1
|
Joo JS, Lee D, Hong JY. Multi-Layered Mechanisms of Immunological Tolerance at the Maternal-Fetal Interface. Immune Netw 2024; 24:e30. [PMID: 39246621 PMCID: PMC11377946 DOI: 10.4110/in.2024.24.e30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 09/10/2024] Open
Abstract
Pregnancy represents an immunological paradox where the maternal immune system must tolerate the semi-allogeneic fetus expressing paternally-derived Ags. Accumulating evidence over decades has revealed that successful pregnancy requires the active development of robust immune tolerance mechanisms. This review outlines the multi-layered processes that establish fetomaternal tolerance, including the physical barrier of the placenta, restricted chemokine-mediated leukocyte trafficking, lack of sufficient alloantigen presentation, the presence of immunosuppressive regulatory T cells and tolerogenic decidual natural killer cells, expression of immune checkpoint molecules, specific glycosylation patterns conferring immune evasion, and unique metabolic/hormonal modulations. Interestingly, many of the strategies that enable fetal tolerance parallel those employed by cancer cells to promote angiogenesis, invasion, and immune escape. As such, further elucidating the mechanistic underpinnings of fetal-maternal tolerance may reciprocally provide insights into developing novel cancer immunotherapies as well as understanding the pathogenesis of gestational complications linked to dysregulated tolerance processes.
Collapse
Affiliation(s)
- Jin Soo Joo
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Dongeun Lee
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Jun Young Hong
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
2
|
Bezemer RE, Faas MM, van Goor H, Gordijn SJ, Prins JR. Decidual macrophages and Hofbauer cells in fetal growth restriction. Front Immunol 2024; 15:1379537. [PMID: 39007150 PMCID: PMC11239338 DOI: 10.3389/fimmu.2024.1379537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Placental macrophages, which include maternal decidual macrophages and fetal Hofbauer cells, display a high degree of phenotypical and functional plasticity. This provides these macrophages with a key role in immunologically driven events in pregnancy like host defense, establishing and maintaining maternal-fetal tolerance. Moreover, placental macrophages have an important role in placental development, including implantation of the conceptus and remodeling of the intrauterine vasculature. To facilitate these processes, it is crucial that placental macrophages adapt accordingly to the needs of each phase of pregnancy. Dysregulated functionalities of placental macrophages are related to placental malfunctioning and have been associated with several adverse pregnancy outcomes. Although fetal growth restriction is specifically associated with placental insufficiency, knowledge on the role of macrophages in fetal growth restriction remains limited. This review provides an overview of the distinct functionalities of decidual macrophages and Hofbauer cells in each trimester of a healthy pregnancy and aims to elucidate the mechanisms by which placental macrophages could be involved in the pathogenesis of fetal growth restriction. Additionally, potential immune targeted therapies for fetal growth restriction are discussed.
Collapse
Affiliation(s)
- Romy Elisa Bezemer
- Department of Obstetrics and Gynecology, University Medical Center Groningen, Groningen, Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, Netherlands
| | - Marijke M Faas
- Department of Obstetrics and Gynecology, University Medical Center Groningen, Groningen, Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, Netherlands
| | - Sanne Jehanne Gordijn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, Groningen, Netherlands
| | - Jelmer R Prins
- Department of Obstetrics and Gynecology, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
3
|
Sitaaraman SR, Grace AN, Zhu J, Sellappan R. Photoelectrochemical performance of a nanostructured BiVO 4/NiOOH/FeOOH-Cu 2O/CuO/TiO 2 tandem cell for unassisted solar water splitting. NANOSCALE ADVANCES 2024; 6:2407-2418. [PMID: 38694471 PMCID: PMC11059491 DOI: 10.1039/d4na00088a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/15/2024] [Indexed: 05/04/2024]
Abstract
An unassisted solar water splitting tandem cell is fabricated using FeOOH/NiOOH-coated BiVO4 nanostructures as a photoanode and a TiO2-protected heterojunction Cu2O/CuO thin film as a photocathode. The individual photoelectrochemical (PEC) performance of the nanostructured BiVO4/NiOOH/FeOOH photoanode produces a photocurrent of 2.05 mA cm-2 at 1.23 V vs. RHE, while the Cu2O/CuO/TiO2 photocathode delivers -1.61 mA cm-2 at 0 V vs. RHE under an AM 1.5 filtered illumination of 100 mW cm-2. The operating point of tandem cell photocurrent is found to be 0.273 mA cm-2 at 0.56 V vs. RHE. From two-electrode linear sweep voltammetry, the tandem cell (BiVO4/NiOOH/FeOOH-Cu2O/CuO/TiO2) delivers an unassisted current density of 0.201 mA cm-2 at 0 V. The chronoamperometry test further demonstrates the stable nature of the tandem cell, which retains a current density of 0.187 mA cm-2 during a testing duration of 3000 seconds. The proposed tandem cell provides optimized solutions to designing a cost-effective and stable solar water splitting system for the fulfillment of the future energy needs.
