1
|
Rezende SB, Chan LY, Oshiro KGN, Buccini DF, Leal APF, Ribeiro CF, Souza CM, Brandão ALO, Gonçalves RM, Cândido ES, Macedo MLR, Craik DJ, Franco OL, Cardoso MH. Peptide PaDBS1R6 has potent antibacterial activity on clinical bacterial isolates and integrates an immunomodulatory peptide fragment within its sequence. Biochim Biophys Acta Gen Subj 2024; 1868:130693. [PMID: 39147109 DOI: 10.1016/j.bbagen.2024.130693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Resistant infectious diseases caused by gram-negative bacteria are among the most serious worldwide health problems. Antimicrobial peptides (AMPs) have been explored as promising antibacterial, antibiofilm, and anti-infective candidates to address these health challenges. MAJOR CONCLUSIONS Here we report the potent antibacterial effect of the peptide PaDBS1R6 on clinical bacterial isolates and identify an immunomodulatory peptide fragment incorporated within it. PaDBS1R6 was evaluated against Acinetobacter baumannii and Escherichia coli clinical isolates and had minimal inhibitory concentration (MIC) values from 8 to 32 μmol L-1. It had a rapid bactericidal effect, with eradication showing within 3 min of incubation, depending on the bacterial strain tested. In addition, PaDBS1R6 inhibited biofilm formation for A. baumannii and E. coli and was non-toxic toward healthy mammalian cells. These findings are explained by the preference of PaDBS1R6 for anionic membranes over neutral membranes, as assessed by surface plasmon resonance assays and molecular dynamics simulations. Considering its potent antibacterial activity, PaDBS1R6 was used as a template for sliding-window fr agmentation studies (window size = 10 residues). Among the sliding-window fragments, PaDBS1R6F8, PaDBS1R6F9, and PaDBS1R6F10 were ineffective against any of the bacterial strains tested. Additional biological assays were conducted, including nitric oxide (NO) modulation and wound scratch assays, and the R6F8 peptide fragment was found to be active in modulating NO levels, as well as having strong wound healing properties. GENERAL SIGNIFICANCE This study proposes a new concept whereby peptides with different biological properties can be derived by the screening of fragments from within potent AMPs.
Collapse
Affiliation(s)
- Samilla B Rezende
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Lai Yue Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Karen G N Oshiro
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil; Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília 70910900, Brazil
| | - Danieli F Buccini
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Ana Paula Ferreira Leal
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Camila F Ribeiro
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Carolina M Souza
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Amanda L O Brandão
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Regina M Gonçalves
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Elizabete S Cândido
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790160, Brazil
| | - Maria L R Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070900, Mato Grosso do Sul, Brazil
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Octávio L Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil; Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília 70910900, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790160, Brazil
| | - Marlon H Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil; Programa de Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil.
| |
Collapse
|
2
|
Bak-Sypien I, Pawlak T, Paluch P, Wroblewska A, Dolot R, Pawlowicz A, Szczesio M, Wielgus E, Kaźmierski S, Górecki M, Pawlowska R, Chworos A, Potrzebowski MJ. Influence of heterochirality on the structure, dynamics, biological properties of cyclic(PFPF) tetrapeptides obtained by solvent-free ball mill mechanosynthesis. Sci Rep 2024; 14:12825. [PMID: 38834643 DOI: 10.1038/s41598-024-63552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
Cyclic tetrapeptides c(Pro-Phe-Pro-Phe) obtained by the mechanosynthetic method using a ball mill were isolated in a pure stereochemical form as a homochiral system (all L-amino acids, sample A) and as a heterochiral system with D configuration at one of the stereogenic centers of Phe (sample B). The structure and stereochemistry of both samples were determined by X-ray diffraction studies of single crystals. In DMSO and acetonitrile, sample A exists as an equimolar mixture of two conformers, while only one is monitored for sample B. The conformational space and energetic preferences for possible conformers were calculated using DFT methods. The distinctly different conformational flexibility of the two samples was experimentally proven by Variable Temperature (VT) and 2D EXSY NMR measurements. Both samples were docked to histone deacetylase HDAC8. Cytotoxic studies proved that none of the tested cyclic peptide is toxic.
Collapse
Affiliation(s)
- Irena Bak-Sypien
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Tomasz Pawlak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Piotr Paluch
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Aneta Wroblewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Rafał Dolot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Aleksandra Pawlowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 St., 61-704, Poznan, Poland
| | - Małgorzata Szczesio
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116 St., 90-924, Lodz, Poland
| | - Ewelina Wielgus
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Sławomir Kaźmierski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Marcin Górecki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 St., 01-224, Warsaw, Poland
| | - Roza Pawlowska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Arkadiusz Chworos
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland.
| |
Collapse
|
3
|
Jackson MA, Chan LY, Harding MD, Craik DJ, Gilding EK. Rational domestication of a plant-based recombinant expression system expands its biosynthetic range. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6103-6114. [PMID: 35724659 PMCID: PMC9578353 DOI: 10.1093/jxb/erac273] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/20/2022] [Indexed: 05/22/2023]
Abstract
Plant molecular farming aims to provide a green, flexible, and rapid alternative to conventional recombinant expression systems, capable of producing complex biologics such as enzymes, vaccines, and antibodies. Historically, the recombinant expression of therapeutic peptides in plants has proven difficult, largely due to their small size and instability. However, some plant species harbour the capacity for peptide backbone cyclization, a feature inherent in stable therapeutic peptides. One obstacle to realizing the potential of plant-based therapeutic peptide production is the proteolysis of the precursor before it is matured into its final stabilized form. Here we demonstrate the rational domestication of Nicotiana benthamiana within two generations to endow this plant molecular farming host with an expanded repertoire of peptide sequence space. The in planta production of molecules including an insecticidal peptide, a prostate cancer therapeutic lead, and an orally active analgesic is demonstrated.
Collapse
Affiliation(s)
- Mark A Jackson
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Lai Yue Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Maxim D Harding
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Edward K Gilding
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Zhang Q, Shao J, Wang J, Gong XJ, Liu WX, Wang S, Zhang Y, Yang S, Zhang QS, Wei JX, Tian JL. Antitumor effects of new glycoconjugated Pt II agents dual-targeting GLUT1 and Pgp proteins. Dalton Trans 2022; 51:16082-16092. [PMID: 36178270 DOI: 10.1039/d2dt02455a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and highly efficient dual-targeting PtII system was designed to improve the drug delivery capacity and selectivity in cancer treatment. The dual-targeting monofunctional PtII complexes (1-8) having glycosylated pendants as tridentated ligand were achieved by introducing glycosylation modification in the thioaminocarbazone compounds with potential lysosomal targeting ability. The structures and stability of 1-8 were further established by various techniques. Molecular docking studies showed that 2 was efficiently docked into glucose transporters protein 1 (GLUT1) and P-glycoprotein (Pgp) proteins with the optimal CDocker-interaction-energy of -64.84 and -48.85 kcal mol-1. Complex 2 with higher protein binding capacity demonstrated significant and broad-spectrum antitumor efficacy in vitro, even exhibiting a half maximal inhibitory concentration (IC50) value (∼10 μM) than cisplatin (∼17 μM) against human lung adenocarcinoma cells (A549). The inhibitor experiment revealed GLUT-mediated uptake of 2, and the subcellular localization experiment in A549 also proved that 2 could be localized in the lysosome, thereby causing cell apoptosis. Moreover, cellular thermal shift assay (CETSA) confirmed the binding of 2 with the target proteins of GLUT1 and Pgp. The above results indicated that 2 represents a potential anticancer candidate with dual-targeting functions.
Collapse
Affiliation(s)
- Qiang Zhang
- College of Chemistry, Nankai University, Tianjin 300071, PR China.
| | - Jia Shao
- Department of Pharmacy, Tianjin First Central Hospital, Tianjin 300192, PR China. .,National Health Commission's Key Laboratory of Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300192, PR China
| | - Jin Wang
- Outpatient Office, Tianjin First Central Hospital, Tianjin 300192, PR China
| | - Xian-Jin Gong
- College of Chemistry, Nankai University, Tianjin 300071, PR China.
| | - Wei-Xing Liu
- College of Chemistry, Nankai University, Tianjin 300071, PR China.
| | - Shan Wang
- Department of Pharmacy, Tianjin First Central Hospital, Tianjin 300192, PR China.
| | - Yi Zhang
- Department of Pharmacy, Tianjin First Central Hospital, Tianjin 300192, PR China. .,National Health Commission's Key Laboratory of Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300192, PR China
| | - Shuang Yang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, PR China
| | - Quan-Sheng Zhang
- Tianjin Key Laboratory of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, PR China
| | - Jin-Xia Wei
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Jin-Lei Tian
- College of Chemistry, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
5
|
Jacob B, Vogelaar A, Cadenas E, Camarero JA. Using the Cyclotide Scaffold for Targeting Biomolecular Interactions in Drug Development. Molecules 2022; 27:molecules27196430. [PMID: 36234971 PMCID: PMC9570680 DOI: 10.3390/molecules27196430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/28/2022] Open
Abstract
This review provides an overview of the properties of cyclotides and their potential for developing novel peptide-based therapeutics. The selective disruption of protein–protein interactions remains challenging, as the interacting surfaces are relatively large and flat. However, highly constrained polypeptide-based molecular frameworks with cell-permeability properties, such as the cyclotide scaffold, have shown great promise for targeting those biomolecular interactions. The use of molecular techniques, such as epitope grafting and molecular evolution employing the cyclotide scaffold, has shown to be highly effective for selecting bioactive cyclotides.
Collapse
Affiliation(s)
- Binu Jacob
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA
| | - Alicia Vogelaar
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA
| | - Enrique Cadenas
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA
| | - Julio A. Camarero
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 9033, USA
- Correspondence:
| |
Collapse
|
6
|
Venturini C, Petrovic Fabijan A, Fajardo Lubian A, Barbirz S, Iredell J. Biological foundations of successful bacteriophage therapy. EMBO Mol Med 2022; 14:e12435. [PMID: 35620963 PMCID: PMC9260219 DOI: 10.15252/emmm.202012435] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/20/2022] Open
Abstract
Bacteriophages (phages) are selective viral predators of bacteria. Abundant and ubiquitous in nature, phages can be used to treat bacterial infections (phage therapy), including refractory infections and those resistant to antibiotics. However, despite an abundance of anecdotal evidence of efficacy, significant hurdles remain before routine implementation of phage therapy into medical practice, including a dearth of robust clinical trial data. Phage-bacterium interactions are complex and diverse, characterized by co-evolution trajectories that are significantly influenced by the environments in which they occur (mammalian body sites, water, soil, etc.). An understanding of the molecular mechanisms underpinning these dynamics is essential for successful clinical translation. This review aims to cover key aspects of bacterium-phage interactions that affect bacterial killing by describing the most relevant published literature and detailing the current knowledge gaps most likely to influence therapeutic success.
