1
|
Mitrut RE, Stranford DM, DiBiase BN, Chan JM, Bailey MD, Luo M, Harper CS, Meade TJ, Wang M, Leonard JN. HaloTag display enables quantitative single-particle characterisation and functionalisation of engineered extracellular vesicles. J Extracell Vesicles 2024; 13:e12469. [PMID: 38965984 PMCID: PMC11224594 DOI: 10.1002/jev2.12469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/01/2024] [Indexed: 07/06/2024] Open
Abstract
Extracellular vesicles (EVs) play key roles in diverse biological processes, transport biomolecules between cells and have been engineered for therapeutic applications. A useful EV bioengineering strategy is to express engineered proteins on the EV surface to confer targeting, bioactivity and other properties. Measuring how incorporation varies across a population of EVs is important for characterising such materials and understanding their function, yet it remains challenging to quantitatively characterise the absolute number of engineered proteins incorporated at single-EV resolution. To address these needs, we developed a HaloTag-based characterisation platform in which dyes or other synthetic species can be covalently and stoichiometrically attached to engineered proteins on the EV surface. To evaluate this system, we employed several orthogonal quantification methods, including flow cytometry and fluorescence microscopy, and found that HaloTag-mediated quantification is generally robust across EV analysis methods. We compared HaloTag-labelling to antibody-labelling of EVs using single vesicle flow cytometry, enabling us to measure the substantial degree to which antibody labelling can underestimate proteins present on an EV. Finally, we demonstrate the use of HaloTag to compare between protein designs for EV bioengineering. Overall, the HaloTag system is a useful EV characterisation tool which complements and expands existing methods.
Collapse
Affiliation(s)
- Roxana E. Mitrut
- Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonIllinoisUSA
- Center for Synthetic BiologyNorthwestern UniversityEvanstonIllinoisUSA
| | - Devin M. Stranford
- Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonIllinoisUSA
- Center for Synthetic BiologyNorthwestern UniversityEvanstonIllinoisUSA
| | - Beth N. DiBiase
- Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonIllinoisUSA
- Center for Synthetic BiologyNorthwestern UniversityEvanstonIllinoisUSA
| | - Jonathan M. Chan
- Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonIllinoisUSA
| | | | - Minrui Luo
- Department of ChemistryNorthwestern UniversityEvanstonIllinoisUSA
- Chemistry of Life Processes InstituteNorthwestern UniversityEvanstonIllinoisUSA
| | - Clare S. Harper
- Interdisciplinary Biological Sciences Training ProgramNorthwestern UniversityEvanstonIllinoisUSA
| | - Thomas J. Meade
- Department of ChemistryNorthwestern UniversityEvanstonIllinoisUSA
- Chemistry of Life Processes InstituteNorthwestern UniversityEvanstonIllinoisUSA
- Interdisciplinary Biological Sciences Training ProgramNorthwestern UniversityEvanstonIllinoisUSA
- Robert H. Lurie Comprehensive Cancer CenterNorthwestern UniversityEvanstonIllinoisUSA
| | - Muzhou Wang
- Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonIllinoisUSA
| | - Joshua N. Leonard
- Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonIllinoisUSA
- Center for Synthetic BiologyNorthwestern UniversityEvanstonIllinoisUSA
- Chemistry of Life Processes InstituteNorthwestern UniversityEvanstonIllinoisUSA
- Interdisciplinary Biological Sciences Training ProgramNorthwestern UniversityEvanstonIllinoisUSA
- Robert H. Lurie Comprehensive Cancer CenterNorthwestern UniversityEvanstonIllinoisUSA
| |
Collapse
|
2
|
Rai A, Claridge B, Lozano J, Greening DW. The Discovery of Extracellular Vesicles and Their Emergence as a Next-Generation Therapy. Circ Res 2024; 135:198-221. [PMID: 38900854 DOI: 10.1161/circresaha.123.323054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
From their humble discovery as cellular debris to cementing their natural capacity to transfer functional molecules between cells, the long-winded journey of extracellular vesicles (EVs) now stands at the precipice as a next-generation cell-free therapeutic tool to revolutionize modern-day medicine. This perspective provides a snapshot of the discovery of EVs to their emergence as a vibrant field of biology and the renaissance they usher in the field of biomedical sciences as therapeutic agents for cardiovascular pathologies. Rapid development of bioengineered EVs is providing innovative opportunities to overcome biological challenges of natural EVs such as potency, cargo loading and enhanced secretion, targeting and circulation half-life, localized and sustained delivery strategies, approaches to enhance systemic circulation, uptake and lysosomal escape, and logistical hurdles encompassing scalability, cost, and time. A multidisciplinary collaboration beyond the field of biology now extends to chemistry, physics, biomaterials, and nanotechnology, allowing rapid development of designer therapeutic EVs that are now entering late-stage human clinical trials.
Collapse
Affiliation(s)
- Alin Rai
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.R., B.C., J.L., D.W.G.)
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia (A.R., J.L., D.W.G.)
- Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia (A.R., D.W.G.)
- Central Clinical School, Monash University, Melbourne, Victoria, Australia (A.R., D.W.G.)
| | - Bethany Claridge
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.R., B.C., J.L., D.W.G.)
| | - Jonathan Lozano
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.R., B.C., J.L., D.W.G.)
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia (A.R., J.L., D.W.G.)
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.R., B.C., J.L., D.W.G.)
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia (A.R., J.L., D.W.G.)
- Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia (A.R., D.W.G.)
- Central Clinical School, Monash University, Melbourne, Victoria, Australia (A.R., D.W.G.)
| |
Collapse
|
3
|
Mitrut RE, Stranford DM, DiBiase BN, Chan JM, Bailey MD, Luo M, Harper CS, Meade TJ, Wang M, Leonard JN. HaloTag display enables quantitative single-particle characterization and functionalization of engineered extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.25.559433. [PMID: 37808729 PMCID: PMC10557717 DOI: 10.1101/2023.09.25.559433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Extracellular vesicles (EVs) play key roles in diverse biological processes, transport biomolecules between cells, and have been engineered for therapeutic applications. A useful EV bioengineering strategy is to express engineered proteins on the EV surface to confer targeting, bioactivity, and other properties. Measuring how incorporation varies across a population of EVs is important for characterizing such materials and understanding their function, yet it remains challenging to quantitatively characterize the absolute number of engineered proteins incorporated at single-EV resolution. To address these needs, we developed a HaloTag-based characterization platform in which dyes or other synthetic species can be covalently and stoichiometrically attached to engineered proteins on the EV surface. To evaluate this system, we employed several orthogonal quantification methods, including flow cytometry and fluorescence microscopy, and found that HaloTag-mediated quantification is generally robust across EV analysis methods. We compared HaloTag-labeling to antibody-labeling of EVs using single vesicle flow cytometry, enabling us to measure the substantial degree to which antibody labeling can underestimate proteins present on an EV. Finally, we demonstrate the use of HaloTag to compare between protein designs for EV bioengineering. Overall, the HaloTag system is a useful EV characterization tool which complements and expands existing methods.
Collapse
|
4
|
Zuppone S, Zarovni N, Noguchi K, Loria F, Morasso C, Lõhmus A, Nakase I, Vago R. Novel loading protocol combines highly efficient encapsulation of exogenous therapeutic toxin with preservation of extracellular vesicles properties, uptake and cargo activity. DISCOVER NANO 2024; 19:76. [PMID: 38691254 PMCID: PMC11063024 DOI: 10.1186/s11671-024-04022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Extracellular vesicles (EVs) have mostly been investigated as carriers of biological therapeutics such as proteins and RNA. Nevertheless, small-molecule drugs of natural or synthetic origin have also been loaded into EVs, resulting in an improvement of their therapeutic properties. A few methods have been employed for EV cargo loading, but poor yield and drastic modifications of vesicles remain unsolved challenges. We tested a different strategy based on temporary pH alteration through incubation of EVs with alkaline sodium carbonate, which resulted in conspicuous exogenous molecule incorporation. In-depth characterization showed that vesicle size, morphology, composition, and uptake were not affected. Our method was more efficient than gold-standard electroporation, particularly for a potential therapeutic toxin: the plant Ribosome Inactivating Protein saporin. The encapsulated saporin resulted protected from degradation, and was efficiently conveyed to receiving cancer cells and triggered cell death. EV-delivered saporin was more cytotoxic compared to the free toxin. This approach allows both the structural preservation of vesicle properties and the transfer of protected cargo in the context of drug delivery.
Collapse
Affiliation(s)
- Stefania Zuppone
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | | | - Kosuke Noguchi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka, 599-8531, Japan
| | - Francesca Loria
- HansaBiomed Life Sciences, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Carlo Morasso
- Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | | | - Ikuhiko Nakase
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka, 599-8531, Japan
| | - Riccardo Vago
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
- Università Vita-Salute San Raffaele, 20132, Milan, Italy.
| |
Collapse
|
5
|
Morimoto K, Ishitobi J, Noguchi K, Kira R, Kitayama Y, Goto Y, Fujiwara D, Michigami M, Harada A, Takatani-Nakase T, Fujii I, Futaki S, Kanada M, Nakase I. Extracellular Microvesicles Modified with Arginine-Rich Peptides for Active Macropinocytosis Induction and Delivery of Therapeutic Molecules. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17069-17079. [PMID: 38563247 PMCID: PMC11011658 DOI: 10.1021/acsami.3c14592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles (MVs), transfer bioactive molecules from donor to recipient cells in various pathophysiological settings, thereby mediating intercellular communication. Despite their significant roles in extracellular signaling, the cellular uptake mechanisms of different EV subpopulations remain unknown. In particular, plasma membrane-derived MVs are larger vesicles (100 nm to 1 μm in diameter) and may serve as efficient molecular delivery systems due to their large capacity; however, because of size limitations, receptor-mediated endocytosis is considered an inefficient means for cellular MV uptake. This study demonstrated that macropinocytosis (lamellipodia formation and plasma membrane ruffling, causing the engulfment of large fluid volumes outside cells) can enhance cellular MV uptake. We developed experimental techniques to induce macropinocytosis-mediated MV uptake by modifying MV membranes with arginine-rich cell-penetrating peptides for the intracellular delivery of therapeutic molecules.
Collapse
Affiliation(s)
- Kenta Morimoto
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Jojiro Ishitobi
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Kosuke Noguchi
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Ryoichi Kira
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Yukiya Kitayama
- Department
of Applied Chemistry, Graduate School of
Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho,
Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Yuto Goto
- Department
of Applied Chemistry, Graduate School of
Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho,
Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Daisuke Fujiwara
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Masataka Michigami
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Atsushi Harada
- Department
of Applied Chemistry, Graduate School of
Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho,
Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Tomoka Takatani-Nakase
- Department
of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University, 11-68, Koshien Kyuban-cho, Nishinomiya 663-8179, Hyogo, Japan
- Institute
for Bioscience, Mukogawa Women’s University, 11-68, Koshien Kyuban-cho, Nishinomiya 663-8179, Hyogo, Japan
| | - Ikuo Fujii
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Shiroh Futaki
- Institute
for Chemical Research, Kyoto University, Uji 611-0011, Kyoto, Japan
| | - Masamitsu Kanada
- Institute
for Quantitative Health Science and Engineering (IQ), Michigan State
University, East Lansing, Michigan 48824, United States
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, Michigan 48824, United States
| | - Ikuhiko Nakase
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| |
Collapse
|
6
|
Xu YP, Jiang T, Yang XF, Chen ZB. Methods, Mechanisms, and Application Prospects for Enhancing Extracellular Vesicle Uptake. Curr Med Sci 2024; 44:247-260. [PMID: 38622425 DOI: 10.1007/s11596-024-2861-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
Extracellular vesicles (EVs) are considered to be a new generation of bioinspired nanoscale drug delivery systems due to their low immunogenicity, natural functionality, and excellent biocompatibility. However, limitations such as low uptake efficiency, insufficient production, and inhomogeneous performance undermine their potential. To address these issues, numerous researchers have put forward various methods and applications for enhancing EV uptake in recent decades. In this review, we introduce various methods for the cellular uptake of EVs and summarize recent advances on the methods and mechanisms for enhancing EV uptake. In addition, we provide further understanding regarding enhancing EV uptake and put forward prospects and challenges for the development of EV-based therapy in the future.