Collapse
Affiliation(s)
- S R Sitaaraman
- Centre for Nanotechnology Research, Vellore Institute of Technology Vellore India-632014
- Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology Ramapuram Chennai India-600089
| | - A Nirmala Grace
- Centre for Nanotechnology Research, Vellore Institute of Technology Vellore India-632014
| | - Jiefang Zhu
- Department of Chemistry - Ångström Laboratory, Uppsala University 75121 Uppsala Sweden
| | - Raja Sellappan
- Centre for Nanotechnology Research, Vellore Institute of Technology Vellore India-632014
| |
Collapse
|
4
|
Kurokawa M, Takeshita A, Hashimoto S, Koyama M, Morimoto Y, Tachibana D. Prevention of intrauterine fetal growth restriction by administrating C1q/TNF-related protein 6, a specific inhibitor of the alternative complement pathway. J Assist Reprod Genet 2022; 39:2191-2199. [PMID: 35907048 PMCID: PMC9474761 DOI: 10.1007/s10815-022-02582-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/19/2022] [Indexed: 10/16/2022] Open
Abstract
PURPOSE The latest treatments do not sufficiently prevent miscarriage and fetal growth restriction (FGR) in pregnant women. Here, we assessed the effects of a human protein, CTRP6, that specifically inhibits the activation of the alternative complement pathway on miscarriage, fetal and placental development. METHODS Pregnant CBA/J mice mated with DBA/2 male mice as a model of spontaneous abortion and FGR were randomly divided into the control and CTRP6 groups. In the CTRP6 group, the mice were intravenously administered CTRP6 on days 4.5 and 6.5 post-conception (dpc). The abortion rate and fetal and placental weights on 14.5 dpc were examined. Remodeling of the spiral artery was also assessed. RESULTS The abortion rate in the CTRP6 group (13%) was reduced compared to the control group (21%), but there was no statistical difference. The placental and fetal weights in the CTRP6 group were also heavier than those in the control (P < 0.05). Moreover, the thickness of the blood vessel wall in the CTRP6 group was significantly thinner than that in the control (P < 0.05) and comparable to that in the non-abortion model (CBA/J x BALB). The ratio of the inner-per-the-outer diameter of the spiral artery increased more in the CTRP6 group than that in the control (P < 0.05). As well, the Th1/Th2 cytokine ratio was significantly reduced by CTRP6 treatment. CONCLUSIONS Taken together, the supplementation with a protein that regulates the alternative complement pathway in vivo improves FGR and promotes spiral artery remodeling in a mouse model of miscarriage and FGR.
Collapse
Affiliation(s)
- Mayu Kurokawa
- Women's Lifecare Medicine, Obstetrics and Gynecology, School of Medicine, Osaka City University, 545-8585, Osaka, Japan
- Graduate School of Medicine, Reproductive Science, Osaka City University, Osaka, 545-8585, Japan
| | - Ai Takeshita
- Graduate School of Medicine, Reproductive Science, Osaka City University, Osaka, 545-8585, Japan
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osaka, 589-8511, Japan
| | - Shu Hashimoto
- Graduate School of Medicine, Reproductive Science, Osaka City University, Osaka, 545-8585, Japan.