Collapse
Affiliation(s)
- Carola Venturini
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of ScienceSydney School of Veterinary ScienceThe University of SydneySydneyNSWAustralia
| | - Aleksandra Petrovic Fabijan
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Alicia Fajardo Lubian
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Stefanie Barbirz
- Department of MedicineScience FacultyMSB Medical School BerlinBerlinGermany
| | - Jonathan Iredell
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
- Westmead HospitalWestern Sydney Local Health DistrictWestmeadNSWAustralia
| |
Collapse
|
7
|
Rathor N, Thakur CK, Das BK, Chaudhry R. An insight into the therapeutic potential of a novel lytic Pseudomonas phage isolated from the river Ganga. J Appl Microbiol 2022; 133:1353-1362. [PMID: 35616159 DOI: 10.1111/jam.15639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
AIM Bacteriophages are effective natural antimicrobial agents against drug-resistant pathogens. Therefore, identification and detailed characterization of bacteriophages become essential to explore their therapeutic potential. This study aims to isolate and characterize a lytic bacteriophage against drug-resistant Pseudomonas aeruginosa. METHODS AND RESULTS The Pseudomonas phage AIIMS-Pa-A1, isolated from the river Ganga water against drug-resistant P. aeruginosa, showed clear lytic zone on spot assay. The phage revealed icosahedral head (58.20 nm diameter) and small tail (6.83 nm) under transmission electron microscope. The growth kinetics showed adsorption constant of 1.5×10-9 phage particles cell-1 ml-1 minute-1 and latent period of approximately 15 minutes with the burst size of 27 phages per infected cell. The whole genome sequencing depicted a GC-rich genome of 40.97kb having a lysis cassette of holin, endolysin, and Rz protein, with features of the family Autographiviridae. The comparative genome analysis, Ortho-average nucleotide identity value, and phylogenetic analysis indicated the novelty of the phage AIIMS-Pa-A1. CONCLUSIONS The study concludes that the Pseudomonas phage AIIMS-Pa-A1 is a novel member of the Autographiviridae family, truly lytic in nature for drug-resistant P. aeruginosa. SIGNIFICANCE AND IMPACT OF STUDY The Pseudomonas phage AIIMS-Pa-A1 is having promising potential for future therapeutic intervention to treat drug-resistant P. aeruginosa infections.
Collapse
Affiliation(s)
- Nisha Rathor
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Chandan Kumar Thakur
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Bimal Kumar Das
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Rama Chaudhry
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
8
|
Structural Mapping of BMP Conformational Epitopes and Bioengineering Design of Osteogenic Peptides to Specifically Target the Epitope-Binding Sites. Cell Mol Bioeng 2022; 15:341-352. [PMID: 36119132 PMCID: PMC9474794 DOI: 10.1007/s12195-022-00725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 04/11/2022] [Indexed: 11/03/2022] Open
Abstract
Introduction Human bone morphogenetic proteins (BMPs) constitute a large family of cytokines related to members of the transforming growth factor-β superfamily, which fulfill biological functions by specificity binding to their cognate type I (BRI) and type II (BRII) receptors through conformational wrist and linear knuckle epitopes, respectively. Methods and Results We systematically examined the intermolecular recognition and interaction between the BMP proteins and BRI receptor at structural, energetic and dynamic levels. The BRI-binding site consists of three hotspot regions on BMP surface, which totally contribute ~70% potency to the BMP-BRI binding events and represent the core sections of BMP conformational wrist epitope; the contribution increases in the order: hotspot 2 (~ 8%) < hotspot 3 (~ 20%) < hotspot 1 (~ 40%). Multiple sequence alignment and structural superposition revealed a consensus sequence pattern and a similar binding mode of the three hotspots shared by most BMP members, indicating a high conservation of wrist epitope in BMP family. The three hotspots are natively folded into wellstructured U-shaped,, loop and double-stranded conformations in BMP proteins, which, however, would become largely disordered when splitting from the protein context to derive osteogenic peptides in free state, thus largely impairing their rebinding capability to BRI receptor. In this respect, cyclization strategy was employed to constrain hotspot 1/3-derived peptides into a native-like conformation, which was conducted by adding a disulfide bond across the ending arms of linear peptides based on their native conformations. Fluorescence-based assays substantiated that the cyclization can effectively improve the binding affinities of osteogenic peptides to BRI receptor by 3-6-fold. The cyclic peptides also exhibit a good selectivity for BRI over BRII (> 5-fold), confirming that they can specifically target the wrist epitope-binding site of BRI receptor. Conclusion The rationally designed cyclic peptides can be regarded as the promising lead entities that should be further chemically modified to enhance their in vivo biological stability for further bioengineering therapeutic osteogenic peptides against chondrocyte senescence and bone disorder.
Collapse
|
9
|
Lin C, Wang L, Shi L. AAPred-CNN: accurate predictor based on deep convolution neural network for identification of anti-angiogenic peptides. Methods 2022; 204:442-448. [PMID: 35031486 DOI: 10.1016/j.ymeth.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/28/2021] [Accepted: 01/09/2022] [Indexed: 12/13/2022] Open
Abstract
Recently, deep learning techniques have been developed for various bioactive peptide prediction tasks. However, there are only conventional machine learning-based methods for the prediction of anti-angiogenic peptides (AAP), which play an important role in cancer treatment. The main reason why no deep learning method has been involved in this field is that there are too few experimentally validated AAPs to support the training of deep models but researchers have believed that deep learning seriously depends on the amounts of labeled data. In this paper, as a tentative work, we try to predict AAP by constructing different classical deep learning models and propose the first deep convolution neural network-based predictor (AAPred-CNN) for AAP. Contrary to intuition, the experimental results show that deep learning models can achieve superior or comparable performance to the state-of-the-art model, although they are given a few labeled sequences to train. We also decipher the influence of hyper-parameters and training samples on the performance of deep learning models to help understand how the model work. Furthermore, we also visualize the learned embeddings by dimension reduction to increase the model interpretability and reveal the residue propensity of AAP through the statistics of convolutional features for different residues. In summary, this work demonstrates the powerful representation ability of AAPred-CNNfor AAP prediction, further improving the prediction accuracy of AAP.
Collapse
Affiliation(s)
- Changhang Lin
- School of Big Data and Artificial Intelligence, Fujian Polytechnic Normal University, Fuzhou, China
| | - Lei Wang
- Beidahuang Industry Group General Hospital, Harbin, China.
| | - Lei Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
10
|
Malviya R, Verma S, Sundram S. Advancement and Strategies for the Development of Peptide-Drug Conjugates: Pharmacokinetic Modulation, Role and Clinical Evidence Against Cancer Management. Curr Cancer Drug Targets 2021; 22:286-311. [PMID: 34792003 DOI: 10.2174/1568009621666211118111506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/29/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022]
Abstract
Currently, many new treatment strategies are being used for the management of cancer. Among them, chemotherapy based on peptides has been of great interest due to the unique features of peptides. This review discusses the role of peptide and peptides analogues in the treatment of cancer, with special emphasis on their pharmacokinetic modulation and research progress. Low molecular weight, targeted drug delivery, enhanced permeability, etc., of the peptide-linked drug conjugates, lead to an increase in the effectiveness of cancer therapy. Various peptides have recently been developed as drugs and vaccines with an altered pharmacokinetic parameter which has subsequently been assessed in different phases of the clinical study. Peptides have made a great impact in the area of cancer therapy and diagnosis. Targeted chemotherapy and drug delivery techniques using peptides are emerging as excellent tools in minimizing problems with conventional chemotherapy. It can be concluded that new advances in using peptides to treat different types of cancer have been shown by different clinical studies indicating that peptides could be used as an ideal therapeutic method in treating cancer due to the novel advantages of peptides. The development of identifying and synthesizing novel peptides could provide a promising choice to patients with cancer.
Collapse
Affiliation(s)
- Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida. India
| | - Swati Verma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida. India
| | - Sonali Sundram
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida. India
| |
Collapse
|
11
|
Lindsay RJ, Jepson A, Butt L, Holder PJ, Smug BJ, Gudelj I. Would that it were so simple: Interactions between multiple traits undermine classical single-trait-based predictions of microbial community function and evolution. Ecol Lett 2021; 24:2775-2795. [PMID: 34453399 DOI: 10.1111/ele.13861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/11/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Abstract
Understanding how microbial traits affect the evolution and functioning of microbial communities is fundamental for improving the management of harmful microorganisms, while promoting those that are beneficial. Decades of evolutionary ecology research has focused on examining microbial cooperation, diversity, productivity and virulence but with one crucial limitation. The traits under consideration, such as public good production and resistance to antibiotics or predation, are often assumed to act in isolation. Yet, in reality, multiple traits frequently interact, which can lead to unexpected and undesired outcomes for the health of macroorganisms and ecosystem functioning. This is because many predictions generated in a single-trait context aimed at promoting diversity, reducing virulence or controlling antibiotic resistance can fail for systems where multiple traits interact. Here, we provide a much needed discussion and synthesis of the most recent research to reveal the widespread and diverse nature of multi-trait interactions and their consequences for predicting and controlling microbial community dynamics. Importantly, we argue that synthetic microbial communities and multi-trait mathematical models are powerful tools for managing the beneficial and detrimental impacts of microbial communities, such that past mistakes, like those made regarding the stewardship of antimicrobials, are not repeated.