Collapse
Affiliation(s)
- Ying-Peng Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Fan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhen-Bing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
7
|
Xie Q, Hao Y, Li N, Song H, Chen X, Zhou Z, Wang J, Zhang Y, Li H, Han P, Wang X. Cellular Uptake of Engineered Extracellular Vesicles: Biomechanisms, Engineered Strategies, and Disease Treatment. Adv Healthc Mater 2024; 13:e2302280. [PMID: 37812035 DOI: 10.1002/adhm.202302280] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/17/2023] [Indexed: 10/10/2023]
Abstract
Extracellular vesicles (EVs), lipid-enclosed nanosized membrane vesicles, are regarded as new vehicles and therapeutic agents in intercellular communication. During internal circulation, if EVs are not effectively taken up by recipient cells, they will be cleared as "cellular waste" and unable to deliver therapeutic components. It can be seen that cells uptake EVs are the prerequisite premise for sharing intercellular biological information. However, natural EVs have a low rate of absorption by their recipient cells, off-target delivery, and rapid clearance from circulation, which seriously reduces the utilization rate. Affecting the uptake rate of EVs through engineering technologies is essential for therapeutic applications. Engineering strategies for customizing EV uptake can potentially overcome these limitations and enable desirable therapeutic uses of EVs. In this review, the mechanism and influencing factors of natural EV uptake will be described in detail. Targeting each EV uptake mechanism, the strategies of engineered EVs and their application in diseases will be emphatically discussed. Finally, the future challenges and perspectives of engineered EVs are presented multidimensionally.
Collapse
Affiliation(s)
- Qingpeng Xie
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Yujia Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Na Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Haoyue Song
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Xiaohang Chen
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Zilan Zhou
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Jia Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Yuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Huifei Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Pengcheng Han
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210000, China
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| |
Collapse
|
8
|
Ghassemi K, Inouye K, Takhmazyan T, Bonavida V, Yang JW, de Barros NR, Thankam FG. Engineered Vesicles and Hydrogel Technologies for Myocardial Regeneration. Gels 2023; 9:824. [PMID: 37888397 PMCID: PMC10606880 DOI: 10.3390/gels9100824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Increased prevalence of cardiovascular disease and potentially life-threatening complications of myocardial infarction (MI) has led to emerging therapeutic approaches focusing on myocardial regeneration and restoration of physiologic function following infarction. Extracellular vesicle (EV) technology has gained attention owing to the biological potential to modulate cellular immune responses and promote the repair of damaged tissue. Also, EVs are involved in local and distant cellular communication following damage and play an important role in initiating the repair process. Vesicles derived from stem cells and cardiomyocytes (CM) are of particular interest due to their ability to promote cell growth, proliferation, and angiogenesis following MI. Although a promising candidate for myocardial repair, EV technology is limited by the short retention time of vesicles and rapid elimination by the body. There have been several successful attempts to address this shortcoming, which includes hydrogel technology for the sustained bioavailability of EVs. This review discusses and summarizes current understanding regarding EV technology in the context of myocardial repair.
Collapse
Affiliation(s)
- Kaitlyn Ghassemi
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.G.); (K.I.); (T.T.); (V.B.)
| | - Keiko Inouye
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.G.); (K.I.); (T.T.); (V.B.)
| | - Tatevik Takhmazyan
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.G.); (K.I.); (T.T.); (V.B.)
| | - Victor Bonavida
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.G.); (K.I.); (T.T.); (V.B.)
| | - Jia-Wei Yang
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; (J.-W.Y.); (N.R.d.B.)
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; (J.-W.Y.); (N.R.d.B.)
| | - Finosh G. Thankam
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.G.); (K.I.); (T.T.); (V.B.)
| |
Collapse
|
9
|
Omura M, Morimoto K, Araki Y, Hirose H, Kawaguchi Y, Kitayama Y, Goto Y, Harada A, Fujii I, Takatani-Nakase T, Futaki S, Nakase I. Inkjet-Based Intracellular Delivery System that Effectively Utilizes Cell-Penetrating Peptides for Cytosolic Introduction of Biomacromolecules through the Cell Membrane. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47855-47865. [PMID: 37792057 PMCID: PMC10592309 DOI: 10.1021/acsami.3c01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/24/2023] [Indexed: 10/05/2023]
Abstract
In the drug delivery system, the cytosolic delivery of biofunctional molecules such as enzymes and genes must achieve sophisticated activities in cells, and microinjection and electroporation systems are typically used as experimental techniques. These methods are highly reliable, and they have high intracellular transduction efficacy. However, a high degree of proficiency is necessary, and induced cytotoxicity is considered as a technical problem. In this research, a new intracellular introduction technology was developed through the cell membrane using an inkjet device and cell-penetrating peptides (CPPs). Using the inkjet system, the droplet volume, droplet velocity, and dropping position can be accurately controlled, and minute samples (up to 30 pL/shot) can be carried out by direct administration. In addition, CPPs, which have excellent cell membrane penetration functions, can deliver high-molecular-weight drugs and nanoparticles that are difficult to penetrate through the cell membrane. By using the inkjet system, the CPPs with biofunctional cargo, including peptides, proteins such as antibodies, and exosomes, could be accurately delivered to cells, and efficient cytosolic transduction was confirmed.
Collapse
Affiliation(s)
- Mika Omura
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Kenta Morimoto
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Yurina Araki
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
- Department
of Biological Chemistry, School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Hisaaki Hirose
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshimasa Kawaguchi
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yukiya Kitayama
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Yuto Goto
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Atsushi Harada
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Ikuo Fujii
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
- Department
of Biological Chemistry, School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Tomoka Takatani-Nakase
- Department
of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University, 11-68, Koshien Kyuban-cho, Nishinomiya 663-8179, Hyogo, Japan
- Institute
for Bioscience, Mukogawa Women’s
University, 11-68, Koshien
Kyuban-cho, Nishinomiya 663-8179, Hyogo, Japan
| | - Shiroh Futaki
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Ikuhiko Nakase
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
- Department
of Biological Chemistry, School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| |
Collapse
|
10
|
Graceffa V. Intracellular protein delivery: New insights into the therapeutic applications and emerging technologies. Biochimie 2023; 213:82-99. [PMID: 37209808 DOI: 10.1016/j.biochi.2023.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
The inability to cross the plasma membranes traditionally limited the therapeutic use of recombinant proteins. However, in the last two decades, novel technologies made delivering proteins inside the cells possible. This allowed researchers to unlock intracellular targets, once considered 'undruggable', bringing a new research area to emerge. Protein transfection systems display a large potential in a plethora of applications. However, their modality of action is often unclear, and cytotoxic effects are elevated, whereas experimental conditions to increase transfection efficacy and cell viability still need to be identified. Furthermore, technical complexity often limits in vivo experimentation, while challenging industrial and clinical translation. This review highlights the applications of protein transfection technologies, and then critically discuss the current methodologies and their limitations. Physical membrane perforation systems are compared to systems exploiting cellular endocytosis. Research evidence of the existence of either extracellular vesicles (EVs) or cell-penetrating peptides (CPPs)- based systems, that circumvent the endosomal systems is critically analysed. Commercial systems, novel solid-phase reverse protein transfection systems, and engineered living intracellular bacteria-based mechanisms are finally described. This review ultimately aims at finding new methodologies and possible applications of protein transfection systems, while helping the development of an evidence-based research approach.
Collapse
Affiliation(s)
- Valeria Graceffa
- Cellular Health and Toxicology Research Group (CHAT), Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University (ATU), Sligo, Ireland.
| |
Collapse
|
11
|
Gandek TB, van der Koog L, Nagelkerke A. A Comparison of Cellular Uptake Mechanisms, Delivery Efficacy, and Intracellular Fate between Liposomes and Extracellular Vesicles. Adv Healthc Mater 2023; 12:e2300319. [PMID: 37384827 PMCID: PMC11469107 DOI: 10.1002/adhm.202300319] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
A key aspect for successful drug delivery via lipid-based nanoparticles is their internalization in target cells. Two prominent examples of such drug delivery systems are artificial phospholipid-based carriers, such as liposomes, and their biological counterparts, the extracellular vesicles (EVs). Despite a wealth of literature, it remains unclear which mechanisms precisely orchestrate nanoparticle-mediated cargo delivery to recipient cells and the subsequent intracellular fate of therapeutic cargo. In this review, internalization mechanisms involved in the uptake of liposomes and EVs by recipient cells are evaluated, also exploring their intracellular fate after intracellular trafficking. Opportunities are highlighted to tweak these internalization mechanisms and intracellular fates to enhance the therapeutic efficacy of these drug delivery systems. Overall, literature to date shows that both liposomes and EVs are predominantly internalized through classical endocytosis mechanisms, sharing a common fate: accumulation inside lysosomes. Studies tackling the differences between liposomes and EVs, with respect to cellular uptake, intracellular delivery and therapy efficacy, remain scarce, despite its importance for the selection of an appropriate drug delivery system. In addition, further exploration of functionalization strategies of both liposomes and EVs represents an important avenue to pursue in order to control internalization and fate, thereby improving therapeutic efficacy.
Collapse
Affiliation(s)
- Timea B. Gandek
- Pharmaceutical AnalysisGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB20Groningen9700 ADThe Netherlands
| | - Luke van der Koog
- Molecular PharmacologyGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB10Groningen9700 ADThe Netherlands
| | - Anika Nagelkerke
- Pharmaceutical AnalysisGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB20Groningen9700 ADThe Netherlands
| |
Collapse
|
12
|
Sun Z, Huang J, Fishelson Z, Wang C, Zhang S. Cell-Penetrating Peptide-Based Delivery of Macromolecular Drugs: Development, Strategies, and Progress. Biomedicines 2023; 11:1971. [PMID: 37509610 PMCID: PMC10377493 DOI: 10.3390/biomedicines11071971] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Cell-penetrating peptides (CPPs), developed for more than 30 years, are still being extensively studied due to their excellent delivery performance. Compared with other delivery vehicles, CPPs hold promise for delivering different types of drugs. Here, we review the development process of CPPs and summarize the composition and classification of the CPP-based delivery systems, cellular uptake mechanisms, influencing factors, and biological barriers. We also summarize the optimization routes of CPP-based macromolecular drug delivery from stability and targeting perspectives. Strategies for enhanced endosomal escape, which prolong its half-life in blood, improved targeting efficiency and stimuli-responsive design are comprehensively summarized for CPP-based macromolecule delivery. Finally, after concluding the clinical trials of CPP-based drug delivery systems, we extracted the necessary conditions for a successful CPP-based delivery system. This review provides the latest framework for the CPP-based delivery of macromolecular drugs and summarizes the optimized strategies to improve delivery efficiency.