| | - Masayasu Koyama
- Women's Lifecare Medicine, Obstetrics and Gynecology, School of Medicine, Osaka City University, 545-8585, Osaka, Japan
| | | | - Daisuke Tachibana
- Women's Lifecare Medicine, Obstetrics and Gynecology, School of Medicine, Osaka City University, 545-8585, Osaka, Japan
| |
Collapse
|
5
|
Sánchez MB, Germanó MJ, Salomón MC, Scelta J, García Bustos MF, Ginevro PM, Cargnelutti DE. Leishmania (L.) amazonensis infection impairs reproductive and fetal parameters in female mice. Rev Argent Microbiol 2020; 53:194-201. [PMID: 33375987 DOI: 10.1016/j.ram.2020.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/15/2020] [Accepted: 08/19/2020] [Indexed: 10/22/2022] Open
Abstract
Leishmaniasis is a group of parasitic zoonotic diseases caused by intracellular protozoans belonging to the genus Leishmania. Little is known about the effects that this parasitosis may have on the reproductive parameters and pregnancy of infected humans and pets. This study aimed to evaluate the influence of chronic cutaneous leishmaniasis caused by Leishmania (Leishmania) amazonensis on reproductive and fetal parameters using a female murine model. A control group of female BALB/c mice and a group infected with L. (L.) amazonensis were mated with healthy males. Clinical parameters were monitored during the pre-mating and gestational periods. Female mice were euthanized on day 19 of gestation, when the fetuses were weighed and their length measured and embryonic resorptions and fetal death were recorded. We observed five fetal deaths and three embryonic resorptions in the infected group. Furthermore, there was a decrease in fertility in the infected group (26.32%). The weight of the offspring from infected mothers was lower than that in the control group (1.019±0.035g and 1.163±0.032g, p<0.01). Fetal length was reduced in the infected group (3.71±0.05cm in the control group and 3.40±0.06cm in the infected group p<0.001). This study shows that cutaneous leishmaniasis caused by L. (L.) amazonensis impairs reproductive and fetal parameters in mice.
Collapse
Affiliation(s)
- María Belén Sánchez
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Científico Tecnológico (CCT), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - María José Germanó
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Científico Tecnológico (CCT), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - María Cristina Salomón
- Área de Parasitología, Facultad de Ciencias Médicas (FCM), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Julieta Scelta
- Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Científico Tecnológico (CCT), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - María Fernanda García Bustos
- Instituto de Patología Experimental (IPE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Científico Tecnológico (CCT), Salta, Argentina
| | - Paula María Ginevro
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Científico Tecnológico (CCT), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Diego Esteban Cargnelutti
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Científico Tecnológico (CCT), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina; Área de Parasitología, Facultad de Ciencias Médicas (FCM), Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
6
|
Liu N, Dai Z, Zhang Y, Chen J, Yang Y, Wu G, Tso P, Wu Z. Maternal L-proline supplementation enhances fetal survival, placental development, and nutrient transport in mice†. Biol Reprod 2020; 100:1073-1081. [PMID: 30418498 DOI: 10.1093/biolre/ioy240] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/16/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022] Open
Abstract
L-Proline (proline) in amniotic fluid was markedly increased during pregnancy in both pigs and sheep. However, in vivo data to support a beneficial effect of proline on fetal survival are not available. In this study, pregnant C57BL/6J mice were fed a purified diet supplemented with or without 0.50% proline from embryonic day 0.5 (E0.5) to E12.5 or term. Results indicated that dietary supplementation with proline to gestating mice enhanced fetal survival, reproductive performance, the concentrations of proline, arginine, aspartic acid, and tryptophan in plasma and amniotic fluid, while decreasing the concentrations of ammonia and urea in plasma and amniotic fluid. Placental mRNA levels for amino acid transporters, including Slc36a4, Slc38a2, Slc38a4, Slc6a14, and Na+/K+ ATPase subunit-1α (Atp1a1), fatty acid transporter Slc27a4, and glucose transporters Slc2a1 and Slc2a3, were augmented in proline-supplemented mice, compared with the control group. Histological analysis showed that proline supplementation enhanced labyrinth zone in the placenta of mice at E12.5, mRNA levels for Vegf, Vegfr, Nos2, and Nos3, compared with the controls. Western blot analysis showed that proline supplementation increased protein abundances of phosphorylated (p)-mTORC1, p-ribosomal protein S6 kinase (p70S6K), and p-eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), as well as the protein level of GCN2 (a negative regulator of mTORC1 signaling). Collectively, our results indicate a novel functional role of proline in improving placental development and fetal survival by enhancing placental nutrient transport, angiogenesis, and protein synthesis.