Collapse
Affiliation(s)
- Richard J Lindsay
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Alys Jepson
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Lisa Butt
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Philippa J Holder
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Bogna J Smug
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ivana Gudelj
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| |
Collapse
|
12
|
Peptide Inhibitors of Vascular Endothelial Growth Factor A: Current Situation and Perspectives. Pharmaceutics 2021; 13:pharmaceutics13091337. [PMID: 34575413 PMCID: PMC8467741 DOI: 10.3390/pharmaceutics13091337] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelial growth factors (VEGFs) are the family of extracellular signaling proteins involved in the processes of angiogenesis. VEGFA overexpression and altered regulation of VEGFA signaling pathways lead to pathological angiogenesis, which contributes to the progression of various diseases, such as age-related macular degeneration and cancer. Monoclonal antibodies and decoy receptors have been extensively used in the anti-angiogenic therapies for the neutralization of VEGFA. However, multiple side effects, solubility and aggregation issues, and the involvement of compensatory VEGFA-independent pro-angiogenic mechanisms limit the use of the existing VEGFA inhibitors. Short chemically synthesized VEGFA binding peptides are a promising alternative to these full-length proteins. In this review, we summarize anti-VEGFA peptides identified so far and discuss the molecular basis of their inhibitory activity to highlight their pharmacological potential as anti-angiogenic drugs.
Collapse
|
13
|
Charoenkwan P, Chiangjong W, Hasan MM, Nantasenamat C, Shoombuatong W. Review and comparative analysis of machine learning-based predictors for predicting and analyzing of anti-angiogenic peptides. Curr Med Chem 2021; 29:849-864. [PMID: 34375178 DOI: 10.2174/0929867328666210810145806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022]
Abstract
Cancer is one of the leading causes of death worldwide and underlying this is angiogenesis that represents one of the hallmarks of cancer. Ongoing effort is already under way in the discovery of anti-angiogenic peptides (AAPs) as a promising therapeutic route by tackling the formation of new blood vessels. As such, the identification of AAPs constitutes a viable path for understanding their mechanistic properties pertinent for the discovery of new anti-cancer drugs. In spite of the abundance of peptide sequences in public databases, experimental efforts in the identification of anti-angiogenic peptides have progressed very slowly owing to its high expenditures and laborious nature. Owing to its inherent ability to make sense of large volumes of data, machine learning (ML) represents a lucrative technique that can be harnessed for peptide-based drug discovery. In this review, we conducted a comprehensive and comparative analysis of ML-based AAP predictors in terms of their employed feature descriptors, ML algorithms, cross-validation methods and prediction performance. Moreover, the common framework of these AAP predictors and their inherent weaknesses are also discussed. Particularly, we explore future perspectives for improving the prediction accuracy and model interpretability, which represents an interesting avenue for overcoming some of the inherent weaknesses of existing AAP predictors. We anticipate that this review would assist researchers in the rapid screening and identification of promising AAPs for clinical use.
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, Thailand
| | - Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Md Mehedi Hasan
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, United States
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
14
|
Jogi SP, Thaha R, Rajan S, Mahajan V, Venugopal VK, Mehndiratta A, Singh A. Device for Assessing Knee Joint Dynamics During Magnetic Resonance Imaging. J Magn Reson Imaging 2021; 55:895-907. [PMID: 34369633 DOI: 10.1002/jmri.27877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Knee assessment with and without load using magnetic resonance imaging (MRI) can provide information on knee joint dynamics and improve the diagnosis of knee joint diseases. Performing such studies on a routine MRI-scanner require a load-exerting device during scanning. There is a need for more studies on developing loading devices and evaluating their clinical potential. PURPOSE Design and develop a portable and easy-to-use axial loading device to evaluate the knee joint dynamics during the MRI study. STUDY TYPE Prospective study. SUBJECTS Nine healthy subjects. FIELD STRENGTH/SEQUENCE A 0.25 T standing-open MRI and 3.0 T MRI. PD-T2 -weighted FSE, 3D-fast-spoiled-gradient-echo, FS-PD, and CartiGram sequences. ASSESSMENT Design and development of loading device, calibration of loads, MR safety assessment (using projectile angular displacement, torque, and temperature tests). Scoring system for ease of doing. Qualitative (by radiologist) and quantitative (using structural similarity index measure [SSIM]) image-artifact assessment. Evaluation of repeatability, comparison with various standing stances load, and loading effect on knee MR parameters (tibiofemoral bone gap [TFBG], femoral cartilage thickness [FCT], tibial cartilage thickness [TCT], femoral cartilage T2 -value [FCT2], and tibia cartilage T2 -value [TCT2]). The relative percentage change (RPC) in parameters due to the device load was computed. STATISTICAL TEST Pearson's correlation coefficient (r). RESULTS The developed device is conditional-MR safe (details in the manuscript and supplementary materials), 15 × 15 × 45 cm3 dimension, and <3 kg. The ease of using the device was 4.9/5. The device introduced no visible image artifacts, and SSIM of 0.9889 ± 0.0153 was observed. The TFBG intraobserver variability (absolute difference) was <0.1 mm. Interobserver variability of all regions of interest was <0.1 mm. The load exerted by the device was close to the load during standing on both legs in 0.25 T scanner with r > 0.9. Loading resulted in RPC of 1.5%-11.0%, 7.9%-8.5%, and -1.5% to 13.0% in the TFBG, FCT, and TCT, respectively. FCT2 and TCT2 were reduced in range of 1.5-2.7 msec and 0.5-2.3 msec due to load. DATA CONCLUSION The proposed device is conditionally MR safe, low cost (material cost < INR 6000), portable, and effective in loading the knee joint with up to 50% of body weight. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Sandeep P Jogi
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India.,Department of Biomedical Engineering, ASET, Amity University Haryana, Gurgaon, Haryana, India
| | - Rafeek Thaha
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | | | | | | | - Amit Mehndiratta
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India.,Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi, India
| | - Anup Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India.,Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
15
|
Tang TMS, Luk LYP. Asparaginyl endopeptidases: enzymology, applications and limitations. Org Biomol Chem 2021; 19:5048-5062. [PMID: 34037066 PMCID: PMC8209628 DOI: 10.1039/d1ob00608h] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022]
Abstract
Asparaginyl endopeptidases (AEP) are cysteine proteases found in mammalian and plant cells. Several AEP isoforms from plant species were found to exhibit transpeptidase activity which is integral for the key head-to-tail cyclisation reaction during the biosynthesis of cyclotides. Since many plant AEPs exhibit excellent enzyme kinetics for peptide ligation via a relatively short substrate recognition sequence, they have become appealing tools for peptide and protein modification. In this review, research focused on the enzymology of AEPs and their applications in polypeptide cyclisation and labelling will be presented. Importantly, the limitations of using AEPs and opportunities for future research and innovation will also be discussed.
Collapse
Affiliation(s)
- T M Simon Tang
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Louis Y P Luk
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK. and Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| |
Collapse
|
16
|
Hosseinzadeh P, Watson PR, Craven TW, Li X, Rettie S, Pardo-Avila F, Bera AK, Mulligan VK, Lu P, Ford AS, Weitzner BD, Stewart LJ, Moyer AP, Di Piazza M, Whalen JG, Greisen PJ, Christianson DW, Baker D. Anchor extension: a structure-guided approach to design cyclic peptides targeting enzyme active sites. Nat Commun 2021; 12:3384. [PMID: 34099674 PMCID: PMC8185074 DOI: 10.1038/s41467-021-23609-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 05/04/2021] [Indexed: 01/07/2023] Open
Abstract
Despite recent success in computational design of structured cyclic peptides, de novo design of cyclic peptides that bind to any protein functional site remains difficult. To address this challenge, we develop a computational "anchor extension" methodology for targeting protein interfaces by extending a peptide chain around a non-canonical amino acid residue anchor. To test our approach using a well characterized model system, we design cyclic peptides that inhibit histone deacetylases 2 and 6 (HDAC2 and HDAC6) with enhanced potency compared to the original anchor (IC50 values of 9.1 and 4.4 nM for the best binders compared to 5.4 and 0.6 µM for the anchor, respectively). The HDAC6 inhibitor is among the most potent reported so far. These results highlight the potential for de novo design of high-affinity protein-peptide interfaces, as well as the challenges that remain.
Collapse
Affiliation(s)
- Parisa Hosseinzadeh
- University of Washington, Department of Biochemistry, Institute for Protein Design, Seattle, WA, USA
- Knight Campus Center, University of Oregon, Eugene, OR, USA
| | - Paris R Watson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy W Craven
- University of Washington, Department of Biochemistry, Institute for Protein Design, Seattle, WA, USA
| | - Xinting Li
- University of Washington, Department of Biochemistry, Institute for Protein Design, Seattle, WA, USA
| | - Stephen Rettie
- University of Washington, Department of Biochemistry, Institute for Protein Design, Seattle, WA, USA
- Molecular and Cellular Biology Ph.D. Program, University of Washington, Seattle, WA, USA
| | - Fátima Pardo-Avila
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Asim K Bera
- University of Washington, Department of Biochemistry, Institute for Protein Design, Seattle, WA, USA
| | - Vikram Khipple Mulligan
- University of Washington, Department of Biochemistry, Institute for Protein Design, Seattle, WA, USA
- Systems Biology, Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Peilong Lu
- University of Washington, Department of Biochemistry, Institute for Protein Design, Seattle, WA, USA
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - Alexander S Ford
- University of Washington, Department of Biochemistry, Institute for Protein Design, Seattle, WA, USA
| | - Brian D Weitzner
- University of Washington, Department of Biochemistry, Institute for Protein Design, Seattle, WA, USA
- Lyell Immunopharma, Inc., Seattle, WA, USA
| | - Lance J Stewart
- University of Washington, Department of Biochemistry, Institute for Protein Design, Seattle, WA, USA
| | - Adam P Moyer
- University of Washington, Department of Biochemistry, Institute for Protein Design, Seattle, WA, USA
- Molecular Engineering Ph.D. Program, University of Washington, Seattle, WA, USA
| | - Maddalena Di Piazza
- University of Washington, Department of Biochemistry, Institute for Protein Design, Seattle, WA, USA
| | - Joshua G Whalen
- University of Washington, Department of Biochemistry, Institute for Protein Design, Seattle, WA, USA
| | - Per Jr Greisen
- University of Washington, Department of Biochemistry, Institute for Protein Design, Seattle, WA, USA
- Novo Nordisk A/S, Måløv, Denmark
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - David Baker
- University of Washington, Department of Biochemistry, Institute for Protein Design, Seattle, WA, USA.
| |
Collapse
|
17
|
Chan LY, Du J, Craik DJ. Tuning the Anti-Angiogenic Effect of the P15 Peptide Using Cyclic Trypsin Inhibitor Scaffolds. ACS Chem Biol 2021; 16:829-837. [PMID: 33881318 DOI: 10.1021/acschembio.0c00907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Angiogenesis is important for tumor growth, and accordingly, targeting angiogenesis has become an important pathway for antitumor therapy. A novel proapoptotic peptide, CIGB-300 (P15-Tat), has been shown to be involved in the casein kinase II phosphorylation pathway, conferring it with antiangiogenic activity. Cyclic peptides have been widely used as scaffolds in drug design studies due to their high stability and favorable biopharmaceutical properties. Here, we chose two very stable cyclic trypsin inhibitors, MCoTI-II and SFTI-1, as frameworks to incorporate the bioactive epitope P15 into various backbone loops. NMR studies revealed that all re-engineered analogs had similar secondary structures to their native cyclic frameworks. One key analog, MCoP15, displayed significant improvement for inhibiting human umbilical vein endothelial cell migration, was nontoxic, and had higher stability than the P15 epitope alone. Overall, the results show the value of P15 being engineered into cyclic trypsin inhibitor scaffolds for improving antiangiogenic activity and stability. More broadly, the study highlights the versatility of cyclic peptide frameworks in drug design for antiangiogenic therapies.
