1
|
Rios T, Bomfim L, Pereira J, Miranda K, Majerowicz D, Pane A, Ramos I. Knockdown of Sec16 causes early lethality and defective deposition of the protein Rp30 in the eggshell of the vector Rhodnius prolixus. Front Cell Dev Biol 2024; 12:1332894. [PMID: 38711619 PMCID: PMC11070790 DOI: 10.3389/fcell.2024.1332894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/18/2024] [Indexed: 05/08/2024] Open
Abstract
In nearly every species of insect, embryonic development takes place outside of the mother's body and is entirely dependent on the elements that the mother had previously stored within the eggs. It is well known that the follicle cells (FCs) synthesize the eggshell (chorion) components during the process of choriogenesis, the final step of oogenesis before fertilization. These cells have developed a specialization in the massive production of chorion proteins, which are essential for the protection and survival of the embryo. Here, we investigate the function of Sec16, a protein crucial for the endoplasmic reticulum (ER) to Golgi traffic, in the oocyte development in the insect Rhodnius prolixus. We discovered that Sec16 is strongly expressed in vitellogenic females' ovaries, particularly in the choriogenic oocyte and it is mainly associated with the FCs. Silencing of Sec16 by RNAi caused a sharp decline in oviposition rates, F1 viability, and longevity in adult females. In the FCs, genes involved in the unfolded protein response (UPR), the ubiquitin-proteasome system (UPS), and autophagy were massively upregulated, whereas the mRNAs of Rp30 and Rp45-which code for the two major chorion proteins - were downregulated as a result of Sec16 silencing, indicating general proteostasis disturbance. As a result, the outer surface ultrastructure of Sec16-silenced chorions was altered, with decreased thickness, dityrosine crosslinking, sulfur signals, and lower amounts of the chorion protein Rp30. These findings collectively demonstrate the critical role Sec16 plays in the proper functioning of the FCs, which impacts the synthesis and deposition of particular components of the chorion as well as the overall reproduction of this vector.
Collapse
Affiliation(s)
- Thamara Rios
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa Bomfim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jéssica Pereira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kildare Miranda
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David Majerowicz
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Biociências, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Attilio Pane
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabela Ramos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Berg C, Sieber M, Sun J. Finishing the egg. Genetics 2024; 226:iyad183. [PMID: 38000906 PMCID: PMC10763546 DOI: 10.1093/genetics/iyad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Gamete development is a fundamental process that is highly conserved from early eukaryotes to mammals. As germ cells develop, they must coordinate a dynamic series of cellular processes that support growth, cell specification, patterning, the loading of maternal factors (RNAs, proteins, and nutrients), differentiation of structures to enable fertilization and ensure embryonic survival, and other processes that make a functional oocyte. To achieve these goals, germ cells integrate a complex milieu of environmental and developmental signals to produce fertilizable eggs. Over the past 50 years, Drosophila oogenesis has risen to the forefront as a system to interrogate the sophisticated mechanisms that drive oocyte development. Studies in Drosophila have defined mechanisms in germ cells that control meiosis, protect genome integrity, facilitate mRNA trafficking, and support the maternal loading of nutrients. Work in this system has provided key insights into the mechanisms that establish egg chamber polarity and patterning as well as the mechanisms that drive ovulation and egg activation. Using the power of Drosophila genetics, the field has begun to define the molecular mechanisms that coordinate environmental stresses and nutrient availability with oocyte development. Importantly, the majority of these reproductive mechanisms are highly conserved throughout evolution, and many play critical roles in the development of somatic tissues as well. In this chapter, we summarize the recent progress in several key areas that impact egg chamber development and ovulation. First, we discuss the mechanisms that drive nutrient storage and trafficking during oocyte maturation and vitellogenesis. Second, we examine the processes that regulate follicle cell patterning and how that patterning impacts the construction of the egg shell and the establishment of embryonic polarity. Finally, we examine regulatory factors that control ovulation, egg activation, and successful fertilization.
