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | | | | |
Collapse
|
7
|
Huntley MK, Muller S, Vallence AM. Corticospinal excitability is modulated by distinct movement patterns during action observation. Exp Brain Res 2018; 236:1067-1075. [PMID: 29435605 DOI: 10.1007/s00221-018-5199-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/07/2018] [Indexed: 10/18/2022]
Abstract
It is well established that excitability of the primary motor cortex increases during action observation. However, the modulation of motor cortex excitability during observation of different actions, with distinct movement patterns, is not fully understood. The aim of the current study was to examine time-dependent changes in corticospinal excitability during observation of two actions with different levels of complexity. We developed videos of two distinct actions (a point and a reach-and-grasp), that were matched in video length, action onset, and onset of kinematics. Single-pulse transcranial magnetic stimulation was used to investigate time-dependent changes in primary motor cortex excitability during observation of the two actions. Motor evoked potentials (MEP) were recorded from two intrinsic hand muscles, namely first dorsal interosseous (FDI) and abductor digiti minimi. Results showed no difference in MEP amplitude during observation of a static hand compared to observation of the actions. When comparing the point to the grasp action, there were two key findings showing time-dependent changes in motor cortex excitability: first, greater MEP amplitude in FDI during observation of the point than the grasp action at an early time-point (index finger extension) and second, greater MEP amplitude in FDI during observation of the grasp than the point action at a later time-point (hand opening to form a grasp). These results show that excitability of the primary motor cortex is differentially modulated during observation of a point and grasp action, suggesting that the action observation network is engaged in a time-dependent manner during action observation.
Collapse
Affiliation(s)
- M K Huntley
- School of Psychology and Exercise Science, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - S Muller
- School of Psychology and Exercise Science, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Ann-Maree Vallence
- School of Psychology and Exercise Science, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia.
| |
Collapse
|
8
|
Tramacere A, Pievani T, Ferrari PF. Mirror neurons in the tree of life: mosaic evolution, plasticity and exaptation of sensorimotor matching responses. Biol Rev Camb Philos Soc 2016; 92:1819-1841. [PMID: 27862868 DOI: 10.1111/brv.12310] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 10/05/2016] [Accepted: 10/10/2016] [Indexed: 12/31/2022]
Abstract
Considering the properties of mirror neurons (MNs) in terms of development and phylogeny, we offer a novel, unifying, and testable account of their evolution according to the available data and try to unify apparently discordant research, including the plasticity of MNs during development, their adaptive value and their phylogenetic relationships and continuity. We hypothesize that the MN system reflects a set of interrelated traits, each with an independent natural history due to unique selective pressures, and propose that there are at least three evolutionarily significant trends that gave raise to three subtypes: hand visuomotor, mouth visuomotor, and audio-vocal. Specifically, we put forward a mosaic evolution hypothesis, which posits that different types of MNs may have evolved at different rates within and among species. This evolutionary hypothesis represents an alternative to both adaptationist and associative models. Finally, the review offers a strong heuristic potential in predicting the circumstances under which specific variations and properties of MNs are expected. Such predictive value is critical to test new hypotheses about MN activity and its plastic changes, depending on the species, the neuroanatomical substrates, and the ecological niche.
Collapse
Affiliation(s)
- Antonella Tramacere
- Department of Neuroscience, University of Parma, Parma, 43100, Italy.,Deutsche Primaten Zentrum - Lichtenberg-Kolleg, Institute for Advanced Study, 37083, Göttingen, Germany
| | - Telmo Pievani
- Department of Biology, University of Padua, Padua, 35131, Italy
| | - Pier F Ferrari
- Department of Neuroscience, University of Parma, Parma, 43100, Italy.,Institut des Sciences Cognitives 'Marc Jeannerod', CNRS/Université Claude Bernard Lyon, 69675, Bron Cedex, France
| |
Collapse
|