Collapse
Affiliation(s)
- Zhe Sun
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Zvi Fishelson
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chenhui Wang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
13
|
Greenberg ZF, Graim KS, He M. Towards artificial intelligence-enabled extracellular vesicle precision drug delivery. Adv Drug Deliv Rev 2023:114974. [PMID: 37356623 DOI: 10.1016/j.addr.2023.114974] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Extracellular Vesicles (EVs), particularly exosomes, recently exploded into nanomedicine as an emerging drug delivery approach due to their superior biocompatibility, circulating stability, and bioavailability in vivo. However, EV heterogeneity makes molecular targeting precision a critical challenge. Deciphering key molecular drivers for controlling EV tissue targeting specificity is in great need. Artificial intelligence (AI) brings powerful prediction ability for guiding the rational design of engineered EVs in precision control for drug delivery. This review focuses on cutting-edge nano-delivery via integrating large-scale EV data with AI to develop AI-directed EV therapies and illuminate the clinical translation potential. We briefly review the current status of EVs in drug delivery, including the current frontier, limitations, and considerations to advance the field. Subsequently, we detail the future of AI in drug delivery and its impact on precision EV delivery. Our review discusses the current universal challenge of standardization and critical considerations when using AI combined with EVs for precision drug delivery. Finally, we will conclude this review with a perspective on future clinical translation led by a combined effort of AI and EV research.
Collapse
Affiliation(s)
- Zachary F Greenberg
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, 32610, USA
| | - Kiley S Graim
- Department of Computer & Information Science & Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida, 32610, USA
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, 32610, USA.
| |
Collapse
|
14
|
Geng J, Wang J, Wang H. Emerging Landscape of Cell-Penetrating Peptide-Mediated Organelle Restoration and Replacement. ACS Pharmacol Transl Sci 2023; 6:229-244. [PMID: 36798470 PMCID: PMC9926530 DOI: 10.1021/acsptsci.2c00229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Indexed: 01/18/2023]
Abstract
Organelles are specialized subunits within a cell membrane that perform specific roles or functions, and their dysfunction can lead to a variety of pathophysiologies including developmental defects, aging, and diseases (cancer, cardiovascular and neurodegenerative diseases). Recent studies have shown that cell-penetrating peptide (CPP)-based pharmacological therapies delivered to organelles or even directly resulting in organelle replacement can restore cell function and improve or prevent disease. In this review, we summarized the current developments in the precise delivery of exogenous cargoes via CPPs at the organelle level, CPP-mediated organelle delivery, and discuss their feasibility as next-generation targeting strategies for the diagnosis and treatment of diseases at the organelle level.
Collapse
Affiliation(s)
- Jingping Geng
- Department
of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang443002, China
- Interdisciplinary
Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097Warszawa, Poland
| | - Jing Wang
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland21215, United States
| | - Hu Wang
- Department
of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang443002, China
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland21215, United States
| |
Collapse
|
15
|
Itagaki M, Nasu Y, Sugiyama C, Nakase I, Kamei N. A universal method to analyze cellular internalization mechanisms via endocytosis without non-specific cross-effects. FASEB J 2023; 37:e22764. [PMID: 36624697 DOI: 10.1096/fj.202201780r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023]
Abstract
Endocytosis is an essential biological process for nutrient absorption and intercellular communication; it can also be used to accelerate the cellular internalization of drug delivery carriers. Clarifying the cellular uptake mechanisms of unidentified endogenous and exogenous molecules and designing new effective drug delivery systems require an accurate, specific endocytosis analysis methodology. Therefore, we developed a method to specifically evaluate cellular internalization via three main endocytic pathways: clathrin- and caveolae-mediated endocytosis, and macropinocytosis. We first revealed that most known endocytosis inhibitors had no specific inhibitory effect or were cytotoxic. Second, we successfully established an alternative method using small interfering RNA to knock down dynamin-2 and caveolin-1, which are necessary for clathrin- and caveolae-mediated endocytosis, in HeLa cells. Third, we established another method to specifically analyze macropinocytosis using rottlerin on A431 cells. Finally, we validated the proposed methods by testing the cellular internalization of a biological molecule (insulin) and carriers (nanoparticles and cell-penetrating peptides). Through this study, we established versatile methods to precisely and specifically evaluate endocytosis of newly developed biopharmaceuticals or drug delivery systems.
Collapse
Affiliation(s)
- Mai Itagaki
- Laboratory of Drug Delivery Systems, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| | - Yoshinori Nasu
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| | - Chiaki Sugiyama
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| | - Ikuhiko Nakase
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Noriyasu Kamei
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| |
Collapse
|
16
|
Mondal J, Pillarisetti S, Junnuthula V, Saha M, Hwang SR, Park IK, Lee YK. Hybrid exosomes, exosome-like nanovesicles and engineered exosomes for therapeutic applications. J Control Release 2023; 353:1127-1149. [PMID: 36528193 DOI: 10.1016/j.jconrel.2022.12.027] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/28/2022]
Abstract
Exosomes are endosome-derived nanovesicles involved in cellular communication. They are natural nanocarriers secreted by various cells, making them suitable candidates for diverse drug delivery and therapeutic applications from a material standpoint. They have a phospholipid bilayer decorated with functional molecules and an enclosed parental matrix, which has attracted interest in developing designer/hybrid engineered exosome nanocarriers. The structural versatility of exosomes allows the modification of their original configuration using various methods, including genetic engineering, chemical procedures, physical techniques, and microfluidic technology, to load exosomes with additional cargo for expanded biomedical applications. Exosomes show enormous potential for overcoming the limitations of conventional nanoparticle-based techniques in targeted therapy. This review highlights the exosome sources, characteristics, state of the art in the field of hybrid exosomes, exosome-like nanovesicles and engineered exosomes as potential cargo delivery vehicles for therapeutic applications.
Collapse
Affiliation(s)
- Jagannath Mondal
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea
| | - Shameer Pillarisetti
- Department of Biomedical Sciences and Biomedical Science Graduate Program (BMSGP), Chonnam National University Medical School, 160 Baekseo-ro, Gwangju 61469, Republic of Korea
| | | | - Monochura Saha
- Media lab, Massachusetts Institute of Technology (MIT), 75 Amherst Street, Cambridge 02139, USA
| | - Seung Rim Hwang
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and Biomedical Science Graduate Program (BMSGP), Chonnam National University Medical School, 160 Baekseo-ro, Gwangju 61469, Republic of Korea.
| | - Yong-Kyu Lee
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea; Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 27470, Republic of Korea.
| |
Collapse
|
17
|
Subhan BS, Ki M, Verzella A, Shankar S, Rabbani PS. Behind the Scenes of Extracellular Vesicle Therapy for Skin Injuries and Disorders. Adv Wound Care (New Rochelle) 2022; 11:575-597. [PMID: 34806432 PMCID: PMC9419953 DOI: 10.1089/wound.2021.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/10/2021] [Indexed: 01/29/2023] Open
Abstract
Significance: Skin wounds and disorders compromise the protective functions of skin and patient quality of life. Although accessible on the surface, they are challenging to address due to paucity of effective therapies. Exogenous extracellular vesicles (EVs) and cell-free derivatives of adult multipotent stromal cells (MSCs) are developing as a treatment modality. Knowledge of origin MSCs, EV processing, and mode of action is necessary for directed use of EVs in preclinical studies and methodical translation. Recent Advances: Nanoscale to microscale EVs, although from nonskin cells, induce functional responses in cutaneous wound cellular milieu. EVs allow a shift from cell-based to cell-free/derived modalities by carrying the MSC beneficial factors but eliminating risks associated with MSC transplantation. EVs have demonstrated striking efficacy in resolution of preclinical wound models, specifically within the complexity of skin structure and wound pathology. Critical Issues: To facilitate comparison across studies, tissue sources and processing of MSCs, culture conditions, isolation and preparations of EVs, and vesicle sizes require standardization as these criteria influence EV types and contents, and potentially determine the induced biological responses. Procedural parameters for all steps preceding the actual therapeutic administration may be the key to generating EVs that demonstrate consistent efficacy through known mechanisms. We provide a comprehensive review of such parameters and the subsequent tissue, cellular and molecular impact of the derived EVs in different skin wounds/disorders. Future Directions: We will gain more complete knowledge of EV-induced effects in skin, and specificity for different wounds/conditions. The safety and efficacy of current preclinical xenogenic applications will favor translation into allogenic clinical applications of EVs as a biologic.
Collapse
Affiliation(s)
- Bibi S. Subhan
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| | - Michelle Ki
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| | - Alexandra Verzella
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| | - Shruthi Shankar
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| | - Piul S. Rabbani
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
18
|
Molecular Docking and Intracellular Translocation of Extracellular Vesicles for Efficient Drug Delivery. Int J Mol Sci 2022; 23:ijms232112971. [PMID: 36361760 PMCID: PMC9659046 DOI: 10.3390/ijms232112971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, mediate intercellular communication by delivering their contents, such as nucleic acids, proteins, and lipids, to distant target cells. EVs play a role in the progression of several diseases. In particular, programmed death-ligand 1 (PD-L1) levels in exosomes are associated with cancer progression. Furthermore, exosomes are being used for new drug-delivery systems by modifying their membrane peptides to promote their intracellular transduction via micropinocytosis. In this review, we aim to show that an efficient drug-delivery system and a useful therapeutic strategy can be established by controlling the molecular docking and intracellular translocation of exosomes. We summarise the mechanisms of molecular docking of exosomes, the biological effects of exosomes transmitted into target cells, and the current state of exosomes as drug delivery systems.
Collapse
|
19
|
Kawaguchi M, Furuse Y, Ieda N, Nakagawa H. Development of Nucleoside Diphosphate-Bearing Fragile Histidine Triad-Imaging Fluorescence Probes with Well-Tuned Hydrophobicity for Intracellular Delivery. ACS Sens 2022; 7:2732-2742. [PMID: 35981239 DOI: 10.1021/acssensors.2c01273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fluorescence-guided cancer surgery can dramatically improve recurrence rates and postoperative quality of life of patients by accurately distinguishing the boundary between normal and cancer tissues during surgery, thereby minimizing excision of normal tissue. One promising target in early stage cancer is fragile histidine triad (FHIT), a cancer suppressor protein with dinucleoside triphosphate hydrolase activity. In this study, we have developed fluorescence probes containing a nucleoside diphosphate moiety, which dramatically improves the reactivity and specificity for FHIT, and a moderately lipophilic ester moiety to increase the membrane permeability. The ester moiety is cleaved by ubiquitous intracellular esterases, and then, FHIT in the cells specifically cleaves nucleoside monophosphate. The remaining phosphate moiety is rapidly cleaved by ubiquitous intracellular phosphatases to release the fluorescent dye. We confirmed that this probe can detect FHIT activity in living cells. A comprehensive evaluation of the effects of various ester moieties revealed that probes with CLogP = 5-7 showed good membrane permeability and were good substrates of the target enzyme; these findings may be helpful in the rational design of other multiple phosphate-containing probes targeting intracellular enzymes.
Collapse
Affiliation(s)
- Mitsuyasu Kawaguchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Yuri Furuse
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Naoya Ieda
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| |
Collapse
|
20
|
From Immunotoxins to Suicide Toxin Delivery Approaches: Is There a Clinical Opportunity? Toxins (Basel) 2022; 14:toxins14090579. [PMID: 36136517 PMCID: PMC9506092 DOI: 10.3390/toxins14090579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Suicide gene therapy is a relatively novel form of cancer therapy in which a gene coding for enzymes or protein toxins is delivered through targeting systems such as vesicles, nanoparticles, peptide or lipidic co-adjuvants. The use of toxin genes is particularly interesting since their catalytic activity can induce cell death, damaging in most cases the translation machinery (ribosomes or protein factors involved in protein synthesis) of quiescent or proliferating cells. Thus, toxin gene delivery appears to be a promising tool in fighting cancer. In this review we will give an overview, describing some of the bacterial and plant enzymes studied so far for their delivery and controlled expression in tumor models.