Collapse
Affiliation(s)
- Celeste Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065 USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
3
|
Shaposhnikov MV, Zakluta AS, Zemskaya NV, Guvatova ZG, Shilova VY, Yakovleva DV, Gorbunova AA, Koval LA, Ulyasheva NS, Evgen'ev MB, Zatsepina OG, Moskalev AA. Deletions of the cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) genes, involved in the control of hydrogen sulfide biosynthesis, significantly affect lifespan and fitness components of Drosophila melanogaster. Mech Ageing Dev 2022; 203:111656. [PMID: 35247392 DOI: 10.1016/j.mad.2022.111656] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022]
Abstract
The gasotransmitter hydrogen sulfide (H2S) is an important biological mediator, playing an essential role in many physiological and pathological processes. It is produced by transsulfuration - an evolutionarily highly conserved pathway for the metabolism of sulfur-containing amino acids methionine and cysteine. Cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) enzymes play a central role in cysteine metabolism and H2S production. Here we investigated the fitness components (longevity, stress resistance, viability of preimaginal stages, and reproductive function parameters) in D. melanogaster lines containing deletions of the CBS and CSE genes. Surprisingly, in most tests, CSE deletion improved, and CBS worsened the fitness. Lines with deletion of both CBS and CSE demonstrated better stress resistance and longevity than lines with single CBS deletion. At the same time, deletion of both CBS and CSE genes causes more serious disturbances of reproductive function parameters than single CBS deletion. Thus, a complex interaction of H2S-producing pathways and cellular stress response in determining the lifespan and fitness components of the whole organism was revealed.
Collapse
Affiliation(s)
- Mikhail V Shaposhnikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation; Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation.
| | - Alexey S Zakluta
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation.
| | - Nadezhda V Zemskaya
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation.
| | - Zulfiya G Guvatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation.
| | - Victoria Y Shilova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation.
| | - Daria V Yakovleva
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation.
| | - Anastasia A Gorbunova
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation.
| | - Liubov A Koval
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation.
| | - Natalia S Ulyasheva
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation.
| | - Mikhail B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation.
| | - Olga G Zatsepina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation.
| | - Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation; Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation; Center for Precision Genome Editing and Genetic Technologies for Biomedicine Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation.
| |
Collapse
|
4
|
Xia X, Peng CW, Cui JR, Jin PY, Yang K, Hong XY. Wolbachia affects reproduction in the spider mite Tetranychus truncatus (Acari: Tetranychidae) by regulating chorion protein S38-like and Rop. INSECT MOLECULAR BIOLOGY 2021; 30:18-29. [PMID: 32945029 DOI: 10.1111/imb.12669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/20/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Wolbachia-induced reproductive regulation in hosts has been used to control pest populations, but little is known about the molecular mechanism underlying Wolbachia regulation of host genes. Here, reproductive regulation by Wolbachia in the spider mite Tetranychus truncatus was studied at the molecular level. Infection with Wolbachia resulted in decreasing oviposition and cytoplasmic incompatibility in T. truncatus. Further RNA-seq revealed genes regulated by Wolbachia in T. truncatus. Real-time quantitative polymerase chain reaction (qPCR) showed that genes, including chorion protein S38-like and Rop were down-regulated by Wolbachia. RNA interference (RNAi) of chorion protein S38-like and Rop in Wolbachia-uninfected T. truncatus decreased oviposition, which was consistent with Wolbachia-induced oviposition decrease. Interestingly, suppressing Rop in Wolbachia-infected T. truncatus led to increased Wolbachia titres in eggs; however, this did not occur after RNAi of chorion protein S38-like. This is the first study to show that chorion protein S38-like and Rop facilitate Wolbachia-mediated changes in T. truncatus fertility. In addition, RNAi of Rop turned the body colour of Wolbachia-uninfected T. truncatus black, which indicates that the role of Rop is not limited to the reproductive regulation of T. truncatus.