Collapse
Affiliation(s)
- Lai Yue Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Junqiao Du
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
18
|
Majkowska-Skrobek G, Markwitz P, Sosnowska E, Lood C, Lavigne R, Drulis-Kawa Z. The evolutionary trade-offs in phage-resistant Klebsiella pneumoniae entail cross-phage sensitization and loss of multidrug resistance. Environ Microbiol 2021; 23:7723-7740. [PMID: 33754440 DOI: 10.1111/1462-2920.15476] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022]
Abstract
Bacteriophage therapy is currently being evaluated as a critical complement to traditional antibiotic treatment. However, the emergence of phage resistance is perceived as a major hurdle to the sustainable implementation of this antimicrobial strategy. By combining comprehensive genomics and microbiological assessment, we show that the receptor-modification resistance to capsule-targeting phages involves either escape mutation(s) in the capsule biosynthesis cluster or qualitative changes in exopolysaccharides, converting clones to mucoid variants. These variants introduce cross-resistance to phages specific to the same receptor yet sensitize to phages utilizing alternative ones. The loss/modification of capsule, the main Klebsiella pneumoniae virulence factor, did not dramatically impact population fitness, nor the ability to protect bacteria against the innate immune response. Nevertheless, the introduction of phage drives bacteria to expel multidrug resistance clusters, as observed by the large deletion in K. pneumoniae 77 plasmid containing blaCTX-M , ant(3″), sul2, folA, mph(E)/mph(G) genes. The emerging bacterial resistance to viral infection steers evolution towards desired population attributes and highlights the synergistic potential for combined antibiotic-phage therapy against K. pneumoniae.
Collapse
Affiliation(s)
- Grazyna Majkowska-Skrobek
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| | - Pawel Markwitz
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| | - Ewelina Sosnowska
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| | - Cédric Lood
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, 3001 Heverlee, Belgium.,Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, Laboratory of Computational Systems Biology, KU Leuven, 3000 Leuven, Belgium
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, 3001 Heverlee, Belgium
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
19
|
Pinto MEF, Chan LY, Koehbach J, Devi S, Gründemann C, Gruber CW, Gomes M, Bolzani VS, Cilli EM, Craik DJ. Cyclotides from Brazilian Palicourea sessilis and Their Effects on Human Lymphocytes. JOURNAL OF NATURAL PRODUCTS 2021; 84:81-90. [PMID: 33397096 PMCID: PMC7836058 DOI: 10.1021/acs.jnatprod.0c01069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Indexed: 05/05/2023]
Abstract
Cyclotides are plant-derived peptides found within five families of flowering plants (Violaceae, Rubiaceae, Fabaceae, Solanaceae, and Poaceae) that have a cyclic backbone and six conserved cysteine residues linked by disulfide bonds. Their presence within the Violaceae species seems ubiquitous, yet not all members of other families produce these macrocyclic peptides. The genus Palicourea Aubl. (Rubiaceae) contains hundreds of neotropical species of shrubs and small trees; however, only a few cyclotides have been discovered hitherto. Herein, five previously uncharacterized Möbius cyclotides within Palicourea sessilis and their pharmacological activities are described. Cyclotides were isolated from leaves and stems of this plant and identified as pase A-E, as well as the known peptide kalata S. Cyclotides were de novo sequenced by MALDI-TOF/TOF mass spectrometry, and their structures were solved by NMR spectroscopy. Because some cyclotides have been reported to modulate immune cells, pase A-D were assayed for cell proliferation of human primary activated T lymphocytes, and the results showed a dose-dependent antiproliferative function. The toxicity on other nonimmune cells was also assessed. This study reveals that pase cyclotides have potential for applications as immunosuppressants and in immune-related disorders.
Collapse
Affiliation(s)
- Meri Emili F. Pinto
- Institute
of Chemistry, São Paulo State University−UNESP, Araraquara, 14800-060 SP, Brazil
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Lai Yue Chan
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Johannes Koehbach
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Seema Devi
- Institute
for Infection Prevention and Hospital Epidemiology, Center for Complementary
Medicine, University of Freiburg, 79111 Freiburg, Germany
| | - Carsten Gründemann
- Translational
Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
| | - Christian W. Gruber
- Center
for Physiology and Pharmacology, Medical
University of Vienna, 1090 Vienna, Austria
| | - Mario Gomes
- Rio
de Janeiro
Botanic Garden Research Institute−JBRJ, Rio de Janeiro, 22470-180 RJ, Brazil
| | - Vanderlan S. Bolzani
- Institute
of Chemistry, São Paulo State University−UNESP, Araraquara, 14800-060 SP, Brazil
| | - Eduardo Maffud Cilli
- Institute
of Chemistry, São Paulo State University−UNESP, Araraquara, 14800-060 SP, Brazil
| | - David J. Craik
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, 4072 Queensland, Australia
| |
Collapse
|
20
|
Grover T, Mishra R, Gulati P, Mohanty A. An insight into biological activities of native cyclotides for potential applications in agriculture and pharmaceutics. Peptides 2021; 135:170430. [PMID: 33096195 DOI: 10.1016/j.peptides.2020.170430] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023]
Abstract
Cyclotides are plant-derived mini-proteins of 28 - 37 amino acids. They have a characteristic head-to-tail cyclic backbone and three disulfide cross-linkages formed by six highly conserved cysteine residues, creating a unique knotted ring structure, known as a cyclic cystine knot (CCK) motif. The CCK topology confers immense stability to cyclotides with resistance to thermal and enzymatic degradation. Native cyclotides are of interest due to their multiple biological activities with several potential applications in agricultural (e.g. biopesticides, antifungal) and pharmaceutical (e.g. anti-HIV, cytotoxic to tumor cells) sectors. The most recent application of insecticidal activity of cyclotides is the commercially available biopesticidal spray known as 'Sero X' for cotton crops. Cyclotides have a general mode of action and their potency of bioactivity is determined through their binding ability, pore formation and disruption of the target biological membranes. Keeping in view the important potential applications of biological activities of cyclotides and the lack of an extensive and analytical compilation of bioactive cyclotides, the present review systematically describes eight major biological activities of the native cyclotides from four angiosperm families viz. Fabaceae, Poaceae, Rubiaceae, Violaceae. The bioactivities of 94 cytotoxic, 57 antibacterial, 44 hemolytic, 25 antifungal, 21 anti-HIV, 20 nematocidal, 10 insecticidal and 5 molluscicidal cyclotides have been comprehensively elaborated. Further, their distribution in angiosperm families, mode of action and future prospects have also been discussed.
Collapse
Affiliation(s)
- Tripti Grover
- Bioinformatics Infrastructure Facility, Gargi College, University of Delhi, India
| | - Reema Mishra
- Department of Botany, Gargi College, University of Delhi, India
| | - Pooja Gulati
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Aparajita Mohanty
- Bioinformatics Infrastructure Facility, Gargi College, University of Delhi, India.
| |
Collapse
|
21
|
de Veer SJ, White AM, Craik DJ. Sunflower Trypsin Inhibitor-1 (SFTI-1): Sowing Seeds in the Fields of Chemistry and Biology. Angew Chem Int Ed Engl 2020; 60:8050-8071. [PMID: 32621554 DOI: 10.1002/anie.202006919] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Indexed: 12/24/2022]
Abstract
Nature-derived cyclic peptides have proven to be a vast source of inspiration for advancing modern pharmaceutical design and synthetic chemistry. The focus of this Review is sunflower trypsin inhibitor-1 (SFTI-1), one of the smallest disulfide-bridged cyclic peptides found in nature. SFTI-1 has an unusual biosynthetic pathway that begins with a dual-purpose albumin precursor and ends with the production of a high-affinity serine protease inhibitor that rivals other inhibitors much larger in size. Investigations on the molecular basis for SFTI-1's rigid structure and adaptable function have planted seeds for thought that have now blossomed in several different fields. Here we survey these applications to highlight the growing potential of SFTI-1 as a versatile template for engineering inhibitors, a prototypic peptide for studying inhibitory mechanisms, a stable scaffold for grafting bioactive peptides, and a model peptide for evaluating peptidomimetic motifs and platform technologies.