Collapse
|
21
|
AlHumaidi RB, Fayed B, Shakartalla SB, Jagal J, Jayakumar MN, Al Shareef ZM, Sharif SI, Noreddin A, Semreen MH, Omar HM, Haider M, Soliman SS. Optimum inhibition of MCF-7 breast cancer cells by efficient targeting of the macropinocytosis using optimized paclitaxel-loaded nanoparticles. Life Sci 2022; 305:120778. [DOI: 10.1016/j.lfs.2022.120778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 12/23/2022]
|
22
|
Khosravi N, Pishavar E, Baradaran B, Oroojalian F, Mokhtarzadeh A. Stem cell membrane, stem cell-derived exosomes and hybrid stem cell camouflaged nanoparticles: A promising biomimetic nanoplatforms for cancer theranostics. J Control Release 2022; 348:706-722. [PMID: 35732250 DOI: 10.1016/j.jconrel.2022.06.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023]
Abstract
Nanomedicine research has advanced dramatically in recent decades. Nonetheless, traditional nanomedicine faces significant obstacles such as the low concentration of the drug at target sites and accelerated removal of the drug from blood circulation. Various techniques of nanotechnology, including cell membrane coating, have been developed to address these challenges and to improve targeted distribution and redcue cell membrane-mediated immunogenicity. Recently, stem cell (SC) membranes, owing to their immunosuppressive and regenerative properties, have grabbed attention as attractive therapeutic carriers for targeting specific tissues or organs. Bioengineering strategies that combine synthetic nanoparticles (NPs) with SC membranes, because of their homing potential and tumor tropism, have recently received a lot of publicity. Several laboratory experiments and clinical trials have indicated that the benefits of SC-based technologies are mostly related to the effects of SC-derived exosomes (SC-Exos). Exosomes are known as nano-sized extracellular vehicles (EVs) that deliver particular bioactive molecules for cell-to-cell communication. In this regard, SC-derived exosome membranes have recently been employed to improve the therapeutic capability of engineered drug delivery vehicles. Most recently, for further enhancing NPs' functionality, a new coating approach has been offered that combines membranes from two separate cells. These hybrid membrane delivery vehicles have paved the way for the development of biocompatible, high-efficiency, biomimetic NPs with varying hybrid capabilities that can overcome the drawbacks of present NP-based treatment techniques. This review explores stem cell membranes, SC-Exos, and hybrid SC-camouflaged NPs preparation methods and their importance in cancer therapy.
Collapse
Affiliation(s)
- Neda Khosravi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Pishavar
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Somiya M, Kuroda S. Engineering of Extracellular Vesicles for Small Molecule-Regulated Cargo Loading and Cytoplasmic Delivery of Bioactive Proteins. Mol Pharm 2022; 19:2495-2505. [PMID: 35594496 DOI: 10.1021/acs.molpharmaceut.2c00192] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytoplasmic delivery of functional proteins into target cells remains challenging for many biological agents to exert their therapeutic effects. Extracellular vesicles (EVs) are expected to be a promising platform for protein delivery; however, efficient loading of proteins of interest (POIs) into EVs remains elusive. In this study, we utilized small compound-induced heterodimerization between FK506 binding protein (FKBP) and FKBP12-rapamycin-binding (FRB) domain to sort bioactive proteins into EVs using the FRB-FKBP system. When CD81, a typical EV marker protein, and POI were fused with FKBP and FRB, respectively, rapamycin induced the binding of these proteins through the FKBP-FRB interaction and recruited the POIs into EVs. The released EVs, displaying the virus-derived membrane fusion protein, delivered the POI cargo into recipient cells and their functionality in the recipient cells was confirmed. Furthermore, we demonstrated that CD81 could be replaced with other EV-enriched proteins, such as CD63 or HIV Gag. Thus, the FRB-FKBP system enables the delivery of functional proteins and paves the way for EV-based protein delivery platforms.
Collapse
Affiliation(s)
- Masaharu Somiya
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Shun'ichi Kuroda
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
24
|
Nakagawa Y, Arafiles JVV, Kawaguchi Y, Nakase I, Hirose H, Futaki S. Stearylated Macropinocytosis-Inducing Peptides Facilitating the Cellular Uptake of Small Extracellular Vesicles. Bioconjug Chem 2022; 33:869-880. [PMID: 35506582 DOI: 10.1021/acs.bioconjchem.2c00113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Macropinocytosis is a form of endocytosis that allows massive uptake of extracellular materials and is a promising route for intracellular delivery of biofunctional macromolecules and nanoparticles. Our laboratory developed a potent macropinocytosis-inducing peptide named P4A. However, the ability of this peptide is not apparent in the presence of serum. This study aims to endow P4A and related peptides with the ability to induce macropinocytosis in the presence of serum by N-terminal acylation with long-chain fatty acids (i.e., decanoic, myristic, and stearic acids). Stearylated P4A (stearyl-P4A) had the highest effect on stimulating macropinocytotic uptake. Moreover, the intramolecularly disulfide-bridged analogue, stearyl-oxP4A, showed an even higher ability. The effect of stearyl-oxP4A to facilitate the intracellular delivery of small extracellular vesicles (sEVs) was evaluated in terms of (i) cellular uptake using sEVs labeled with an enhanced green fluorescent protein (EGFP) and (ii) cytosolic liberation and expression of sEV-encapsulated luciferase mRNA in recipient cells. The two- to threefold uptake of both sEVs in the presence of stearyl-oxP4A suggests the potential of the peptide for sEV delivery in the presence of serum.
Collapse
Affiliation(s)
- Yuna Nakagawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | - Yoshimasa Kawaguchi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Ikuhiko Nakase
- Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan.,NanoSquare Research Institute, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
25
|
Hirase S, Aoki A, Hattori Y, Morimoto K, Noguchi K, Fujii I, Takatani-Nakase T, Futaki S, Kirihata M, Nakase I. Dodecaborate-Encapsulated Extracellular Vesicles with Modification of Cell-Penetrating Peptides for Enhancing Macropinocytotic Cellular Uptake and Biological Activity in Boron Neutron Capture Therapy. Mol Pharm 2022; 19:1135-1145. [PMID: 35298163 DOI: 10.1021/acs.molpharmaceut.1c00882] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Boron neutron capture therapy (BNCT) is a radiation therapy for cancer. In BNCT, the internalization of boron-10 atoms by cancer cells induces cell death through the generation of α particles and recoiling lithium-7 nuclei when irradiated with low-energy thermal neutrons. In this study, we aimed to construct exosomes [extracellular vesicles (EVs)]-based drug delivery technology in BNCT. Because of their pharmaceutical advantages, such as controlled immune responses and effective usage of cell-to-cell communication, EVs are potential next-generation drug delivery carriers. In this study, we successfully developed polyhedral borane anion-encapsulated EVs with modification of hexadeca oligoarginine, which is a cell-penetrating peptide, on the EV membrane to induce the actin-dependent endocytosis pathway, macropinocytosis, which leads to efficient cellular uptake and remarkable cancer cell-killing BNCT activity. The simple and innovative technology of the EV-based delivery system with "cassette" modification of functional peptides will be applicable not only for BNCT but also for a wide variety of therapeutic methodologies.
Collapse
Affiliation(s)
- Shiori Hirase
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.,NanoSquare Research Institute, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Ayako Aoki
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.,NanoSquare Research Institute, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Yoshihide Hattori
- Research Center for BNCT, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Kenta Morimoto
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.,NanoSquare Research Institute, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Kosuke Noguchi
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.,NanoSquare Research Institute, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Ikuo Fujii
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Tomoka Takatani-Nakase
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179, Japan.,Institute for Bioscience, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Mitsunori Kirihata
- Research Center for BNCT, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Ikuhiko Nakase
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.,NanoSquare Research Institute, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| |
Collapse
|
26
|
Saporin as a Commercial Reagent: Its Uses and Unexpected Impacts in the Biological Sciences—Tools from the Plant Kingdom. Toxins (Basel) 2022; 14:toxins14030184. [PMID: 35324681 PMCID: PMC8952126 DOI: 10.3390/toxins14030184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 02/02/2023] Open
Abstract
Saporin is a ribosome-inactivating protein that can cause inhibition of protein synthesis and causes cell death when delivered inside a cell. Development of commercial Saporin results in a technology termed ‘molecular surgery’, with Saporin as the scalpel. Its low toxicity (it has no efficient method of cell entry) and sturdy structure make Saporin a safe and simple molecule for many purposes. The most popular applications use experimental molecules that deliver Saporin via an add-on targeting molecule. These add-ons come in several forms: peptides, protein ligands, antibodies, even DNA fragments that mimic cell-binding ligands. Cells that do not express the targeted cell surface marker will not be affected. This review will highlight some newer efforts and discuss significant and unexpected impacts on science that molecular surgery has yielded over the last almost four decades. There are remarkable changes in fields such as the Neurosciences with models for Alzheimer’s Disease and epilepsy, and game-changing effects in the study of pain and itch. Many other uses are also discussed to record the wide-reaching impact of Saporin in research and drug development.
Collapse
|
27
|
Exosomes in the Pathogenesis, Progression, and Treatment of Osteoarthritis. Bioengineering (Basel) 2022; 9:bioengineering9030099. [PMID: 35324788 PMCID: PMC8945849 DOI: 10.3390/bioengineering9030099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is a prevalent and debilitating age-related joint disease characterized by articular cartilage degeneration, synovial membrane inflammation, osteophyte formation, as well as subchondral bone sclerosis. OA drugs at present are mainly palliative and do not halt or reverse disease progression. Currently, no disease-modifying OA drugs (DMOADs) are available and total joint arthroplasty remains a last resort. Therefore, there is an urgent need for the development of efficacious treatments for OA management. Among all novel pharmaco-therapeutical options, exosome-based therapeutic strategies are highly promising. Exosome cargoes, which include proteins, lipids, cytokines, and various RNA subtypes, are potentially capable of regulating intercellular communications and gene expression in target cells and tissues involved in OA development. With extensive research in recent years, exosomes in OA studies are no longer limited to classic, mesenchymal stem cell (MSC)-derived vesicles. New origins, structures, and functions of exosomes are constantly being discovered and investigated. This review systematically summarizes the non-classic origins, biosynthesis, and extraction of exosomes, describes modification and delivery techniques, explores their role in OA pathogenesis and progression, and discusses their therapeutic potential and hurdles to overcome in OA treatment.