Collapse
Affiliation(s)
- Ning Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Yunchang Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Jingqing Chen
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio, USA
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
7
|
Hosseini MS, Ali-Hassanzadeh M, Nadimi E, Karbalay-Doust S, Noorafshan A, Gharesi-Fard B. Stereological study of the placental structure in abortion-prone mice model (CBA/J×DBA/2J). Ann Anat 2020; 230:151508. [PMID: 32173562 DOI: 10.1016/j.aanat.2020.151508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 10/24/2022]
Abstract
Recurrent spontaneous abortion (RSA) is an important reproductive health issue defined as the loss of two or more consecutive pregnancies before the 20th week of gestation, affecting 2-5% of couples. This study aimed to evaluate the volume, number of cells, and length of the vessels in the placenta in normal and abortion-prone (AP) pregnant mice on gestational day (gd) 13.5. Fetal and placental tissues of female CBA/J mated DBA/2J (AP group) and BALB/c (normal pregnant group) were collected and prepared for stereological assessments on gd13.5. The volumes of the placenta and its main layers decidua basalis (Db), junctional zone (Jz), and labyrinth zone (Lz) were investigated. The number of spongiotrophoblast cells, glycogen cells, giant cells, trophoblast cells, lymphocytes, and neutrophils were estimated as well. The AP group showed a reduction in the volume of the placenta (48.7%) and its components. Moreover, the number of spongiotrophoblast cells (66.7%), glycogen cells (76.2%), giant cells (73.3%), and trophoblast cells (81.4%) was decreased in AP compared to normal pregnant (NP) mice. Also, in AP group recognized a 10-fold increase in the number of lymphocytes and a four-fold increase in the number of neutrophils in comparison to the NP group (p < 0.05). Activation of different immune cell types might induce systemic inflammation at the feto-maternal interface, resulting in impaired placenta formation and abortion.
Collapse
Affiliation(s)
| | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran; Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Nadimi
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran; Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saied Karbalay-Doust
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Noorafshan
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behrouz Gharesi-Fard
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran; Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Lappas M, McCracken S, McKelvey K, Lim R, James J, Roberts CT, Fournier T, Alfaidy N, Powell KL, Borg AJ, Morris JM, Leaw B, Singh H, Ebeling PR, Wallace EM, Parry LJ, Dimitriadis E, Murthi P. Formyl peptide receptor-2 is decreased in foetal growth restriction and contributes to placental dysfunction. Mol Hum Reprod 2019; 24:94-109. [PMID: 29272530 DOI: 10.1093/molehr/gax067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 12/18/2017] [Indexed: 01/07/2023] Open
Abstract
STUDY QUESTION What is the association between placental formyl peptide receptor 2 (FPR2) and trophoblast and endothelial functions in pregnancies affected by foetal growth restriction (FGR)? SUMMARY ANSWER Reduced FPR2 placental expression in idiopathic FGR results in significantly altered trophoblast differentiation and endothelial function in vitro. WHAT IS KNOWN ALREADY FGR is associated with placental insufficiency, where defective trophoblast and endothelial functions contribute to reduced feto-placental growth. STUDY DESIGN, SIZE, DURATION The expression of FPR2 in placental tissues from human pregnancies complicated with FGR was compared to that in gestation-matched uncomplicated control pregnancies (n = 25 from each group). Fpr2 expression was also determined in placental tissues obtained from a murine model of FGR (n = 4). The functional role of FPR2 in primary trophoblasts and endothelial cells in vitro was assessed in diverse assays in a time-dependent manner. PARTICIPANTS/MATERIALS, SETTING, METHODS Placentae from third-trimester pregnancies complicated by idiopathic FGR (n = 25) and those from gestation-matched pregnancies with appropriately grown infants as controls (n = 25) were collected at gestation 27-40 weeks. Placental tissues were also collected from a spontaneous CBA/CaH × DBA/2 J murine model of FGR. Placental FPR2/Fpr2 mRNA expression was determined by real-time PCR, while protein expression was examined by immunoblotting and immunohistochemistry. siRNA transfection was used to silence FPR2 expression in primary trophoblasts and in human umbilical vein endothelial cells (HUVEC), and the quantitation of cytokines, chemokines and apoptosis was performed following a cDNA array analyses. Functional effects of trophoblast differentiation were measured using HCGB/β-hCG and syncytin-2 expression as well as markers of apoptosis, tumour protein 53 (TP53), caspase 8, B cell