Collapse
Affiliation(s)
- Simon J de Veer
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Andrew M White
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
22
|
Veer SJ, White AM, Craik DJ. Der Sonnenblumen‐Trypsin‐Inhibitor 1 (SFTI‐1) in der Chemie und Biologie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Simon J. Veer
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane QLD 4072 Australien
| | - Andrew M. White
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane QLD 4072 Australien
| | - David J. Craik
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane QLD 4072 Australien
| |
Collapse
|
23
|
Gitlin-Domagalska A, Maciejewska A, Dębowski D. Bowman-Birk Inhibitors: Insights into Family of Multifunctional Proteins and Peptides with Potential Therapeutical Applications. Pharmaceuticals (Basel) 2020; 13:E421. [PMID: 33255583 PMCID: PMC7760496 DOI: 10.3390/ph13120421] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Bowman-Birk inhibitors (BBIs) are found primarily in seeds of legumes and in cereal grains. These canonical inhibitors share a highly conserved nine-amino acids binding loop motif CTP1SXPPXC (where P1 is the inhibitory active site, while X stands for various amino acids). They are natural controllers of plants' endogenous proteases, but they are also inhibitors of exogenous proteases present in microbials and insects. They are considered as plants' protective agents, as their elevated levels are observed during injury, presence of pathogens, or abiotic stress, i.a. Similar properties are observed for peptides isolated from amphibians' skin containing 11-amino acids disulfide-bridged loop CWTP1SXPPXPC. They are classified as Bowman-Birk like trypsin inhibitors (BBLTIs). These inhibitors are resistant to proteolysis and not toxic, and they are reported to be beneficial in the treatment of various pathological states. In this review, we summarize up-to-date research results regarding BBIs' and BBLTIs' inhibitory activity, immunomodulatory and anti-inflammatory activity, antimicrobial and insecticidal strength, as well as chemopreventive properties.
Collapse
Affiliation(s)
| | | | - Dawid Dębowski
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (A.G.-D.); (A.M.)
| |
Collapse
|
24
|
González-Castro R, Gómez-Lim MA, Plisson F. Cysteine-Rich Peptides: Hyperstable Scaffolds for Protein Engineering. Chembiochem 2020; 22:961-973. [PMID: 33095969 DOI: 10.1002/cbic.202000634] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/21/2020] [Indexed: 12/14/2022]
Abstract
Cysteine-rich peptides (CRPs) are small proteins of less than 100 amino acids in length characterized by the presence of disulfide bridges and common end-to-end macrocyclization. These properties confer hyperstability against high temperatures, salt concentration, serum presence, and protease degradation to CRPs. Moreover, their intercysteine domains (loops) are susceptible to residue hypervariability. CRPs have been successfully applied as stable scaffolds for molecular grafting, a protein engineering process in which cysteine-rich structures provide higher thermodynamic and metabolic stability to an epitope and acquire new biological function(s). This review describes the successes and limitations of seven cysteine-rich scaffolds, their bioactive epitopes, and the resulting grafted peptides.
Collapse
Affiliation(s)
- Rafael González-Castro
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Irapuato, Guanajuato, 36824, México.,Centro de Investigación y de Estudios Avanzados del IPN Unidad Irapuato, Departamento de Ingeniería Genética, Irapuato, Guanajuato, 36824, México
| | - Miguel A Gómez-Lim
- Centro de Investigación y de Estudios Avanzados del IPN Unidad Irapuato, Departamento de Ingeniería Genética, Irapuato, Guanajuato, 36824, México
| | - Fabien Plisson
- CONACYT, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Irapuato, Guanajuato, 36824, México
| |
Collapse
|
25
|
Qu H, Jackson MA, Yap K, Harvey PJ, Gilding EK, Craik DJ. Production of a structurally validated cyclotide in rice suspension cells is enabled by a supporting biosynthetic enzyme. PLANTA 2020; 252:97. [PMID: 33155076 DOI: 10.1007/s00425-020-03505-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 05/22/2023]
Abstract
We demonstrate the production of a structurally correct cyclotide in rice suspension cells with co-expression of a ligase-type AEP, which unlocks monocotyledons as production platforms to produce cyclotides. Cyclotides are a class of backbone-cyclic plant peptides that harbor a cystine knot composed of three disulfide bonds. These structural features make cyclotides particularly stable, and thus they have attracted significant attention for their use in biotechnological applications such as drug design. Currently, chemical synthesis is the predominant strategy to produce cyclotides for research purposes. However, synthetic production becomes costly both economically and environmentally at large scale. Plants offer an attractive alternative to chemical synthesis because of their lower cost and environmental footprint. In this study, rice suspension cells were engineered to produce the prototypical cyclotide, kalata B1 (kB1), a cyclotide with insecticidal properties from the African plant Oldenlandia affinis. Engineered rice cells produced structurally validated kB1 at yields of 64.21 µg/g (DW), which was dependent on the co-expression of a peptide ligase-competent asparaginyl endopeptidase OaAEP1b from O. affinis. Without co-expression, kB1 was predominantly produced as linear peptide. Through HPLC-MS co-elution, reduction, alkylation, enzymatic digestion, and proton NMR analysis, kB1 produced in rice was shown to be structurally identical to native kB1. This study reports the first example of an engineered plant suspension cell culture with the required molecular machinery for efficient production and cyclisation of a heterologous cyclotide.
Collapse
Affiliation(s)
- Haiou Qu
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mark A Jackson
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kuok Yap
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peta J Harvey
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Edward K Gilding
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
26
|
Malik U, Chan LY, Cai M, Hruby VJ, Kaas Q, Daly NL, Craik DJ. Development of novel frog‐skin peptide scaffolds with selectivity towards melanocortin receptor subtypes. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Uru Malik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland Australia
| | - Lai Yue Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland Australia
| | - Minying Cai
- Department of Chemistry and Biochemistry University of Arizona Tucson Arizona USA
| | - Victor J. Hruby
- Department of Chemistry and Biochemistry University of Arizona Tucson Arizona USA
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland Australia
| | - Norelle L. Daly
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland Australia
- Australian Institute of Tropical Health and Medicine James Cook University Cairns Queensland Australia
| | - David J. Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
27
|
Dang TT, Chan LY, Huang YH, Nguyen LTT, Kaas Q, Huynh T, Craik DJ. Exploring the Sequence Diversity of Cyclotides from Vietnamese Viola Species. JOURNAL OF NATURAL PRODUCTS 2020; 83:1817-1828. [PMID: 32437150 DOI: 10.1021/acs.jnatprod.9b01218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Viola is the largest genus in the Violaceae plant family and is known for its ubiquitous natural production of cyclotides. Many Viola species are used as medicinal herbs across Asia and are often consumed by humans in teas for the treatment of diseases, including ulcers and asthma. Previous studies reported the isolation of cyclotides from Viola species in many countries in the hope of discovering novel compounds with anti-cancer activities; however, Viola species from Vietnam have not been investigated to date. Here, the discovery of cyclotides from three Viola species (V. arcuata, V. tonkinensis, and V. austrosinensis) collected in the northern mountainous region of Vietnam is reported. Ten cyclotides were isolated from these three Viola species: four are novel and six were previously reported to be expressed in other plants. The structures of three of the new bracelet cyclotides are similar to that of cycloviolacin O2. Because cycloviolacin O2 has previously been shown to have potent activity against a wide range of cancer cell lines including HeLa (human cervical cancer cells) and PC-3 (human prostate cancer cells), the cancer cytotoxicity of the cyclotides isolated from V. arcuata was assessed. All tested cyclotides were cytotoxic against cancer cells, albeit to varying degrees. The sequences discovered in this study significantly expand the understanding of cyclotide diversity, especially in comparison with other cyclotides found in plants from the Asian region.
Collapse
Affiliation(s)
- Tien T Dang
- The Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lai Y Chan
- The Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yen-Hua Huang
- The Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Linh T T Nguyen
- The Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Quentin Kaas
- The Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tien Huynh
- Department of Biosciences and Food Technology, RMIT University, Victoria 3001, Australia
| | - David J Craik
- The Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
28
|
Mehta L, Dhankhar R, Gulati P, Kapoor RK, Mohanty A, Kumar S. Natural and grafted cyclotides in cancer therapy: An insight. J Pept Sci 2020; 26:e3246. [DOI: 10.1002/psc.3246] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Lovekesh Mehta
- Medical Microbiology and Bioprocess Laboratory, Department of MicrobiologyMaharshi Dayanand University Rohtak India
| | - Rakhi Dhankhar
- Medical Microbiology and Bioprocess Laboratory, Department of MicrobiologyMaharshi Dayanand University Rohtak India
| | - Pooja Gulati
- Medical Microbiology and Bioprocess Laboratory, Department of MicrobiologyMaharshi Dayanand University Rohtak India
| | - Rajeev Kumar Kapoor
- Medical Microbiology and Bioprocess Laboratory, Department of MicrobiologyMaharshi Dayanand University Rohtak India
| | - Aparajita Mohanty
- Department of Botany, Gargi CollegeUniversity of Delhi New Delhi India
| | - Sanjay Kumar
- Medical Microbiology and Bioprocess Laboratory, Department of MicrobiologyMaharshi Dayanand University Rohtak India
| |
Collapse
|
29
|
Du J, Yap K, Chan LY, Rehm FBH, Looi FY, Poth AG, Gilding EK, Kaas Q, Durek T, Craik DJ. A bifunctional asparaginyl endopeptidase efficiently catalyzes both cleavage and cyclization of cyclic trypsin inhibitors. Nat Commun 2020; 11:1575. [PMID: 32221295 PMCID: PMC7101308 DOI: 10.1038/s41467-020-15418-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/06/2020] [Indexed: 01/08/2023] Open
Abstract
Asparaginyl endopeptidases (AEPs) catalyze the key backbone cyclization step during the biosynthesis of plant-derived cyclic peptides. Here, we report the identification of two AEPs from Momordica cochinchinensis and biochemically characterize MCoAEP2 that catalyzes the maturation of trypsin inhibitor cyclotides. Recombinantly produced MCoAEP2 catalyzes the backbone cyclization of a linear cyclotide precursor (MCoTI-II-NAL) with a kcat/Km of 620 mM−1 s−1, making it one of the fastest cyclases reported to date. We show that MCoAEP2 can mediate both the N-terminal excision and C-terminal cyclization of cyclotide precursors in vitro. The rate of cyclization/hydrolysis is primarily influenced by varying pH, which could potentially control the succession of AEP-mediated processing events in vivo. Furthermore, MCoAEP2 efficiently catalyzes the backbone cyclization of an engineered MCoTI-II analog with anti-angiogenic activity. MCoAEP2 provides enhanced synthetic access to structures previously inaccessible by direct chemistry approaches and enables the wider application of trypsin inhibitor cyclotides in biotechnology applications. Asparaginyl endopeptidases (AEPs) catalyze the cyclization step during the biosynthesis of cyclic peptides in plants. Here, the authors report a recombinantly produced AEP that catalyzes the backbone cyclization of a linear cyclotide precursor and an engineered analog with high efficiency and in a pH-dependent manner.