Collapse
|
28
|
Kanada M, Linenfelser L, Cox E, Gilad AA. A Dual-Reporter Platform for Screening Tumor-Targeted Extracellular Vesicles. Pharmaceutics 2022; 14:475. [PMID: 35335849 PMCID: PMC8953635 DOI: 10.3390/pharmaceutics14030475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 12/10/2022] Open
Abstract
Extracellular vesicle (EV)-mediated transfer of biomolecules plays an essential role in intercellular communication and may improve targeted drug delivery. In the past decade, various approaches to EV surface modification for targeting specific cells or tissues have been proposed, including genetic engineering of parental cells or postproduction EV engineering. However, due to technical limitations, targeting moieties of engineered EVs have not been thoroughly characterized. Here, we report the bioluminescence resonance energy transfer (BRET) EV reporter, PalmReNL-based dual-reporter platform for characterizing the cellular uptake of tumor-homing peptide (THP)-engineered EVs, targeting PDL1, uPAR, or EGFR proteins expressed in MDA-MB-231 breast cancer cells, simultaneously by bioluminescence measurement and fluorescence microscopy. Bioluminescence analysis of cellular EV uptake revealed the highest binding efficiency of uPAR-targeted EVs, whereas PDL1-targeted EVs showed slower cellular uptake. EVs engineered with two known EGFR-binding peptides via lipid nanoprobes did not increase cellular uptake, indicating that designs of EGFR-binding peptide conjugation to the EV surface are critical for functional EV engineering. Fluorescence analysis of cellular EV uptake allowed us to track individual PalmReNL-EVs bearing THPs in recipient cells. These results demonstrate that the PalmReNL-based EV assay platform can be a foundation for high-throughput screening of tumor-targeted EVs.
Collapse
Affiliation(s)
- Masamitsu Kanada
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (L.L.); (E.C.)
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Lauren Linenfelser
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (L.L.); (E.C.)
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - Elyssa Cox
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (L.L.); (E.C.)
| | - Assaf A. Gilad
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (L.L.); (E.C.)
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI 48824, USA
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
29
|
Komatsu S, Imamura T, Kiuchi J, Takashima Y, Kamiya H, Ohashi T, Konishi H, Shiozaki A, Kubota T, Okamoto K, Otsuji E. Depletion of tumor suppressor miRNA-148a in plasma relates to tumor progression and poor outcomes in gastric cancer. Am J Cancer Res 2021; 11:6133-6146. [PMID: 35018247 PMCID: PMC8727801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/28/2021] [Indexed: 06/14/2023] Open
Abstract
Recent studies identified that low levels of tumor suppressor microRNAs in plasma/serum relate to tumor progression and poor outcomes in cancers. This study explored decreased tumor suppressor microRNA (miRNA) plasma levels in gastric cancer (GC) patients to clarify their potential as novel biomarkers and therapeutic targets. We focused on five candidates (miR-148a, miR-101, miR-129, miR-145 and miR-206) of tumor suppressor miRNAs in GC by a systematic review of NCBI database. Of these, miR-148a levels were significantly down-regulated in plasma of GC patients compared to healthy volunteers by test- and validation-scale analyses (P<0.0001). A Low level of plasma miR-148a was significantly associated with venous invasion, lymph node metastasis, advanced stage and peritoneal recurrence, and was an independent poor prognostic factor (P=0.0296, Hazard ratio 4.2). Overexpression of miR-148a in GC cells inhibited cell proliferation, migration, invasion and epithelial-mesenchymal transition. In vivo, the restoration and maintenance of miR-148a in plasma significantly inhibited tumor growth in mice with peritoneal metastasis (P=0.0050). In conclusions, depletion of the tumor suppressor miRNA-148a in plasma relates to tumor progression and poor outcomes. The restoration of the blood miR-148a level might be a novel nucleic acid anticancer therapy for GC.
Collapse
|
30
|
Nakase I, Takatani-Nakase T. Exosomes: Breast cancer-derived extracellular vesicles; recent key findings and technologies in disease progression, diagnostics, and cancer targeting. Drug Metab Pharmacokinet 2021; 42:100435. [PMID: 34922046 DOI: 10.1016/j.dmpk.2021.100435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023]
Abstract
Breast cancer is one of the most frequently diagnosed types of cancer in women. Metastasis, particularly to the lungs and brain, increases mortality in breast cancer patients. Recently, breast cancer-related exosomes have received significant attention because of their key role in breast cancer progression. As a result, numerous exosome-based therapeutic tools for diagnosis and treatment have been developed, and their biological and chemical mechanisms have been explored. This review summarizes up-to-date advanced key findings and technologies in breast cancer progression, diagnostics, and targeting. We focused on recent research on the basic biology of exosomes and disease-related exosomal genes and proteins, as well as their signal transduction in cell-to-cell communications, diagnostic markers, and exosome-based antibreast cancer technologies. We also paid special attention to technologies employing exosomes modified with functional peptides for the targeted delivery of therapeutic and diagnostic agents.
Collapse
Affiliation(s)
- Ikuhiko Nakase
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
| | - Tomoka Takatani-Nakase
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo, 663-8179, Japan; Institute for Bioscience, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo, 663-8179, Japan.
| |
Collapse
|
31
|
Shang X, Böker KO, Taheri S, Lehmann W, Schilling AF. Extracellular Vesicles Allow Epigenetic Mechanotransduction between Chondrocytes and Osteoblasts. Int J Mol Sci 2021; 22:ijms222413282. [PMID: 34948080 PMCID: PMC8703680 DOI: 10.3390/ijms222413282] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs (miRNAs) can be transported in extracellular vesicles (EVs) and are qualified as possible messengers for cell–cell communication. In the context of osteoarthritis (OA), miR-221-3p has been shown to have a mechanosensitive and a paracrine function inside cartilage. However, the question remains if EVs with miR-221-3p can act as molecular mechanotransducers between cells of different tissues. Here, we studied the effect of EV-mediated transport in the communication between chondrocytes and osteoblasts in vitro in a rat model. In silico analysis (Targetscan, miRWalk, miRDB) revealed putative targets of miRNA-221-3p (CDKN1B/p27, TIMP-3, Tcf7l2/TCF4, ARNT). Indeed, transfection of miRNA-221-3p in chondrocytes and osteoblasts resulted in regulation of these targets. Coculture experiments of transfected chondrocytes with untransfected osteoblasts not only showed regulation of these target genes in osteoblasts but also inhibition of their bone formation capacity. Direct treatment with chondrocyte-derived EVs validated that chondrocyte-produced extracellular miR-221-3p was responsible for this effect. Altogether, our study provides a novel perspective on a possible communication pathway of a mechanically induced epigenetic signal through EVs. This may be important for processes at the interface of bone and cartilage, such as OA development, physiologic joint homeostasis, growth or fracture healing, as well as for other tissue interfaces with differing biomechanical properties.
Collapse
|
32
|
Han C, Yang J, Sun J, Qin G. Extracellular vesicles in cardiovascular disease: Biological functions and therapeutic implications. Pharmacol Ther 2021; 233:108025. [PMID: 34687770 PMCID: PMC9018895 DOI: 10.1016/j.pharmthera.2021.108025] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/15/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, are lipid bilayer particles naturally released from the cell. While exosomes are formed as intraluminal vesicles (ILVs) of the multivesicular endosomes (MVEs) and released to extracellular space upon MVE-plasma membrane fusion, microvesicles are generated through direct outward budding of the plasma membrane. Exosomes and microvesicles have same membrane orientation, different yet overlapping sizes; their cargo contents are selectively packed and dependent on the source cell type and functional state. Both exosomes and microvesicles can transfer bioactive RNAs, proteins, lipids, and metabolites from donor to recipient cells and influence the biological properties of the latter. Over the last decade, their potential roles as effective inter-tissue communicators in cardiovascular physiology and pathology have been increasingly appreciated. In addition, EVs are attractive sources of biomarkers for the diagnosis and prognosis of diseases, because they acquire their complex cargoes through cellular processes intimately linked to disease pathogenesis. Furthermore, EVs obtained from various stem/progenitor cell populations have been tested as cell-free therapy in various preclinical models of cardiovascular diseases and demonstrate unequivocally encouraging benefits. Here we summarize the findings from recent research on the biological functions of EVs in the ischemic heart disease and heart failure, and their potential as novel diagnostic biomarkers and therapeutic opportunities.
Collapse
Affiliation(s)
- Chaoshan Han
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL 35294, USA
| | - Junjie Yang
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL 35294, USA
| | - Jiacheng Sun
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL 35294, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL 35294, USA.
| |
Collapse
|
33
|
Vergani E, Daveri E, Vallacchi V, Bergamaschi L, Lalli L, Castelli C, Rodolfo M, Rivoltini L, Huber V. Extracellular vesicles in anti-tumor immunity. Semin Cancer Biol 2021; 86:64-79. [PMID: 34509614 DOI: 10.1016/j.semcancer.2021.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022]
Abstract
To what extent extracellular vesicles (EVs) can impact anti-tumor immune responses has only started to get unraveled. Their nanometer dimensions, their growing number of subtypes together with the difficulties in defining their origin hamper their investigation. The existence of tumor cell lines facilitated advance in cancer EV understanding, while capturing information about phenotypes and functions of immune cell EVs in this context is more complex. The advent of immunotherapy with immune checkpoint inhibitors has further deepened the need to dissect the impact of EVs during immune activation and response, not least to contribute unraveling and preventing the generation of resistance occurring in the majority of patients. Here we discuss the factors that influence anddrive the immune response in cancer patients in the context of cancer therapeutics and the roles or possible functions that EVs can have in this scenario. With immune cell-derived EVs as leitmotiv, we will journey from EV discovery and subtypes through physiological and pathological functions, from similarities with tumor EVs to measures to revert detrimental consequences on immune responses to cancer.
Collapse
Affiliation(s)
- Elisabetta Vergani
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Elena Daveri
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Viviana Vallacchi
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Laura Bergamaschi
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Luca Lalli
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Chiara Castelli
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Monica Rodolfo
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Licia Rivoltini
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Veronica Huber
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy.
| |
Collapse
|
34
|
Noguchi K, Obuki M, Sumi H, Klußmann M, Morimoto K, Nakai S, Hashimoto T, Fujiwara D, Fujii I, Yuba E, Takatani-Nakase T, Neundorf I, Nakase I. Macropinocytosis-Inducible Extracellular Vesicles Modified with Antimicrobial Protein CAP18-Derived Cell-Penetrating Peptides for Efficient Intracellular Delivery. Mol Pharm 2021; 18:3290-3301. [PMID: 34365796 DOI: 10.1021/acs.molpharmaceut.1c00244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The antimicrobial protein CAP18 (approximate molecular weight: 18 000), which was first isolated from rabbit granulocytes, comprises a C-terminal fragment that has negatively charged lipopolysaccharide binding activity. In this study, we found that CAP18 (106-121)-derived (sC18)2 peptides have macropinocytosis-inducible biological functions. In addition, we found that these peptides are highly applicable for use as extracellular vesicle (exosomes, EV)-based intracellular delivery, which is expected to be a next-generation drug delivery carrier. Here, we demonstrate that dimerized (sC18)2 peptides can be easily introduced on EV membranes when modified with a hydrophobic moiety, and that they show high potential for enhanced cellular uptake of EVs. By glycosaminoglycan-dependent induction of macropinocytosis, cellular EV uptake in targeted cells was strongly increased by the peptide modification made to EVs, and intriguingly, our herein presented technique is efficiently applicable for the cytosolic delivery of the biologically cell-killing functional toxin protein, saporin, which was artificially encapsulated in the EVs by electroporation, suggesting a useful technique for EV-based intracellular delivery of biofunctional molecules.