lymphoma 2 (BCL2) and BCL associated X (BAX). Endothelial function was assessed by proliferation, network formation and permeability assays. MAIN RESULTS AND THE ROLE OF CHANCE Placental FPR2/Fpr2 expression was significantly decreased in FGR placentae (n = 25, P < 0.05) as well as in murine FGR placentae compared to controls (n = 4, P < 0.05). FPR2 siRNA (siFPR2) in term trophoblasts significantly increased differentiation markers, HCGB and syncytin-2; cytokines, interleukin (IL)-6, CXCL8; and apoptotic markers, TP53, caspase 8 and BAX, but significantly reduced the expression of the chemokines CXCL12 and its receptors CXCR4 and CXCR7; CXCL16 and its receptor, CXCR6; and cytokine, IL-10, compared with control siRNA (siCONT). Treatment of HUVECs with siFPR2 significantly reduced proliferation and endothelial tube formation, but significantly increased permeability of HUVECs. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Reduced expression of placental FPR2/Fpr2 was observed in the third trimester at delivery after development of FGR, suggesting that FPR2 is associated with FGR pregnancies. However, there is a possibility that the decreased placental FPR2 observed in FGR may be a consequence rather than a cause of FGR, although our in vitro functional analyses using primary trophoblasts and endothelial cells suggest that FPR2 may have a direct or indirect regulatory role on trophoblast differentiation and endothelial function in FGR. WIDER IMPLICATIONS OF THE FINDINGS This is the first study linking placental FPR2 expression with changes in the trophoblast and endothelial functions that may explain the placental insufficiency observed in FGR. STUDY FUNDING/COMPETING INTERESTS P.M. and P.R.E. received funding from the Australian Institute of Musculoskeletal Science, Western Health, St. Albans, Victoria 3021, Australia. M.L. is supported by a Career Development Fellowship from the National Health and Medical Research Council (NHMRC; Grant no. 1047025). Monash Health is supported by the Victorian Government's Operational Infrastructure Support Programme. The authors declare that there is no conflict of interest in publishing this work.
Collapse
Affiliation(s)
- Martha Lappas
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria 3079, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria 3079, Australia
| | - Sharon McCracken
- Division of Perinatal Research, Kolling Institute, Northern Sydney Local Health District, St Leonards, New South Wales 2065, Australia.,Sydney Medical School Northern, University of Sydney, New South Wales 2006, Australia
| | - Kelly McKelvey
- Division of Perinatal Research, Kolling Institute, Northern Sydney Local Health District, St Leonards, New South Wales 2065, Australia.,Sydney Medical School Northern, University of Sydney, New South Wales 2006, Australia
| | - Ratana Lim
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria 3079, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria 3079, Australia
| | - Joanna James
- Department of Obstetrics and Gynaecology, University of Auckland, New Zealand
| | - Claire T Roberts
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, South Australia 5005, Australia
| | - Thierry Fournier
- INSERM, UMR-S1139, Faculté des Sciences Pharmaceutiques et Biologiques, Paris F-75006, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris F-75006 France.,Fondation PremUp, Paris F-75006, France
| | - Nadia Alfaidy
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France.,University Grenoble-Alpes, 38000 Grenoble, France.,Commissariat à l'Energie Atomique (CEA), iRTSV- Biology of Cancer and Infection, Grenoble, France
| | - Katie L Powell
- Division of Perinatal Research, Kolling Institute, Northern Sydney Local Health District, St Leonards, New South Wales 2065, Australia.,Sydney Medical School Northern, University of Sydney, New South Wales 2006, Australia
| | - Anthony J Borg
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, The Royal Women's Hospital, Parkville, Victoria 3052, Australia
| | - Jonathan M Morris
- Division of Perinatal Research, Kolling Institute, Northern Sydney Local Health District, St Leonards, New South Wales 2065, Australia.,Sydney Medical School Northern, University of Sydney, New South Wales 2006, Australia
| | - Bryan Leaw
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Harmeet Singh
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Euan M Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Laura J Parry
- School of Biosciences, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Evdokia Dimitriadis
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Padma Murthi
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, The Royal Women's Hospital, Parkville, Victoria 3052, Australia.,The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
9
|
