Duraes ADS, Gezelter JD. Separation of Enantiomers through Local Vorticity: A Screw Model Mechanism.
J Phys Chem B 2021;
125:11709-11716. [PMID:
34652162 DOI:
10.1021/acs.jpcb.1c07127]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a model to explain the mechanism behind enantiomeric separation under either shear flow or local rotational motion in a fluid. Local vorticity of the fluid imparts molecular rotation that couples to translational motion, sending enantiomers in opposite directions. Translation-rotation coupling of enantiomers is explored using the molecular hydrodynamic resistance tensor, and a molecular equivalent of the pitch of a screw is introduced to describe the degree of translation-rotation coupling. Molecular pitch is a structural feature of the molecules and can be easily computed, allowing rapid estimation of the pitch of 85 druglike molecules. Simulations of model enantiomers in a range of fluids such as Λ- and Δ-[Ru(bpy)3]Cl2 in water and (R, R)- and (S, S)-atorvastatin in methanol support predictions made using molecular pitch values. A competition model and continuum drift-diffusion equations are developed to predict separation of realistic racemic mixtures. We find that enantiomeric separation on a centimeter length scale can be achieved in hours, using experimentally achievable vorticities. Additionally, we find that certain achiral objects can also exhibit a nonzero molecular pitch.
Collapse