Collapse
Affiliation(s)
- Kosuke Noguchi
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Momoko Obuki
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Haruka Sumi
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Merlin Klußmann
- Department of Chemistry, Biochemistry, University of Cologne, Zülpicher Strasse 47a, D-50674 Cologne, Germany
| | - Kenta Morimoto
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shinya Nakai
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Takuya Hashimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Daisuke Fujiwara
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Ikuo Fujii
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Tomoka Takatani-Nakase
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179, Japan.,Institute for Bioscience, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179, Japan
| | - Ines Neundorf
- Department of Chemistry, Biochemistry, University of Cologne, Zülpicher Strasse 47a, D-50674 Cologne, Germany
| | - Ikuhiko Nakase
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.,NanoSquare Research Institute, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| |
Collapse
|
35
|
Rankin-Turner S, Vader P, O'Driscoll L, Giebel B, Heaney LM, Davies OG. A call for the standardised reporting of factors affecting the exogenous loading of extracellular vesicles with therapeutic cargos. Adv Drug Deliv Rev 2021; 173:479-491. [PMID: 33862168 PMCID: PMC8191593 DOI: 10.1016/j.addr.2021.04.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) are complex nanoparticles required for the intercellular transfer of diverse biological cargoes. Unlike synthetic nanoparticles, EVs may provide a natural platform for the enhanced targeting and functional transfer of therapeutics across complex and often impenetrable biological boundaries (e.g. the blood-brain barrier or the matrix of densely organised tumours). Consequently, there is considerable interest in utilising EVs as advanced drug delivery systems for the treatment of a range of challenging pathologies. Within the past decade, efforts have focused on providing standard minimal requirements for conducting basic EV research. However, no standard reporting framework has been established governing the therapeutic loading of EVs for drug delivery applications. The purpose of this review is to critically evaluate progress in the field, providing an initial set of guidelines that can be applied as a benchmark to enhance reproducibility and increase the likelihood of translational outcomes.
Collapse
Affiliation(s)
- Stephanie Rankin-Turner
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| | - Pieter Vader
- CDL Research, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Department of Experimental Cardiology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstraβe 179, 45147 Essen, Germany
| | - Liam M Heaney
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| | - Owen G Davies
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK.
| |
Collapse
|
36
|
Desale K, Kuche K, Jain S. Cell-penetrating peptides (CPPs): an overview of applications for improving the potential of nanotherapeutics. Biomater Sci 2021; 9:1153-1188. [PMID: 33355322 DOI: 10.1039/d0bm01755h] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the field of nanotherapeutics, gaining cellular entry into the cytoplasm of the target cell continues to be an ultimate challenge. There are many physicochemical factors such as charge, size and molecular weight of the molecules and delivery vehicles, which restrict their cellular entry. Hence, to dodge such situations, a class of short peptides called cell-penetrating peptides (CPPs) was brought into use. CPPs can effectively interact with the cell membrane and can assist in achieving the desired intracellular entry. Such strategy is majorly employed in the field of cancer therapy and diagnosis, but now it is also used for other purposes such as evaluation of atherosclerotic plaques, determination of thrombin levels and HIV therapy. Thus, the current review expounds on each of these mentioned aspects. Further, the review briefly summarizes the basic know-how of CPPs, their utility as therapeutic molecules, their use in cancer therapy, tumor imaging and their assistance to nanocarriers in improving their membrane penetrability. The review also discusses the challenges faced with CPPs pertaining to their stability and also mentions the strategies to overcome them. Thus, in a nutshell, this review will assist in understanding how CPPs can present novel possibilities for resolving the conventional issues faced with the present-day nanotherapeutics.
Collapse
Affiliation(s)
- Kalyani Desale
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India.
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India.
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India.
| |
Collapse
|
37
|
Ida H, Takahashi Y, Kumatani A, Shiku H, Murayama T, Hirose H, Futaki S, Matsue T. Nanoscale Visualization of Morphological Alteration of Live-Cell Membranes by the Interaction with Oligoarginine Cell-Penetrating Peptides. Anal Chem 2021; 93:5383-5393. [PMID: 33769789 DOI: 10.1021/acs.analchem.0c04097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The interactions between the cell membrane and biomolecules remain poorly understood. For example, arginine-rich cell-penetrating peptides (CPPs), including octaarginines (R8), are internalized by interactions with cell membranes. However, during the internalization process, the exact membrane dynamics introduced by these CPPs are still unknown. Here, we visualize arginine-rich CPPs and cell-membrane interaction-induced morphological changes using a system that combines scanning ion-conductance microscopy and spinning-disk confocal microscopy, using fluorescently labeled R8. This system allows time-dependent, nanoscale visualization of structural dynamics in live-cell membranes. Various types of membrane remodeling caused by arginine-rich CPPs are thus observed. The induction of membrane ruffling and the cup closure are observed as a process of endocytic uptake of the peptide. Alternatively suggested is the concave structural formation accompanied by direct peptide translocation through cell membranes. Studies using R8 without fluorescent labeling also demonstrate a non-negligible effect of the fluorescent moiety on membrane structural alteration.
Collapse
Affiliation(s)
- Hiroki Ida
- The Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.,Precursory Research for Embryonic Science and Technology, Science and Technology Agency (JST), Saitama 332-0012, Japan.,Advanced Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577, Japan.,Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Yasufumi Takahashi
- Precursory Research for Embryonic Science and Technology, Science and Technology Agency (JST), Saitama 332-0012, Japan.,WPI Nano Life Science Institute (WPI NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Akichika Kumatani
- Advanced Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577, Japan.,Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan.,International Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan.,Center for Science and Innovation in Spintronics (CSIS), Tohoku University, Sendai, Miyagi 980-8577 Japan
| | - Hitoshi Shiku
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Tomo Murayama
- Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
| | - Tomokazu Matsue
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
38
|
Xu H, Liao C, Liang S, Ye BC. A Novel Peptide-Equipped Exosomes Platform for Delivery of Antisense Oligonucleotides. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10760-10767. [PMID: 33621039 DOI: 10.1021/acsami.1c00016] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Exosomes are natural delivery vehicles because of their original feature such as low immunogenicity, excellent biocompatibility, and migration capability. Engineering exosomes with appropriate ligands are effective approaches to improve the low cellular uptake efficiency of exosomes. However, current strategies face considerable challenges due to the tedious and labor-intensive operational process. Here, we designed a novel peptides-equipped exosomes platform which can be assembled under convenient and mild reaction condition. Cell-penetrating peptides (CPPs) was conjugated on HepG2 cells-derived exosomes surface which can not only enhance the penetrating capacity of exosomes but also assist exosomes in loading antisense oligonucleotides (ASOs). The cellular uptake mechanism was investigated and we compared the difference between natural exosomes and modified exosomes. The resulting nanosystem demonstrated a preferential tropism for cells that are parented to their source tumor cells and could remarkably increase the cellular delivery of G3139 with efficient downregulation of antiapoptotic Bcl-2. This work developed a rapid strategy for intracellular delivery of nucleic acids, thus providing more possibilities toward personalized cancer medicine.
Collapse
Affiliation(s)
- Huiying Xu
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chong Liao
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shifu Liang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bang-Ce Ye
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, 832000, China
| |
Collapse
|
39
|
Nakase I, Ueno N, Matsuzawa M, Noguchi K, Hirano M, Omura M, Takenaka T, Sugiyama A, Bailey Kobayashi N, Hashimoto T, Takatani-Nakase T, Yuba E, Fujii I, Futaki S, Yoshida T. Environmental pH stress influences cellular secretion and uptake of extracellular vesicles. FEBS Open Bio 2021; 11:753-767. [PMID: 33533170 PMCID: PMC7931216 DOI: 10.1002/2211-5463.13107] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/30/2020] [Accepted: 02/01/2021] [Indexed: 11/30/2022] Open
Abstract
Exosomes (extracellular vesicles/EVs) participate in cell–cell communication and contain bioactive molecules, such as microRNAs. However, the detailed characteristics of secreted EVs produced by cells grown under low pH conditions are still unknown. Here, we report that low pH in the cell culture medium significantly affected the secretion of EVs with increased protein content and zeta potential. The intracellular expression level and location of stably expressed GFP‐fused CD63 (an EV tetraspanin) in HeLa cells were also significantly affected by environmental pH. In addition, increased cellular uptake of EVs was observed. Moreover, the uptake rate was influenced by the presence of serum in the cell culture medium. Our findings contribute to our understanding of the effect of environmental conditions on EV‐based cell–cell communication.
Collapse
Affiliation(s)
- Ikuhiko Nakase
- Graduate School of Science, Osaka Prefecture University, Sakai, Japan.,NanoSquare Research Institute, Osaka Prefecture University, Sakai, Japan
| | - Natsumi Ueno
- Graduate School of Science, Osaka Prefecture University, Sakai, Japan.,NanoSquare Research Institute, Osaka Prefecture University, Sakai, Japan
| | - Mie Matsuzawa
- NanoSquare Research Institute, Osaka Prefecture University, Sakai, Japan
| | - Kosuke Noguchi
- Graduate School of Science, Osaka Prefecture University, Sakai, Japan.,NanoSquare Research Institute, Osaka Prefecture University, Sakai, Japan
| | - Mami Hirano
- Graduate School of Science, Osaka Prefecture University, Sakai, Japan.,NanoSquare Research Institute, Osaka Prefecture University, Sakai, Japan
| | - Mika Omura
- Graduate School of Science, Osaka Prefecture University, Sakai, Japan.,NanoSquare Research Institute, Osaka Prefecture University, Sakai, Japan
| | - Tomoya Takenaka
- Graduate School of Science, Osaka Prefecture University, Sakai, Japan.,NanoSquare Research Institute, Osaka Prefecture University, Sakai, Japan
| | - Ayaka Sugiyama
- Graduate School of Science, Osaka Prefecture University, Sakai, Japan.,NanoSquare Research Institute, Osaka Prefecture University, Sakai, Japan
| | - Nahoko Bailey Kobayashi
- Keio University School of Medicine, Tsukuba, Japan.,Institute for Advanced Sciences, Toagosei Co., Ltd, Tsukuba, Japan
| | - Takuya Hashimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai-shi, Japan
| | - Tomoka Takatani-Nakase
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan.,Institute for Bioscience, Mukogawa Women's University, Nishinomiya, Japan
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai-shi, Japan
| | - Ikuo Fujii
- Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Tetsuhiko Yoshida
- Keio University School of Medicine, Tsukuba, Japan.,Institute for Advanced Sciences, Toagosei Co., Ltd, Tsukuba, Japan
| |
Collapse
|
40
|
Pham TC, Jayasinghe MK, Pham TT, Yang Y, Wei L, Usman WM, Chen H, Pirisinu M, Gong J, Kim S, Peng B, Wang W, Chan C, Ma V, Nguyen NT, Kappei D, Nguyen X, Cho WC, Shi J, Le MT. Covalent conjugation of extracellular vesicles with peptides and nanobodies for targeted therapeutic delivery. J Extracell Vesicles 2021; 10:e12057. [PMID: 33643546 PMCID: PMC7886705 DOI: 10.1002/jev2.12057] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/16/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
Natural extracellular vesicles (EVs) are ideal drug carriers due to their remarkable biocompatibility. Their delivery specificity can be achieved by the conjugation of targeting ligands. However, existing methods to engineer target-specific EVs are tedious or inefficient, having to compromise between harsh chemical treatments and transient interactions. Here, we describe a novel method for the covalent conjugation of EVs with high copy numbers of targeting moieties using protein ligases. Conjugation of EVs with either an epidermal growth factor receptor (EGFR)-targeting peptide or anti-EGFR nanobody facilitates their accumulation in EGFR-positive cancer cells, both in vitro and in vivo. Systemic delivery of paclitaxel by EGFR-targeting EVs at a low dose significantly increases drug efficacy in a xenografted mouse model of EGFR-positive lung cancer. The method is also applicable to the conjugation of EVs with peptides and nanobodies targeting other receptors, such as HER2 and SIRP alpha, and the conjugated EVs can deliver RNA in addition to small molecules, supporting the versatile application of EVs in cancer therapies. This simple, yet efficient and versatile method for the stable surface modification of EVs bypasses the need for genetic and chemical modifications, thus facilitating safe and specific delivery of therapeutic payloads to target cells.