Fleiss B, Wong F, Brownfoot F, Shearer IK, Baud O, Walker DW, Gressens P, Tolcos M. Knowledge Gaps and Emerging Research Areas in Intrauterine Growth Restriction-Associated Brain Injury. Front Endocrinol (Lausanne) 2019; 10:188. [PMID: 30984110 PMCID: PMC6449431 DOI: 10.3389/fendo.2019.00188] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/06/2019] [Indexed: 12/16/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is a complex global healthcare issue. Concerted research and clinical efforts have improved our knowledge of the neurodevelopmental sequelae of IUGR which has raised the profile of this complex problem. Nevertheless, there is still a lack of therapies to prevent the substantial rates of fetal demise or the constellation of permanent neurological deficits that arise from IUGR. The purpose of this article is to highlight the clinical and translational gaps in our knowledge that hamper our collective efforts to improve the neurological sequelae of IUGR. Also, we draw attention to cutting-edge tools and techniques that can provide novel insights into this disorder, and technologies that offer the potential for better drug design and delivery. We cover topics including: how we can improve our use of crib-side monitoring options, what we still need to know about inflammation in IUGR, the necessity for more human post-mortem studies, lessons from improved integrated histology-imaging analyses regarding the cell-specific nature of magnetic resonance imaging (MRI) signals, options to improve risk stratification with genomic analysis, and treatments mediated by nanoparticle delivery which are designed to modify specific cell functions.
Collapse
Affiliation(s)
- Bobbi Fleiss
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- NeuroDiderot, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, United Kingdom
- *Correspondence: Bobbi Fleiss
| | - Flora Wong
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Paediatrics, Monash University, Clayton, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Clayton, VIC, Australia
| | - Fiona Brownfoot
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, VIC, Australia
| | - Isabelle K. Shearer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Olivier Baud
- NeuroDiderot, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Division of Neonatal Intensive Care, University Hospitals of Geneva, Children's Hospital, University of Geneva, Geneva, Switzerland
| | - David W. Walker
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Pierre Gressens
- NeuroDiderot, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, United Kingdom
- PremUP, Paris, France
| | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
10
|
Woods L, Perez-Garcia V, Hemberger M. Regulation of Placental Development and Its Impact on Fetal Growth-New Insights From Mouse Models. Front Endocrinol (Lausanne) 2018; 9:570. [PMID: 30319550 PMCID: PMC6170611 DOI: 10.3389/fendo.2018.00570] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/06/2018] [Indexed: 01/01/2023] Open
Abstract
The placenta is the chief regulator of nutrient supply to the growing embryo during gestation. As such, adequate placental function is instrumental for developmental progression throughout intrauterine development. One of the most common complications during pregnancy is insufficient growth of the fetus, a problem termed intrauterine growth restriction (IUGR) that is most frequently rooted in a malfunctional placenta. Together with conventional gene targeting approaches, recent advances in screening mouse mutants for placental defects, combined with the ability to rapidly induce mutations in vitro and in vivo by CRISPR-Cas9 technology, has provided new insights into the contribution of the genome to normal placental development. Most importantly, these data have demonstrated that far more genes are required for normal placentation than previously appreciated. Here, we provide a summary of common types of placental defects in established mouse mutants, which will help us gain a better understanding of the genes impacting on human placentation. Based on a recent mouse mutant screen, we then provide examples on how these data can be mined to identify novel molecular hubs that may be critical for placental development. Given the close association between placental defects and abnormal cardiovascular and brain development, these functional nodes may also shed light onto the etiology of birth defects that co-occur with placental malformations. Taken together, recent insights into the regulation of mouse placental development have opened up new avenues for research that will promote the study of human pregnancy conditions, notably those based on defects in placentation that underlie the most common pregnancy pathologies such as IUGR and pre-eclampsia.
Collapse
Affiliation(s)
- Laura Woods
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Vicente Perez-Garcia
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Vicente Perez-Garcia
| | - Myriam Hemberger
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
- Myriam Hemberger
| |
Collapse
|