Collapse
Affiliation(s)
- X Xia
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - C-W Peng
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - J-R Cui
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - P-Y Jin
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - K Yang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - X-Y Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Keramaris KE, Konstantopoulos K, Margaritis LH, Velentzas AD, Papassideri IS, Stravopodis DJ. Exploitation of Drosophila Choriogenesis Process as a Model Cellular System for Assessment of Compound Toxicity: the Phloroglucinol Paradigm. Sci Rep 2020; 10:242. [PMID: 31937877 PMCID: PMC6959335 DOI: 10.1038/s41598-019-57113-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
Phloroglucinol (1,3,5 tri-hydroxy-benzene) (PGL), a natural phenolic substance, is a peroxidase inhibitor and has anti-oxidant, anti-diabetic, anti-inflammatory, anti-thrombotic, radio-protective, spasmolytic and anti-cancer activities. PGL, as a medicine, is administered to patients to control the symptoms of irritable bowel syndrome and acute renal colic, in clinical trials. PGL, as a phenolic substance, can cause cytotoxic effects. Administration of PGL up to 300 mg/kg (bw) is well tolerated by animals, while in cell lines its toxicity is developed at concentrations above the dose of 10 μg/ml. Furthermore, it seems that tumor or immortalized cells are more susceptible to the toxic power of PGL, than normal cells. However, studies of its cytotoxic potency, at the cellular level, in complex, differentiated and meta-mitotic biological systems, are still missing. In the present work, we have investigated the toxic activity of PGL in somatic epithelial cells, constituting the follicular compartment of a developing egg-chamber (or, follicle), which directs the choriogenesis (i.e. chorion assembly) process, during late oogenesis of Drosophila melanogaster. Our results reveal that treatment of in vitro growing Drosophila follicles with PGL, at a concentration of 0.2 mM (or, 25.2 μg/ml), does not lead to follicle-cell toxicity, since the protein-synthesis program and developmental pattern of choriogenesis are normally completed. Likewise, the 1 mM dose of PGL was also characterized by lack of toxicity, since the chorionic proteins were physiologically synthesized and the chorion structure appeared unaffected, except for a short developmental delay, being observed. In contrast, concentrations of 10, 20 or 40 mM of PGL unveiled a dose-dependent, increasing, toxic effect, being initiated by interruption of protein synthesis and disassembly of cell-secretory machinery, and, next, followed by fragmentation of the granular endoplasmic reticulum (ER) into vesicles, and formation of autophagic vacuoles. Follicle cells enter into an apoptotic process, with autophagosomes and large vacuoles being formed in the cytoplasm, and nucleus showing protrusions, granular nucleolus and condensed chromatin. PGL, also, proved able to induce disruption of nuclear envelope, activation of nucleus autophagy (nucleophagy) and formation of a syncytium-like pattern being produced by fusion of plasma membranes of two or more individual follicle cells. Altogether, follicle cell-dependent choriogenesis in Drosophila has been herein presented as an excellent, powerful and reliable multi-cellular, differentiated, model biological (animal) system for drug-cytotoxicity assessment, with the versatile compound PGL serving as a characteristic paradigm. In conclusion, PGL is a substance that may act beneficially for a variety of pathological conditions and can be safely used for differentiated somatic -epithelial- cells at clinically low concentrations. At relatively high doses, it could potentially induce apoptotic and autophagic cell death, thus being likely exploited as a therapeutic agent against a number of pathologies, including human malignancies.
Collapse
Affiliation(s)
- Konstantinos E Keramaris
- Department of Hematology and Bone Marrow Transplantation, Medical School, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Konstantinos Konstantopoulos
- Department of Hematology and Bone Marrow Transplantation, Medical School, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Lukas H Margaritis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Athanassios D Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Issidora S Papassideri
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Dimitrios J Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece.