Collapse
Affiliation(s)
- Tin Chanh Pham
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Department of Biomedical SciencesCollege of Veterinary Medicine and Life SciencesCity University of Hong KongHong Kong
| | - Migara Kavishka Jayasinghe
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Department of Biomedical SciencesCollege of Veterinary Medicine and Life SciencesCity University of Hong KongHong Kong
- Institute for Digital MedicineImmunology Programme and Cancer ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingapore
- N.1 Institute for HealthNational University of SingaporeSingapore
| | - Thach Tuan Pham
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Department of Biomedical SciencesCollege of Veterinary Medicine and Life SciencesCity University of Hong KongHong Kong
- Institute for Digital MedicineImmunology Programme and Cancer ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingapore
- N.1 Institute for HealthNational University of SingaporeSingapore
| | - Yuqi Yang
- Department of Biomedical SciencesCollege of Veterinary Medicine and Life SciencesCity University of Hong KongHong Kong
| | - Likun Wei
- Department of Biomedical SciencesCollege of Veterinary Medicine and Life SciencesCity University of Hong KongHong Kong
- City University of Hong Kong Shenzhen InstituteShenzhenChina
| | - Waqas Muhammad Usman
- Department of Biomedical SciencesCollege of Veterinary Medicine and Life SciencesCity University of Hong KongHong Kong
| | - Huan Chen
- Department of Biomedical SciencesCollege of Veterinary Medicine and Life SciencesCity University of Hong KongHong Kong
| | - Marco Pirisinu
- Department of Biomedical SciencesCollege of Veterinary Medicine and Life SciencesCity University of Hong KongHong Kong
| | - Jinhua Gong
- Department of Biomedical SciencesCollege of Veterinary Medicine and Life SciencesCity University of Hong KongHong Kong
- City University of Hong Kong Shenzhen InstituteShenzhenChina
| | - Seongkyeol Kim
- Department of Biomedical SciencesCollege of Veterinary Medicine and Life SciencesCity University of Hong KongHong Kong
| | - Boya Peng
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Institute for Digital MedicineImmunology Programme and Cancer ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingapore
- N.1 Institute for HealthNational University of SingaporeSingapore
| | - Weixi Wang
- Department of Biomedical SciencesCollege of Veterinary Medicine and Life SciencesCity University of Hong KongHong Kong
- City University of Hong Kong Shenzhen InstituteShenzhenChina
| | - Charlene Chan
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Victor Ma
- Department of Clinical OncologyQueen Elizabeth HospitalHong Kong
| | - Nhung T.H. Nguyen
- Vinmec Institute of Applied Science and Regenerative Medicineand College of Health SciencesVinmec Healthcare systemVin UniversityHanoiVietnam
| | - Dennis Kappei
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Xuan‐Hung Nguyen
- Vinmec Institute of Applied Science and Regenerative Medicineand College of Health SciencesVinmec Healthcare systemVin UniversityHanoiVietnam
| | - William C. Cho
- Department of Clinical OncologyQueen Elizabeth HospitalHong Kong
| | - Jiahai Shi
- Department of Biomedical SciencesCollege of Veterinary Medicine and Life SciencesCity University of Hong KongHong Kong
- City University of Hong Kong Shenzhen InstituteShenzhenChina
| | - Minh T.N. Le
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Institute for Digital MedicineImmunology Programme and Cancer ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingapore
- N.1 Institute for HealthNational University of SingaporeSingapore
| |
Collapse
|
41
|
Biofunctional Peptide-Modified Extracellular Vesicles Enable Effective Intracellular Delivery via the Induction of Macropinocytosis. Processes (Basel) 2021. [DOI: 10.3390/pr9020224] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We previously reported that macropinocytosis (accompanied by actin reorganization, ruffling of the plasma membrane, and engulfment of large volumes of extracellular fluid) is an important process for the cellular uptake of extracellular vesicles, exosomes. Accordingly, we developed techniques to induce macropinocytosis by the modification of biofunctional peptides on exosomal membranes, thereby enhancing their cellular uptake. Arginine-rich cell-penetrating peptides have been shown to induce macropinocytosis via proteoglycans; accordingly, we developed peptide-modified exosomes that could actively induce macropinocytotic uptake by cells. In addition, the activation of EGFR induces macropinocytosis; based on this knowledge, we developed artificial leucine-zipper peptide (K4)-modified exosomes. These exosomes can recognize E3 sequence-fused EGFR (E3-EGFR), leading to the clustering and activation of E3-EGFR by coiled-coil formation (E3/K4), which induces cellular exosome uptake by macropinocytosis. In addition, modification of pH-sensitive fusogenic peptides (e.g., GALA) also enhances the cytosolic release of exosomal contents. These experimental techniques and findings using biofunctional peptides have contributed to the development of exosome-based intracellular delivery systems.
Collapse
|
42
|
Pedrioli G, Paganetti P. Hijacking Endocytosis and Autophagy in Extracellular Vesicle Communication: Where the Inside Meets the Outside. Front Cell Dev Biol 2021; 8:595515. [PMID: 33490063 PMCID: PMC7817780 DOI: 10.3389/fcell.2020.595515] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/18/2020] [Indexed: 12/25/2022] Open
Abstract
Extracellular vesicles, phospholipid bilayer-membrane vesicles of cellular origin, are emerging as nanocarriers of biological information between cells. Extracellular vesicles transport virtually all biologically active macromolecules (e.g., nucleotides, lipids, and proteins), thus eliciting phenotypic changes in recipient cells. However, we only partially understand the cellular mechanisms driving the encounter of a soluble ligand transported in the lumen of extracellular vesicles with its cytosolic receptor: a step required to evoke a biologically relevant response. In this context, we review herein current evidence supporting the role of two well-described cellular transport pathways: the endocytic pathway as the main entry route for extracellular vesicles and the autophagic pathway driving lysosomal degradation of cytosolic proteins. The interplay between these pathways may result in the target engagement between an extracellular vesicle cargo protein and its cytosolic target within the acidic compartments of the cell. This mechanism of cell-to-cell communication may well own possible implications in the pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Giona Pedrioli
- Neurodegeneration Research Group, Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Torricella-Taverne, Switzerland
- Member of the International Ph.D. Program of the Biozentrum, University of Basel, Basel, Switzerland
| | - Paolo Paganetti
- Neurodegeneration Research Group, Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Torricella-Taverne, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
43
|
Lee JH, Yoon JY, Lee JH, Lee HH, Knowles JC, Kim HW. Emerging biogenesis technologies of extracellular vesicles for tissue regenerative therapeutics. J Tissue Eng 2021; 12:20417314211019015. [PMID: 34104388 PMCID: PMC8155774 DOI: 10.1177/20417314211019015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, carry the genetic packages of RNA, DNA, and proteins and are heavily involved in cell-cell communications and intracellular signalings. Therefore, EVs are spotlighted as therapeutic mediators for the treatment of injured and dysfunctional tissues as well as biomarkers for the detection of disease status and progress. Several key issues in EVs, including payload content and bioactivity, targeting and bio-imaging ability, and mass-production, need to be improved to enable effective therapeutics and clinical translation. For this, significant efforts have been made recently, including genetic modification, biomolecular and chemical treatment, application of physical/mechanical cues, and 3D cultures. Here we communicate those recent technological advances made mainly in the biogenesis process of EVs or at post-collection stages, which ultimately aimed to improve the therapeutic efficacy in tissue healing and disease curing and the possibility of clinical translation. This communication will help tissue engineers and biomaterial scientists design and produce EVs optimally for tissue regenerative therapeutics.
Collapse
Affiliation(s)
- Jung-Hwan Lee
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Chungcheongnam-do, Cheonan, Republic of
Korea
- Department of Nanobiomedical Science
& BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook
University, Chungcheongnam-do, Cheonan, Republic of Korea
- Department of Biomaterials Science,
College of Dentistry, Dankook University, Chungcheongnam-do, Cheonan, Republic of
Korea
- Department of Regenerative Dental
Medicine, College of Dentistry, Dankook University, Chungcheongnam-do, Cheonan,
Republic of Korea
- Cell & Matter Institute, Dankook
University, Chungcheongnam-do, Cheonan, South Korea
- UCL Eastman-Korea Dental Medicine
Innovation Centre, Dankook University, Chungcheongnam-do, Cheonan, Republic of
Korea
| | - Ji-Young Yoon
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Chungcheongnam-do, Cheonan, Republic of
Korea
- Department of Nanobiomedical Science
& BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook
University, Chungcheongnam-do, Cheonan, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Chungcheongnam-do, Cheonan, Republic of
Korea
- Department of Nanobiomedical Science
& BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook
University, Chungcheongnam-do, Cheonan, Republic of Korea
- Department of Regenerative Dental
Medicine, College of Dentistry, Dankook University, Chungcheongnam-do, Cheonan,
Republic of Korea
- Cell & Matter Institute, Dankook
University, Chungcheongnam-do, Cheonan, South Korea
- UCL Eastman-Korea Dental Medicine
Innovation Centre, Dankook University, Chungcheongnam-do, Cheonan, Republic of
Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Chungcheongnam-do, Cheonan, Republic of
Korea
- Department of Biomaterials Science,
College of Dentistry, Dankook University, Chungcheongnam-do, Cheonan, Republic of
Korea
- UCL Eastman-Korea Dental Medicine
Innovation Centre, Dankook University, Chungcheongnam-do, Cheonan, Republic of
Korea
| | - Jonathan C Knowles
- UCL Eastman-Korea Dental Medicine
Innovation Centre, Dankook University, Chungcheongnam-do, Cheonan, Republic of
Korea
- Division of Biomaterials and Tissue
Engineering, Eastman Dental Institute, University College London, Royal Free
Hospital, London, UK
- The Discoveries Centre for Regenerative
and Precision Medicine, Eastman Dental Institute, University College London, London,
UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Chungcheongnam-do, Cheonan, Republic of
Korea
- Department of Nanobiomedical Science
& BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook
University, Chungcheongnam-do, Cheonan, Republic of Korea
- Department of Biomaterials Science,
College of Dentistry, Dankook University, Chungcheongnam-do, Cheonan, Republic of
Korea
- Department of Regenerative Dental
Medicine, College of Dentistry, Dankook University, Chungcheongnam-do, Cheonan,
Republic of Korea
- Cell & Matter Institute, Dankook
University, Chungcheongnam-do, Cheonan, South Korea
- UCL Eastman-Korea Dental Medicine
Innovation Centre, Dankook University, Chungcheongnam-do, Cheonan, Republic of
Korea
| |
Collapse
|
44
|
Shao J, Zaro J, Shen Y. Advances in Exosome-Based Drug Delivery and Tumor Targeting: From Tissue Distribution to Intracellular Fate. Int J Nanomedicine 2020; 15:9355-9371. [PMID: 33262592 PMCID: PMC7700079 DOI: 10.2147/ijn.s281890] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Exosomes or small extracellular vesicles are considered a new generation of bioinspired-nanoscale drug delivery system (DDS). Endogenous exosomes function as signalosomes since they convey signals via ligands or adhesion molecules located on the exosomal membrane, or packaged inside the exosome. Recently, exosome membrane modification, therapeutic payloads encapsulation, and modulation of in vivo disposition of exosomes have been extensively investigated, among which significant advances have been made to optimize exosome-mediated delivery to solid tumors. Exosomes, specifically tumor cell-derived exosomes, are presumed to have tumor-preferential delivery due to the homotypic features. However, quality attributes that dictate the tissue distribution, cell type-selective uptake, and intracellular payload release of the administered exosomes, as well as the spatiotemporal information regarding exosome fate in vivo, remain to be further investigated. This review summarizes recent advances in developing exosomes as drug delivery platforms with a focus on tumor targeting. The pharmacokinetic features of naive exosomes and factors influencing their intracellular fate are summarized. Recent strategies to improve tumor targeting of exosomes are also reviewed in the context of the biological features of tumor and tumor microenvironment (TME). Selected approaches to augment tumor tissue deposition of exosomes, as well as methods to enhance intracellular payload delivery, are summarized with emphasis on the underlying mechanisms (eg, passive or active targeting, endosomal escape, etc.). In conclusion, this review highlights recently reported tumor-targeting strategies of exosome-based drug delivery, and it's in the hope that multiple approaches might be employed in a synergistic combination in the development of exosome-based cancer therapy.