Collapse
Affiliation(s)
- Junqiao Du
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Kuok Yap
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Lai Yue Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Fabian B H Rehm
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Fong Yang Looi
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Aaron G Poth
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Edward K Gilding
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
30
|
Tombling BJ, Wang CK, Craik DJ. EGF‐artige und andere disulfidreiche Mikrodomänen als therapeutische Molekülgerüste. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Benjamin J. Tombling
- Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australien
| | - Conan K. Wang
- Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australien
| | - David J. Craik
- Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australien
| |
Collapse
|
31
|
Tombling BJ, Wang CK, Craik DJ. EGF-like and Other Disulfide-rich Microdomains as Therapeutic Scaffolds. Angew Chem Int Ed Engl 2020; 59:11218-11232. [PMID: 31867866 DOI: 10.1002/anie.201913809] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 12/20/2022]
Abstract
Disulfide bonds typically introduce conformational constraints into peptides and proteins, conferring improved biopharmaceutical properties and greater therapeutic potential. In our opinion, disulfide-rich microdomains from proteins are potentially a rich and under-explored source of drug leads. A survey of the UniProt protein database shows that these domains are widely distributed throughout the plant and animal kingdoms, with the EGF-like domain being the most abundant of these domains. EGF-like domains exhibit large diversity in their disulfide bond topologies and calcium binding modes, which we classify in detail here. We found that many EGF-like domains are associated with disease phenotypes, and the interactions they mediate are potential therapeutic targets. Indeed, EGF-based therapeutic leads have been identified, and we further propose that these domains can be optimized to expand their therapeutic potential using chemical design strategies. This Review highlights the potential of disulfide-rich microdomains as future peptide therapeutics.
Collapse
Affiliation(s)
- Benjamin J Tombling
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
32
|
Abstract
This Review explores the class of plant-derived macrocyclic peptides called cyclotides. We include an account of their discovery, characterization, and distribution in the plant kingdom as well as a detailed analysis of their sequences and structures, biosynthesis and chemical synthesis, biological functions, and applications. These macrocyclic peptides are around 30 amino acids in size and are characterized by their head-to-tail cyclic backbone and cystine knot motif, which render them to be exceptionally stable, with resistance to thermal or enzymatic degradation. Routes to their chemical synthesis have been developed over the past two decades, and this capability has facilitated a wide range of mutagenesis and structure-activity relationship studies. In turn, these studies have both led to an increased understanding of their mechanisms of action as well as facilitated a range of applications in agriculture and medicine, as ecofriendly crop protection agents, and as drug leads or scaffolds for pharmaceutical design. Our overall objective in this Review is to provide readers with a comprehensive overview of cyclotides that we hope will stimulate further work on this fascinating family of peptides.
Collapse
Affiliation(s)
- Simon J de Veer
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Meng-Wei Kan
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| |
Collapse
|
33
|
Jones PM, Mazzio E, Soliman K, George AM. In Silico Investigation of the Binding of MCoTI-II Plant Defense Knottin to the γ-NGF Serine Protease of the 7S Nerve Growth Factor Complex and Biological Activity of Its NGF Mimetic Properties. J Phys Chem B 2019; 123:9104-9110. [PMID: 31580077 DOI: 10.1021/acs.jpcb.9b07547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nerve growth factor (NGF) is an endogenously produced polypeptide that promotes the differentiation, survival, and repair of neurons in the central and peripheral nervous systems. While trophic proteins hold promise for the treatment of neuronal injury and disease, use of NGF is limited by its large molecular weight, lack of permeability through the blood-brain barrier, and peripheral side effects. Previously, we found that an extract of the Momordica cochinchinensis seed stimulated PC-12 neurite outgrowth. Bioactivity-guided fractioning of the seed extract suggested that the NGF mimetic agent was one of few defined proteins from this plant: one group being the defense Knottins and the other group of the lowest mass is the potent trypsin inhibitor MCoTI-II. Here, the NGF mimetic potential of this latter protein was investigated using two concurrent but different approaches. A biological study used recombinant purified MCoTI-II, which when tested in rat PC-12 cells grown on collagen, failed to initiate outgrowth relative to the positive control 7S NGF. In a separate computational study, the possibility was investigated such that MCoTI-II could exert an effect through binding to the serine protease γ-NGF subunit of the 7S NGF complex, analogous to its binding to its native receptor trypsin. Molecular dynamics simulations showed that MCoTI-II can bind stably to γ-NGF for >350 ns. Modeling indicated that this interaction could sterically inhibit 7S NGF complex formation, potentially altering the equilibrium between inactive complexed and free active NFG protein. In conclusion, the biological study now excludes the MCoTI-II protein as the NGF mimetic factor in the Momordica extract, an important and required step to identify the active component in this seed. On the other hand, the theoretical study has revealed a novel observation that may be of use in the development of strategies to affect NGF activity.
Collapse
Affiliation(s)
- Peter M Jones
- School of Life Sciences , University of Technology Sydney , P.O. Box 123, Broadway , New South Wales 2007 , Australia
| | - Elizabeth Mazzio
- College of Pharmacy and Pharmaceutical Sciences , Florida Agricultural and Mechanical University , 241 Fred Humphries Science Research Facility , Tallahassee , Florida 32307 , United States
| | - Karam Soliman
- College of Pharmacy and Pharmaceutical Sciences , Florida Agricultural and Mechanical University , 241 Fred Humphries Science Research Facility , Tallahassee , Florida 32307 , United States
| | - Anthony M George
- School of Life Sciences , University of Technology Sydney , P.O. Box 123, Broadway , New South Wales 2007 , Australia
| |
Collapse
|
34
|
Ojeda PG, Cardoso MH, Franco OL. Pharmaceutical applications of cyclotides. Drug Discov Today 2019; 24:2152-2161. [PMID: 31541712 DOI: 10.1016/j.drudis.2019.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
Cyclotides are cyclic peptides, present in several plant families, that show diverse biological properties. Structurally, cyclotides share a distinctive head-to-tail circular knotted topology of three disulfide bonds. This framework provides cyclotides with extraordinary resistance to thermal and chemical denaturation. There is increasing interest in the therapeutic potential of cyclotides, which combine several promising pharmaceutical properties, including binding affinity, target selectivity, and low toxicity towards healthy mammalian cells. Recently, cyclotides have been reported to be orally bioavailable and have proved to be amenable to modifications. Here, we provide an overview of the structure, properties, and pharmaceutical applications of cyclotides.
Collapse
Affiliation(s)
- Paola G Ojeda
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Católica del Maule, Av. San Miguel 3605, Talca 3480112, Chile
| | - Marlon H Cardoso
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil; 3S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Octávio L Franco
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil; 3S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.
| |
Collapse
|
35
|
Laengsri V, Nantasenamat C, Schaduangrat N, Nuchnoi P, Prachayasittikul V, Shoombuatong W. TargetAntiAngio: A Sequence-Based Tool for the Prediction and Analysis of Anti-Angiogenic Peptides. Int J Mol Sci 2019; 20:E2950. [PMID: 31212918 PMCID: PMC6628072 DOI: 10.3390/ijms20122950] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 11/21/2022] Open
Abstract
Cancer remains one of the major causes of death worldwide. Angiogenesis is crucial for the pathogenesis of various human diseases, especially solid tumors. The discovery of anti-angiogenic peptides is a promising therapeutic route for cancer treatment. Thus, reliably identifying anti-angiogenic peptides is extremely important for understanding their biophysical and biochemical properties that serve as the basis for the discovery of new anti-cancer drugs. This study aims to develop an efficient and interpretable computational model called TargetAntiAngio for predicting and characterizing anti-angiogenic peptides. TargetAntiAngio was developed using the random forest classifier in conjunction with various classes of peptide features. It was observed via an independent validation test that TargetAntiAngio can identify anti-angiogenic peptides with an average accuracy of 77.50% on an objective benchmark dataset. Comparisons demonstrated that TargetAntiAngio is superior to other existing methods. In addition, results revealed the following important characteristics of anti-angiogenic peptides: (i) disulfide bond forming Cys residues play an important role for inhibiting blood vessel proliferation; (ii) Cys located at the C-terminal domain can decrease endothelial formatting activity and suppress tumor growth; and (iii) Cyclic disulfide-rich peptides contribute to the inhibition of angiogenesis and cell migration, selectivity and stability. Finally, for the convenience of experimental scientists, the TargetAntiAngio web server was established and made freely available online.
Collapse
Affiliation(s)
- Vishuda Laengsri
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| | - Nalini Schaduangrat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| | - Pornlada Nuchnoi
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
36
|
Camarero JA, Campbell MJ. The Potential of the Cyclotide Scaffold for Drug Development. Biomedicines 2019; 7:biomedicines7020031. [PMID: 31010257 PMCID: PMC6631875 DOI: 10.3390/biomedicines7020031] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Cyclotides are a novel class of micro-proteins (≈30-40 residues long) with a unique topology containing a head-to-tail cyclized backbone structure further stabilized by three disulfide bonds that form a cystine knot. This unique molecular framework makes them exceptionally stable to physical, chemical, and biological degradation compared to linear peptides of similar size. The cyclotides are also highly tolerant to sequence variability, aside from the conserved residues forming the cystine knot, and are orally bioavailable and able to cross cellular membranes to modulate intracellular protein-protein interactions (PPIs), both in vitro and in vivo. These unique properties make them ideal scaffolds for many biotechnological applications, including drug discovery. This review provides an overview of the properties of cyclotides and their potential for the development of novel peptide-based therapeutics. The selective disruption of PPIs still remains a very challenging task, as the interacting surfaces are relatively large and flat. The use of the cell-permeable highly constrained polypeptide molecular frameworks, such as the cyclotide scaffold, has shown great promise, as it provides unique pharmacological properties. The use of molecular techniques, such as epitope grafting, and molecular evolution have shown to be highly effective for the selection of bioactive cyclotides. However, despite successes in employing cyclotides to target PPIs, some of the challenges to move them into the clinic still remain.