| |
Collapse
|
6
|
Wei D, Zhang YX, Liu YW, Li WJ, Chen ZX, Smagghe G, Wang JJ. Gene expression profiling of ovary identified eggshell proteins regulated by 20-hydroxyecdysone in Bactrocera dorsalis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:206-216. [PMID: 30909163 DOI: 10.1016/j.cbd.2019.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 02/03/2023]
Abstract
The oriental fruit fly, Bactrocera dorsalis, is one of the most destructive pests worldwide. The frequent use of chemical insecticides has led B. dorsalis to develop resistance to many insecticides in recent decades. New high-throughput-sequenced transcriptomes, as well as genomes, have revealed a large number of reference genes for functional target identification. Here, we performed digital gene expression profiling of ovary and testis of B. dorsalis adults. Various genes were identified to be highly expressed in B. dorsalis ovary. The genes encoding components of eggshell, vitelline membrane proteins (Vmps) and chorion-related proteins, were identified to be tissue-specifically expressed in ovary. Five cytochrome P450 genes were also identified to be highly expressed in ovary. Three of them were ecdysone synthesis pathway genes indicating the ovary as a potential synthesis site of female. The up-regulated expression of Vmps by exogenous 20-hydroxyecdysone implied the hormonal regulation of eggshell formation during ovarian development. Many other genes with potential functions in ovarian development were also identified, including vitellogenin receptor, insulin receptor, NASP protein, and odorant binding protein. These findings should promote our understanding of the regulation of vitellogenesis and eggshell formation and enable exploration of potentially novel pest control targets.
Collapse
Affiliation(s)
- Dong Wei
- Key Laboratory of Entomology and Pest Control Engineering of Chongqing, College of Plant Protection, Southwest University, Chongqing 400715, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Ying-Xin Zhang
- Key Laboratory of Entomology and Pest Control Engineering of Chongqing, College of Plant Protection, Southwest University, Chongqing 400715, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yu-Wei Liu
- Key Laboratory of Entomology and Pest Control Engineering of Chongqing, College of Plant Protection, Southwest University, Chongqing 400715, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Wei-Jun Li
- Key Laboratory of Entomology and Pest Control Engineering of Chongqing, College of Plant Protection, Southwest University, Chongqing 400715, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zhi-Xian Chen
- Key Laboratory of Entomology and Pest Control Engineering of Chongqing, College of Plant Protection, Southwest University, Chongqing 400715, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering of Chongqing, College of Plant Protection, Southwest University, Chongqing 400715, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering of Chongqing, College of Plant Protection, Southwest University, Chongqing 400715, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
7
|
Velentzas AD, Velentzas PD, Katarachia SA, Anagnostopoulos AK, Sagioglou NE, Thanou EV, Tsioka MM, Mpakou VE, Kollia Z, Gavriil VE, Papassideri IS, Tsangaris GT, Cefalas AC, Sarantopoulou E, Stravopodis DJ. The indispensable contribution of s38 protein to ovarian-eggshell morphogenesis in Drosophila melanogaster. Sci Rep 2018; 8:16103. [PMID: 30382186 PMCID: PMC6208399 DOI: 10.1038/s41598-018-34532-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022] Open
Abstract
Drosophila chorion represents a remarkable model system for the in vivo study of complex extracellular-matrix architectures. For its organization and structure, s38 protein is considered as a component of major importance, since it is synthesized and secreted during early choriogenesis. However, there is no evidence that proves its essential, or redundant, role in chorion biogenesis. Hence, we show that targeted downregulation of s38 protein, specifically in the ovarian follicle-cell compartment, via employment of an RNAi-mediated strategy, causes generation of diverse dysmorphic phenotypes, regarding eggshell’s regionally and radially specialized structures. Downregulation of s38 protein severely impairs fly’s fertility and is unable to be compensated by the s36 homologous family member, thus unveiling s38 protein’s essential contribution to chorion’s assembly and function. Altogether, s38 acts as a key skeletal protein being critically implicated in the patterning establishment of a highly structured tripartite endochorion. Furthermore, it seems that s38 loss may sensitize choriogenesis to stochastic variation in its coordination and timing.