Collapse
Affiliation(s)
- Juntang Shao
- Department of Pharmacology, Anhui Medical University School of Basic Medicine, Hefei230032, People’s Republic of China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, People’s Republic of China
| | - Jennica Zaro
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy, Los Angeles, CA90089-9121, USA
| | - Yuxian Shen
- Department of Pharmacology, Anhui Medical University School of Basic Medicine, Hefei230032, People’s Republic of China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, People’s Republic of China
| |
Collapse
|
45
|
de Abreu RC, Fernandes H, da Costa Martins PA, Sahoo S, Emanueli C, Ferreira L. Native and bioengineered extracellular vesicles for cardiovascular therapeutics. Nat Rev Cardiol 2020; 17:685-697. [PMID: 32483304 PMCID: PMC7874903 DOI: 10.1038/s41569-020-0389-5] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2020] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of natural particles that are relevant to the treatment of cardiovascular diseases. These endogenous vesicles have certain properties that allow them to survive in the extracellular space, bypass biological barriers and deliver their biologically active molecular cargo to recipient cells. Moreover, EVs can be bioengineered to increase their stability, bioactivity, presentation to acceptor cells and capacity for on-target binding at both cell-type-specific and tissue-specific levels. Bioengineering of EVs involves the modification of the donor cell before EV isolation or direct modification of the EV properties after isolation. The therapeutic potential of native EVs and bioengineered EVs has been only minimally explored in the context of cardiovascular diseases. Efforts to harness the therapeutic potential of EVs will require innovative approaches and a comprehensive integration of knowledge gathered from decades of research into molecular-compound delivery. In this Review, we outline the endogenous properties of EVs that make them natural delivery agents as well as the features that can be improved by bioengineering. We also discuss the therapeutic applications of native and bioengineered EVs to cardiovascular diseases and examine the opportunities and challenges that need to be addressed to advance this research area, with an emphasis on clinical translation.
Collapse
Affiliation(s)
- Ricardo Cerqueira de Abreu
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands.,Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, Netherlands.,CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Hugo Fernandes
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paula A da Costa Martins
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands.,Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, Netherlands
| | - Susmita Sahoo
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Costanza Emanueli
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Lino Ferreira
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal. .,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
46
|
Li H, Pinilla-Macua I, Ouyang Y, Sadovsky E, Kajiwara K, Sorkin A, Sadovsky Y. Internalization of trophoblastic small extracellular vesicles and detection of their miRNA cargo in P-bodies. J Extracell Vesicles 2020; 9:1812261. [PMID: 32944196 PMCID: PMC7480505 DOI: 10.1080/20013078.2020.1812261] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pregnancy is a unique situation, in which placenta-derived small extracellular vesicles (sEVs) may communicate with maternal and foetal tissues. While relevant to homoeostatic and pathological functions, the mechanisms underlying sEV entry and cargo handling in target cells remain largely unknown. Using fluorescently or luminescently labelled sEVs, derived from primary human placental trophoblasts or from a placental cell line, we interrogated the endocytic pathways used by these sEVs to enter relevant target cells, including the neighbouring primary placental fibroblasts and human uterine microvascular endothelial cells. We found that trophoblastic sEVs can enter target cells, where they retain biological activity. Importantly, using a broad series of pharmacological inhibitors and siRNA-dependent silencing approaches, we showed that trophoblastic sEVs enter target cells using macropinocytosis and clathrin-mediated endocytosis pathways, but not caveolin-dependent endocytosis. Tracking their intracellular course, we localized the sEVs to early endosomes, late endosomes, and lysosomes. Finally, we used coimmunoprecipitation to demonstrate the association of the sEV microRNA (miRNA) with the P-body proteins AGO2 and GW182. Together, our data systematically detail endocytic pathways used by placental sEVs to enter relevant fibroblastic and endothelial target cells, and provide support for “endocytic escape” of sEV miRNA to P-bodies, a key site for cytoplasmic RNA regulation.
Collapse
Affiliation(s)
- Hui Li
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Reproductive Department of Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Itziar Pinilla-Macua
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yingshi Ouyang
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elena Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kazuhiro Kajiwara
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
47
|
Huyan T, Li H, Peng H, Chen J, Yang R, Zhang W, Li Q. Extracellular Vesicles - Advanced Nanocarriers in Cancer Therapy: Progress and Achievements. Int J Nanomedicine 2020; 15:6485-6502. [PMID: 32922012 PMCID: PMC7457829 DOI: 10.2147/ijn.s238099] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are a class of cell-derived, lipid bilayer membrane composed vesicles, and some of them such as exosomes and ectosomes have been proven, playing remarkable roles in transmitting intercellular information, and being involved in each property of cell physiological activities. Nowadays, EVs are considered as potential nanocarriers which could partially resolve the problems of current chemotherapy because of their distinctive advantages. As endogenous membrane encompassed vesicles with nanosize, EVs are able to pass through the natural barriers with prolonged circulation time in vivo and have intrinsic cell targeting properties, they are less toxic, and less immunogenic. Recently, studies focusing on EV-based drug delivery system for cancer therapy have exploded dramatically. This review aims to outline the current applications of EVs as potential nanosized drug carriers in cancer therapy. Firstly, the characteristics and biofunctions of each EV subtype are described. Then the variety of therapeutic cargoes, the loading methods, and the targeting strategy of engineered EVs are emphatically introduced. Thereafter the pros and cons of EVs applied as therapeutic carriers, as well as the future prospects in this field, are discussed.
Collapse
Affiliation(s)
- Ting Huyan
- Key Laboratory for Space Biosciences and Biotechnology, Institute of Special Environment Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China.,Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Hongduo Li
- Xi'an Institute for Food and Drug Control, Xi'an 710054, People's Republic of China
| | - Hourong Peng
- Key Laboratory for Space Biosciences and Biotechnology, Institute of Special Environment Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Jinzhao Chen
- Shanxi Weiqidaguangming Pharmaceutical Co., Ltd, Datong, Shanxi Province 037301, People's Republic of China
| | - Ruixin Yang
- Xi'an Institute for Food and Drug Control, Xi'an 710054, People's Republic of China
| | - Wei Zhang
- Department of Anesthesiology, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou 450003, People's Republic of China
| | - Qi Li
- Key Laboratory for Space Biosciences and Biotechnology, Institute of Special Environment Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| |
Collapse
|
48
|
Lu M, Huang Y. Bioinspired exosome-like therapeutics and delivery nanoplatforms. Biomaterials 2020; 242:119925. [PMID: 32151860 DOI: 10.1016/j.biomaterials.2020.119925] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/09/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023]
Abstract
Exosomes have emerged as appealing candidate therapeutic agents and delivery nanoplatforms due to their endogenous features and unique biological properties. However, obstacles such as low isolation yield, considerable complexity and potential safety concerns, and inefficient drug payload substantially hamper their therapeutic applicability. To this end, developing bioinspired exosome-like nanoparticles has become a promising area to overcome certain limitations of their natural counterparts. Synthetically fabrication of exosome-like nanoparticles that harbor only crucial components of exosomes through controllable protocols strongly increases the pharmaceutical acceptability of these vesicles. Assembly of exosome-like nanovesicles derived from producer cells allows for a promising strategy for scale-up production. To improve the loading capability and delivery efficiency of exosomes, hybrid exosome-like nanovesicles and membrane-camouflaged nanoparticles towards better bridging synthetic nanocarriers with natural exosomes could be designed. Building off these observations, herein, efforts are made to give an overview of bioinspired exosome-like therapeutics and delivery nanoplatforms. We briefly recapitulate the recent advance in exosome biology with focus on tailoring exosomes as therapeutics and delivery vehicles. Furthermore, we elaborately discuss the biomimicry methodologies for preparation of exosome-like nanoparticles with special emphasis on offering insights into strategies for rational design of exosome-like biomaterials as effective and safe therapeutics and delivery nanoplatforms.
Collapse
Affiliation(s)
- Mei Lu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, PR China.
| |
Collapse
|
49
|
Shi X, Cheng Q, Zhang Y. Reprogramming extracellular vesicles with engineered proteins. Methods 2020; 177:95-102. [PMID: 31568822 DOI: 10.1016/j.ymeth.2019.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/13/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) have been emerging as a new class of cell-free therapy for the treatment of a variety of diseases, including cancer, tissue injuries, and inflammatory diseases. Reprograming native EVs by genetic engineering and other approaches offers an attractive prospect of extending therapeutic capabilities of EVs beyond their natural functions and properties. In this review article, we survey the state-of-the-art methods of EVs engineering and summarize major therapeutic applications of the reprogrammed EVs.
Collapse
Affiliation(s)
- Xiaojing Shi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Qinqin Cheng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; Research Center for Liver Diseases, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
50
|
Tamura R, Balabanova A, Frakes SA, Bargmann A, Grimm J, Koch TH, Yin H. Photoactivatable Prodrug of Doxazolidine Targeting Exosomes. J Med Chem 2019; 62:1959-1970. [PMID: 30703330 DOI: 10.1021/acs.jmedchem.8b01508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Natural lipid nanocarriers, exosomes, carry cell-signaling materials such as DNA and RNA for intercellular communications. Exosomes derived from cancer cells contribute to the progression and metastasis of cancer cells by transferring oncogenic signaling molecules to neighboring and remote premetastatic sites. Therefore, applying the unique properties of exosomes for cancer therapy has been expected in science, medicine, and drug discovery fields. Herein, we report that an exosome-targeting prodrug system, designated MARCKS-ED-photodoxaz, could spatiotemporally control the activation of an exquisitely cytotoxic agent, doxazolidine (doxaz), with UV light. The MARCKS-ED peptide enters a cell by forming a complex with the exosomes in situ at its plasma membrane and in the media. MARCKS-ED-photodoxaz releases doxaz under near-UV irradiation to inhibit cell growth with low nanomolar IC50 values. The MARCKS-ED-photodoxaz system targeting exosomes and utilizing photochemistry will potentially provide a new approach for the treatment of cancer, especially for highly progressive and invasive metastatic cancers.
Collapse
Affiliation(s)
- Ryo Tamura
- Molecular Pharmacology Program , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | | | | | | | - Jan Grimm
- Molecular Pharmacology Program , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | | | - Hang Yin
- School of Pharmaceutical Sciences, Tsinghua University-Peking University Joint Center for Life Sciences , Tsinghua University , Beijing 100082 , China
| |
Collapse
|