Collapse
Affiliation(s)
- Julio A Camarero
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, Los Angeles, CA 9033, USA.
| | - Maria Jose Campbell
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA.
| |
Collapse
|
37
|
Lan HY, Zhao B, Shen YL, Li XQ, Wang SJ, Zhang LJ, Zhang H. Phytochemistry, Pharmacological Activities, Toxicity and Clinical Application of Momordica cochinchinensis. Curr Pharm Des 2019; 25:715-728. [PMID: 30931848 DOI: 10.2174/1381612825666190329123436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/25/2019] [Indexed: 12/14/2022]
Abstract
Momordica cochinchinensis (Lour.) Spreng (M. cochinchinensis) is a deciduous vine that grows in Southeast Asia. It is known as gac in Vietnam and as Red Melon in English. Gac is reputed to be extremely benificial for health and has been widely used as food and folk medicine in Southeast Asia. In China, the seed of M. cochinchinensis (Chinese name: Mu biezi) is used as traditional Chinese medicine (TCM) for the treatment of various diseases. More than 60 chemical constituents have been isolated from M. cochinchinensis. Modern pharmacological studies and clinical practice demonstrate that some chemical constituents of M. cochinchinensis possess wide pharmacological activities, such as anti-tumor, anti-oxidation, anti-inflammatory, etc. This paper reviews the phytochemistry, pharmacological activities, toxicity, and clinical application of M. cochinchinensis, aiming to bring new insights into further research and application of this ancient herb.
Collapse
Affiliation(s)
- Hai-Yue Lan
- Central Laboratory, Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.,Institute of Interdisciplinary Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bin Zhao
- Department of General Surgery, Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yu-Li Shen
- Central Laboratory, Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.,Institute of Interdisciplinary Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao-Qin Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Su-Juan Wang
- Department of Drug Preparation, Hospital of TCM and Hui Nationality Medicine, Ningxia Medical University, Wuzhong, China
| | - Li-Jun Zhang
- Central Laboratory, Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.,Institute of Interdisciplinary Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hong Zhang
- Central Laboratory, Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.,Institute of Interdisciplinary Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
38
|
Silva ON, Pinto MF, Viana JF, Freitas CG, Fensterseifer IC, Craik DJ, Franco OL. Evaluation of the in vitro Antitumor Activity of Nanostructured Cyclotides in Polymers of Eudragit® L 100-55 and RS 30 D. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180801115526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background:
Cancer is a major cause of mortality and morbidity and given the limitations
of many current cancer drugs, there is great need to discover and develop novel treatments. An
alternative to the conventional drug discovery path is to exploit new classes of natural compounds
such as cyclotides. This peptide family is characterized by linked C- and N-termini and a structural
fold called the cyclic cystine knot (CCK). The CCK fold is responsible for the exceptional enzymatic,
chemical and thermal stability of cyclotides.
Methods:
In the present study, an alternative to traditional cancer treatments, involving new nanomaterials
and nanocarriers allowing efficient cyclotide delivery, is proposed. Using the polymers
Eudragit® L 100-55 and RS 30 D, the cyclotides kalata B2 and parigidin-br1 (PBR1) were nanocapsulated,
and nanoparticles 91 nm and 188 nm in diameter, respectively, were produced.
Results:
An encapsulation rate of up to 95% was observed. In vitro bioassays showed that the
nanostructured cyclotides were partially able to control the development of the colorectal adenocarcinoma
cell line CACO2 and the breast cancer cell line MCF-7.
Conclusion:
Data reported herein indicate that nanoformulated cyclotides exhibit antitumor activity
and sustained drug release. Thus, the system using Eudragit® nanocapsules seems to be efficient for
cyclotide encapsulation and probably could be used to target specific tumors in future studies.
Collapse
Affiliation(s)
- Osmar N. Silva
- S-Inova Biotech, Universidade Catolica Dom Bosco, Programa de Pós-graduacao em Biotecnologia, Campo Grande, Mato Grosso do Sul, Brazil
| | - Michelle F.S. Pinto
- Faculdade Anhanguera de Ciencias e Tecnologia de Brasilia, Brasilia, Distrito Federal, Brazil
| | | | - Camila G. Freitas
- Centro de Analises Proteomicas e Bioquimicas. Programa de Pos-Graduacao em Ciencias Genomicas e Biotecnologia, Universidade Catolica de Brasilia, Brasilia, Distrito Federal, Brazil
| | - Isabel C.M. Fensterseifer
- Centro de Analises Proteomicas e Bioquimicas. Programa de Pos-Graduacao em Ciencias Genomicas e Biotecnologia, Universidade Catolica de Brasilia, Brasilia, Distrito Federal, Brazil
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Octavio L. Franco
- Centro de Analises Proteomicas e Bioquimicas. Programa de Pos-Graduacao em Ciencias Genomicas e Biotecnologia, Universidade Catolica de Brasilia, Brasilia, Distrito Federal, Brazil
| |
Collapse
|
39
|
Structural studies of plasmin inhibition. Biochem Soc Trans 2019; 47:541-557. [DOI: 10.1042/bst20180211] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 12/24/2022]
Abstract
Abstract
Plasminogen (Plg) is the zymogen form of the serine protease plasmin (Plm), and it plays a crucial role in fibrinolysis as well as wound healing, immunity, tissue remodeling and inflammation. Binding to the targets via the lysine-binding sites allows for Plg activation by plasminogen activators (PAs) present on the same target. Cellular uptake of fibrin degradation products leads to apoptosis, which represents one of the pathways for cross-talk between fibrinolysis and tissue remodeling. Therapeutic manipulation of Plm activity plays a vital role in the treatments of a range of diseases, whereas Plm inhibitors are used in trauma and surgeries as antifibrinolytic agents. Plm inhibitors are also used in conditions such as angioedema, menorrhagia and melasma. Here, we review the rationale for the further development of new Plm inhibitors, with a particular focus on the structural studies of the active site inhibitors of Plm. We compare the binding mode of different classes of inhibitors and comment on how it relates to their efficacy, as well as possible future developments.
Collapse
|
40
|
Using backbone-cyclized Cys-rich polypeptides as molecular scaffolds to target protein-protein interactions. Biochem J 2019; 476:67-83. [PMID: 30635453 DOI: 10.1042/bcj20180792] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 12/23/2022]
Abstract
The use of disulfide-rich backbone-cyclized polypeptides, as molecular scaffolds to design a new generation of bioimaging tools and drugs that are potent and specific, and thus might have fewer side effects than traditional small-molecule drugs, is gaining increasing interest among the scientific and in the pharmaceutical industries. Highly constrained macrocyclic polypeptides are exceptionally more stable to chemical, thermal and biological degradation and show better biological activity when compared with their linear counterparts. Many of these relatively new scaffolds have been also found to be highly tolerant to sequence variability, aside from the conserved residues forming the disulfide bonds, able to cross cellular membranes and modulate intracellular protein-protein interactions both in vitro and in vivo These properties make them ideal tools for many biotechnological applications. The present study provides an overview of the new developments on the use of several disulfide-rich backbone-cyclized polypeptides, including cyclotides, θ-defensins and sunflower trypsin inhibitor peptides, in the development of novel bioimaging reagents and therapeutic leads.
Collapse
|
41
|
Lorion MM, Kaplaneris N, Son J, Kuniyil R, Ackermann L. Late‐Stage Peptide Diversification through Cobalt‐Catalyzed C−H Activation: Sequential Multicatalysis for Stapled Peptides. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811668] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mélanie M. Lorion
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Tammanstr. 2 37077 Göttingen Germany
| | - Nikolaos Kaplaneris
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Tammanstr. 2 37077 Göttingen Germany
| | - Jongwoo Son
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Tammanstr. 2 37077 Göttingen Germany
| | - Rositha Kuniyil
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Tammanstr. 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Tammanstr. 2 37077 Göttingen Germany
- DZHK (German Center for Cardiovascular Research) Germany
| |
Collapse
|
42
|
Lorion MM, Kaplaneris N, Son J, Kuniyil R, Ackermann L. Late-Stage Peptide Diversification through Cobalt-Catalyzed C-H Activation: Sequential Multicatalysis for Stapled Peptides. Angew Chem Int Ed Engl 2019; 58:1684-1688. [PMID: 30499607 DOI: 10.1002/anie.201811668] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/25/2018] [Indexed: 11/09/2022]
Abstract
Bioorthogonal late-stage diversification of structurally complex peptides has enormous potential for drug discovery and molecular imaging. In recent years, transition-metal-catalyzed C-H activation has emerged as an increasingly viable tool for peptide modification. Despite major accomplishments, these strategies largely rely on expensive palladium catalysts. We herein report an unprecedented cobalt(III)-catalyzed peptide C-H activation, which enables the direct C-H functionalization of structurally complex peptides, and sets the stage for a multicatalytic C-H activation/alkene metathesis/hydrogenation strategy for the assembly of novel cyclic peptides.
Collapse
Affiliation(s)
- Mélanie M Lorion
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammanstr. 2, 37077, Göttingen, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammanstr. 2, 37077, Göttingen, Germany
| | - Jongwoo Son
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammanstr. 2, 37077, Göttingen, Germany
| | - Rositha Kuniyil
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammanstr. 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammanstr. 2, 37077, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Germany
| |
Collapse
|
43
|
Cardoso MH, Cândido ES, Chan LY, Der Torossian Torres M, Oshiro KGN, Rezende SB, Porto WF, Lu TK, de la Fuente-Nunez C, Craik DJ, Franco OL. A Computationally Designed Peptide Derived from Escherichia coli as a Potential Drug Template for Antibacterial and Antibiofilm Therapies. ACS Infect Dis 2018; 4:1727-1736. [PMID: 30346140 DOI: 10.1021/acsinfecdis.8b00219] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Computer-aided screening of antimicrobial peptides (AMPs) is a promising approach for discovering novel therapies against multidrug-resistant bacterial infections. Here, we functionally and structurally characterized an Escherichia coli-derived AMP (EcDBS1R5) previously designed through pattern identification [α-helical set (KK[ILV](3)[AILV])], followed by sequence optimization. EcDBS1R5 inhibited the growth of Gram-negative and Gram-positive, susceptible and resistant bacterial strains at low doses (2-32 μM), with no cytotoxicity observed against non-cancerous and cancerous cell lines in the concentration range analyzed (<100 μM). Furthermore, EcDBS1R5 (16 μM) acted on Pseudomonas aeruginosa pre-formed biofilms by compromising the viability of biofilm-constituting cells. The in vivo antibacterial potential of EcDBS1R5 was confirmed as the peptide reduced bacterial counts by two-logs 2 days post-infection using a skin scarification mouse model. Structurally, circular dichroism analysis revealed that EcDBS1R5 is unstructured in hydrophilic environments, but has strong helicity in 2,2,2-trifluoroethanol (TFE)/water mixtures (v/v) and sodium dodecyl sulfate (SDS) micelles. The TFE-induced nuclear magnetic resonance structure of EcDBS1R5 was determined and showed an amphipathic helical segment with flexible termini. Moreover, we observed that the amide protons for residues Met2-Ala8, Arg10, Ala13-Ala16, and Trp19 in EcDBS1R5 are protected from the solvent, as their temperature coefficients values are more positive than -4.6 ppb·K-1. In summary, this study reports a novel dual-antibacterial/antibiofilm α-helical peptide with therapeutic potential in vitro and in vivo against clinically relevant bacterial strains.