Collapse
Affiliation(s)
- Athanassios D Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Panagiotis D Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece.,Department of Cancer Biology, Medical School, University of Massachusetts, Worcester, Massachusetts (MA), USA
| | - Stamatia A Katarachia
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | | | - Niki E Sagioglou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Eleni V Thanou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Maria M Tsioka
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Vassiliki E Mpakou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Zoe Kollia
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation (NHRF), Athens, Greece
| | - Vassilios E Gavriil
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation (NHRF), Athens, Greece
| | - Issidora S Papassideri
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - George Th Tsangaris
- Systems Biology Center, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | | | - Evangelia Sarantopoulou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation (NHRF), Athens, Greece
| | - Dimitrios J Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece.
| |
Collapse
|
8
|
Comparative Proteomic Profiling Reveals Molecular Characteristics Associated with Oogenesis and Oocyte Maturation during Ovarian Development of Bactrocera dorsalis (Hendel). Int J Mol Sci 2017; 18:ijms18071379. [PMID: 28665301 PMCID: PMC5535872 DOI: 10.3390/ijms18071379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/19/2017] [Accepted: 06/24/2017] [Indexed: 01/16/2023] Open
Abstract
Time-dependent expression of proteins in ovary is important to understand oogenesis in insects. Here, we profiled the proteomes of developing ovaries from Bactrocera dorsalis (Hendel) to obtain information about ovarian development with particular emphasis on differentially expressed proteins (DEPs) involved in oogenesis. A total of 4838 proteins were identified with an average peptide number of 8.15 and sequence coverage of 20.79%. Quantitative proteomic analysis showed that a total of 612 and 196 proteins were differentially expressed in developing and mature ovaries, respectively. Furthermore, 153, 196 and 59 potential target proteins were highly expressed in early, vitellogenic and mature ovaries and most tested DEPs had the similar trends consistent with the respective transcriptional profiles. These proteins were abundantly expressed in pre-vitellogenic and vitellogenic stages, including tropomyosin, vitellogenin, eukaryotic translation initiation factor, heat shock protein, importin protein, vitelline membrane protein, and chorion protein. Several hormone and signal pathway related proteins were also identified during ovarian development including piRNA, notch, insulin, juvenile, and ecdysone hormone signal pathways. This is the first report of a global ovary proteome of a tephritid fruit fly, and may contribute to understanding the complicate processes of ovarian development and exploring the potentially novel pest control targets.
Collapse
|
9
|
Velentzas AD, Velentzas PD, Katarachia S, Mpakou VE, Papassideri IS, Stravopodis DJ. Data of sperm-entry inability in Drosophila melanogaster ovarian follicles that are depleted of s36 chorionic protein. Data Brief 2017; 12:180-183. [PMID: 28443296 PMCID: PMC5394213 DOI: 10.1016/j.dib.2017.03.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/20/2017] [Accepted: 03/31/2017] [Indexed: 11/18/2022] Open
Abstract
This paper presents data associated with the research article entitled “Targeted downregulation of s36 protein unearths its cardinal role in chorion biogenesis and architecture during Drosophila melanogaster oogenesis” [1]. Drosophila chorion is produced by epithelial follicle cells and one of its functional serving role is egg fertilization through the micropyle, a specialized narrow channel at the anterior tip of the egg [2]. Sperm entry during fertilization is necessary for the egg to complete meiosis [3]. D. melanogaster flies being characterized by severe downregulation of the s36 chorionic protein, specifically in the follicle-cell compartment of their ovary, appear with impaired fly fertility (Velentzas et al., 2016) [1]. In an effort to further investigate whether the observed infertility in the s36-targeted flies derives from a fertilization failure, such as the inability of sperm to pass through egg׳s micropyle, we mated females carrying s36-depleted ovaries with males expressing the GFP protein either in their sperm tails, or in both their sperm tails and sperm heads.
Collapse
Affiliation(s)
- Athanassios D Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Panagiotis D Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Stamatia Katarachia
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Vassiliki E Mpakou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Issidora S Papassideri
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Dimitrios J Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| |
Collapse
|