Collapse
Affiliation(s)
- Marlon H. Cardoso
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, Brasília, DF 70910900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Módulo B, Asa Norte, Brasília, DF 70790160, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Avenida Tamandaré 6000, Campo Grande, MS 79117900, Brazil
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
| | - Elizabete S. Cândido
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Módulo B, Asa Norte, Brasília, DF 70790160, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Avenida Tamandaré 6000, Campo Grande, MS 79117900, Brazil
| | - Lai Y. Chan
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
| | - Marcelo Der Torossian Torres
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210170, Brazil
| | - Karen G. N. Oshiro
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, Brasília, DF 70910900, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Avenida Tamandaré 6000, Campo Grande, MS 79117900, Brazil
| | - Samilla B. Rezende
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Avenida Tamandaré 6000, Campo Grande, MS 79117900, Brazil
| | - William F. Porto
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Módulo B, Asa Norte, Brasília, DF 70790160, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Avenida Tamandaré 6000, Campo Grande, MS 79117900, Brazil
- Porto Reports, Brasília, DF 70790160, Brazil
| | - Timothy K. Lu
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Cesar de la Fuente-Nunez
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
| | - Octávio L. Franco
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, Brasília, DF 70910900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Módulo B, Asa Norte, Brasília, DF 70790160, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Avenida Tamandaré 6000, Campo Grande, MS 79117900, Brazil
| |
Collapse
|
44
|
Molecular Imaging of a New Multimodal Microbubble for Adhesion Molecule Targeting. Cell Mol Bioeng 2018; 12:15-32. [PMID: 31719897 PMCID: PMC6816780 DOI: 10.1007/s12195-018-00562-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022] Open
Abstract
Introduction Inflammation is an important risk-associated component of many diseases and can be diagnosed by molecular imaging of specific molecules. The aim of this study was to evaluate the possibility of targeting adhesion molecules on inflammation-activated endothelial cells and macrophages using an innovative multimodal polyvinyl alcohol-based microbubble (MB) contrast agent developed for diagnostic use in ultrasound, magnetic resonance, and nuclear imaging. Methods We assessed the binding efficiency of antibody-conjugated multimodal contrast to inflamed murine or human endothelial cells (ECs), and to peritoneal macrophages isolated from rats with peritonitis, utilizing the fluorescence characteristics of the MBs. Single-photon emission tomography (SPECT) was used to illustrate 99mTc-labeled MB targeting and distribution in an experimental in vivo model of inflammation. Results Flow cytometry and confocal microscopy showed that binding of antibody-targeted MBs to the adhesion molecules ICAM-1, VCAM-1, or E-selectin, expressed on cytokine-stimulated ECs, was up to sixfold higher for human and 12-fold higher for mouse ECs, compared with that of non-targeted MBs. Under flow conditions, both VCAM-1- and E-selectin-targeted MBs adhered more firmly to stimulated human ECs than to untreated cells, while VCAM-1-targeted MBs adhered best to stimulated murine ECs. SPECT imaging showed an approximate doubling of signal intensity from the abdomen of rats with peritonitis, compared with healthy controls, after injection of anti-ICAM-1-MBs. Conclusions This novel multilayer contrast agent can specifically target adhesion molecules expressed as a result of inflammatory stimuli in vitro, and has potential for use in disease-specific multimodal diagnostics in vivo using antibodies against targets of interest.
Collapse
|
45
|
Wang W, Lorion MM, Shah J, Kapdi AR, Ackermann L. Late-Stage Peptide Diversification by Position-Selective C−H Activation. Angew Chem Int Ed Engl 2018; 57:14700-14717. [DOI: 10.1002/anie.201806250] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/28/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Wei Wang
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität; Tammannstraße 2 37077 Göttingen Germany
| | - Mélanie M. Lorion
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität; Tammannstraße 2 37077 Göttingen Germany
| | - Jagrut Shah
- Department of Chemistry; Institute of Chemical Technology; Nathalal Parekh Road, Matunga Mumbai- 400019 India
| | - Anant R. Kapdi
- Department of Chemistry; Institute of Chemical Technology; Nathalal Parekh Road, Matunga Mumbai- 400019 India
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität; Tammannstraße 2 37077 Göttingen Germany
- Department of Chemistry; University of Pavia; Viale Taramelli, 10 27100 Pavia Italy
- DZHK (German Centre for Cardiovascular Research); Germany
| |
Collapse
|
46
|
Wang W, Lorion MM, Shah J, Kapdi AR, Ackermann L. Peptid-Diversifizierung durch positionsselektive C-H-Aktivierung im späten Synthesestadium. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806250] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wei Wang
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität; Tammannstraße 2 37077 Göttingen Deutschland
| | - Mélanie M. Lorion
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität; Tammannstraße 2 37077 Göttingen Deutschland
| | - Jagrut Shah
- Department of Chemistry; Institute of Chemical Technology; Nathalal Parekh Road, Matunga Mumbai- 400019 Indien
| | - Anant R. Kapdi
- Department of Chemistry; Institute of Chemical Technology; Nathalal Parekh Road, Matunga Mumbai- 400019 Indien
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität; Tammannstraße 2 37077 Göttingen Deutschland
- Department of Chemistry; University of Pavia; Viale Taramelli, 10 27100 Pavia Italien
- DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung); Deutschland
| |
Collapse
|
47
|
Bee YS, Ma YL, Chen J, Tsai PJ, Sheu SJ, Lin HC, Huang H, Liu GS, Tai MH. Inhibition of Experimental Choroidal Neovascularization by a Novel Peptide Derived from Calreticulin Anti-Angiogenic Domain. Int J Mol Sci 2018; 19:ijms19102993. [PMID: 30274378 PMCID: PMC6213176 DOI: 10.3390/ijms19102993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022] Open
Abstract
Choroidal neovascularization (CNV) is a key pathological feature of several leading causes of vision loss including neovascular age-related macular degeneration. Here, we show that a calreticulin anti-angiogenic domain (CAD)-like peptide 27, CAD27, inhibited in vitro angiogenic activities, including tube formation, migration of endothelial cells, and vascular sprouting from rat aortic ring explants. In a rat model of laser-induced CNV, we demonstrate that intravitreal injection of CAD27 significantly attenuated the formation of CNV lesions as measured via fundus fluorescein angiography and choroid flat-mounts (19.5% and 22.4% reductions at 10 μg and 20 μg of CAD27 injected, respectively). Similarly, the reduction of CNV lesions was observed in rats that had received topical applications of CAD27 (choroid flat-mounts: 17.9% and 32.5% reductions at 10 μg/mL and 20 μg/mL of CAD27 instilled, respectively). Retinal function was unaffected, as measured using electroretinography in both groups receiving interareal injection or topical applications of CAD27 for at least fourteen days. These findings show that CAD27 can be used as a potential therapeutic alternative for targeting CNV in diseases such as neovascular age-related macular degeneration.
Collapse
Affiliation(s)
- Youn-Shen Bee
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
- Yuh-Ing Junior College of Health Care & Management, Kaohsiung 807, Taiwan.
- National Defense Medical Center, Taipei 114, Taiwan.
| | - Yi-Ling Ma
- Division of Nephrology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Jinying Chen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia.
- Department of Ophthalmology, Jinan University, Guangzhou 510632, China.
| | - Pei-Jhen Tsai
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Shwu-Jiuan Sheu
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Hsiu-Chen Lin
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Hu Huang
- Aier Eye Institute, Aier School of Ophthalmology, Central South University, Changsha 410083, China.
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia.
- Department of Ophthalmology, Jinan University, Guangzhou 510632, China.
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia.
| | - Ming-Hong Tai
- Department of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
- Center for Neuroscience, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
48
|
Hostetler MA, Lipton MA. An Optimized Preparation of 1,1-Dimethylallyl Esters and Their Application to Solid-Phase Peptide Synthesis. J Org Chem 2018; 83:7762-7770. [PMID: 29938510 DOI: 10.1021/acs.joc.8b00658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A one-step preparation of 1,1-dimethylallyl (DMA) esters was optimized for the C-terminal protection of a range of Fmoc-protected amino acids. This preparation is not sensitive to the scale of reaction and affords the corresponding DMA esters in 70-99% yield with high regioselectivity. Additionally, these DMA-protected amino acids were used with the backbone amide linker (BAL) of Albericio and Barany and found to resist diketopiperazine formation during the synthesis of a series of tripeptide esters. C-terminal DMA protection is compatible with the BAL linkage and allows for standard Fmoc-based methods to be used throughout the synthesis.
Collapse
Affiliation(s)
- Matthew A Hostetler
- Department of Chemistry and Cancer Center , Purdue University 560 Oval Drive , West Lafayette , Indiana 47907-2084 , United States
| | - Mark A Lipton
- Department of Chemistry and Cancer Center , Purdue University 560 Oval Drive , West Lafayette , Indiana 47907-2084 , United States
| |
Collapse
|
49
|
Designing macrocyclic disulfide-rich peptides for biotechnological applications. Nat Chem Biol 2018; 14:417-427. [DOI: 10.1038/s41589-018-0039-y] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022]
|
50
|
Zhang RY, Thapa P, Espiritu MJ, Menon V, Bingham JP. From nature to creation: Going around in circles, the art of peptide cyclization. Bioorg Med Chem 2018; 26:1135-1150. [DOI: 10.1016/j.bmc.2017.11.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 02/02/2023]
|