1
|
Acheampong A, Bondzie-Quaye P, Fetisoa MR, Huang Q. Applications of low-temperature plasma technology in microalgae cultivation and mutant breeding: A comprehensive review. BIORESOURCE TECHNOLOGY 2025; 419:132019. [PMID: 39725362 DOI: 10.1016/j.biortech.2024.132019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Low-temperature plasma (LTP) has gained significant attention recently due to its unique properties and potentially wide applications in agriculture, medicine, and food industry. Microalgae have become important to human life since they provide raw materials and bioactive products to industries. This review especially examines how LTP technology can be utilized to enhance microalgae growth and production of various metabolites and bioactive compounds such as astaxanthin, biofuel, lipid, proteins, and polysaccharides through mutagenesis and/or stimulation. Also, this review suggests that LTP may be combined with multi-omics tools such as proteomics, transcriptome, metabolomics and advanced methods such as single-cell analysis techniques to provide a promising strategy for acquiring desirable strains in algal mutant breeding and for enhancing the production of bioactive compounds in the microalgae. By shedding light on the benefits and applications of LTP, we hope to inspire new solutions to the challenges of commercial-scale microalgae development.
Collapse
Affiliation(s)
- Adolf Acheampong
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Precious Bondzie-Quaye
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Monia Ravelonandrasana Fetisoa
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
2
|
Pandey S, Varadavenkatesan T, Selvaraj R, Vinayagam R. Biocatalytic conversion of microalgal biomass to biodiesel: optimization of growth conditions and synthesis of CaO bionanocatalyst from Monoraphidium sp. NCIM 5585. Sci Rep 2025; 15:4309. [PMID: 39910167 PMCID: PMC11799180 DOI: 10.1038/s41598-025-88792-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/30/2025] [Indexed: 02/07/2025] Open
Abstract
Microalgal feedstock is a potential source for biodiesel production that addresses the challenges of fuel security and sustainable agriculture. This study aims to maximize biomass yield and lipid accumulation for freshwater microalga Monoraphidium sp. NCIM 5585 and utilize it for biodiesel production, contributing to the development of biocatalysis-based biofuels. Independent optimization studies were conducted to investigate critical growth parameters, viz., light intensity, photoperiod, and NaNO3 concentration. The study showed highest biomass productivity of 51.75 ± 1.9 mg/L.d and lipid content of 47.3 ± 0.02% (w/w) at 40 µmol/m2/s light intensity, 16 h L:08 h D photoperiod, and 0.25 g/L NaNO3. Further, a novel CaO bionanocatalyst was synthesized using residual microalgal biomass and characterized using SEM, EDX, FT-IR, and XRD. The characterization results from SEM and EDX confirmed the structural and elemental composition of bionanocatalyst with Ca and O as main elements. XRD revealed the crystalline nature of CaO with particle size of 17.83 nm. 86.5 ± 0.65% (w/w) FAME was obtained using the synthesized catalyst and was characterized using 1H NMR, 13C NMR and GC-MS. This study demonstrates the potential of Monoraphidium sp., optimized growth conditions and the significance of reusability of residual microalgal biomass as catalyst for sustainable biodiesel production, offering a promising solution for fuel security and biotechnology applications.
Collapse
Affiliation(s)
- Supriya Pandey
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
3
|
Trovão M, Schüler L, Pedroso H, Reis A, Santo GE, Barros A, Correia N, Ribeiro J, Bombo G, Gama F, Viana C, Costa MM, Ferreira S, Cardoso H, Varela J, Silva J, Freitas F, Pereira H. Isolation and Selection of Protein-Rich Mutants of Chlorella vulgaris by Fluorescence-Activated Cell Sorting with Enhanced Biostimulant Activity to Germinate Garden Cress Seeds. PLANTS (BASEL, SWITZERLAND) 2024; 13:2441. [PMID: 39273926 PMCID: PMC11396921 DOI: 10.3390/plants13172441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Microalgae are a promising feedstock with proven biostimulant activity that is enhanced by their biochemical components (e.g., amino acids and phytohormones), which turns them into an appealing feedstock to reduce the use of fertilisers in agriculture and improve crop productivity and resilience. Thus, this work aimed to isolate protein-rich microalgal mutants with increased biostimulant activity. Random mutagenesis was performed with Chlorella vulgaris, and a selection of protein-rich mutants were sorted through fluorescence-activated cell sorting (FACS), resulting in the isolation of 17 protein-rich mutant strains with protein contents 19-34% higher than that of the wildtype (WT). Furthermore, mutant F4 displayed a 38%, 22% and 62% higher biomass productivity, growth rate and chlorophyll content, respectively. This mutant was then scaled up to a 7 L benchtop reactor to produce biomass and evaluate the biostimulant potential of this novel strain towards garden cress seeds. Compared to water (control), the germination index and the relative total growth increased by 7% and 19%, respectively, after the application of 0.1 g L-1 of this bioproduct, which highlights its biostimulant potential.
Collapse
Affiliation(s)
- Mafalda Trovão
- Allmicroalgae Natural Products S.A., R&D Department, 2445-413 Pataias, Portugal
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Lisa Schüler
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
- CCMAR, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Humberto Pedroso
- Allmicroalgae Natural Products S.A., R&D Department, 2445-413 Pataias, Portugal
| | - Ana Reis
- Allmicroalgae Natural Products S.A., R&D Department, 2445-413 Pataias, Portugal
| | | | - Ana Barros
- Allmicroalgae Natural Products S.A., R&D Department, 2445-413 Pataias, Portugal
| | - Nádia Correia
- Allmicroalgae Natural Products S.A., R&D Department, 2445-413 Pataias, Portugal
| | - Joana Ribeiro
- Allmicroalgae Natural Products S.A., R&D Department, 2445-413 Pataias, Portugal
| | - Gabriel Bombo
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - Florinda Gama
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
- CCMAR, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Catarina Viana
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - Monya M Costa
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - Sara Ferreira
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - Helena Cardoso
- Allmicroalgae Natural Products S.A., R&D Department, 2445-413 Pataias, Portugal
| | - João Varela
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
- CCMAR, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Joana Silva
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - Filomena Freitas
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Hugo Pereira
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
4
|
Mehariya S, Annamalai SN, Thaher MI, Quadir MA, Khan S, Rahmanpoor A, Abdurahman Kashem, Faisal M, Sayadi S, Al Hawari A, Al-Jabri H, Das P. A comprehensive review on versatile microalga Tetraselmis: Potentials applications in wastewater remediation and bulk chemical production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121520. [PMID: 38917540 DOI: 10.1016/j.jenvman.2024.121520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/08/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
Microalgae are considered sustainable resources for the production of biofuel, feed, and bioactive compounds. Among various microalgal genera, the Tetraselmis genus, containing predominantly marine microalgal species with wide tolerance to salinity and temperature, has a high potential for large-scale commercialization. Until now, Tetraselmis sp. are exploited at smaller levels for aquaculture hatcheries and bivalve production. However, its prolific growth rate leads to promising areal productivity and energy-dense biomass, so it is considered a viable source of third-generation biofuel. Also, microbial pathogens and contaminants are not generally associated with Tetraselmis sp. in outdoor conditions due to faster growth as well as dominance in the culture. Numerous studies revealed that the metabolite compositions of Tetraselmis could be altered favorably by changing the growth conditions, taking advantage of its acclimatization or adaptation ability in different conditions. Furthermore, the biorefinery approach produces multiple fractions that can be successfully upgraded into various value-added products along with biofuel. Overall, Tetraselmis sp. could be considered a potential strain for further algal biorefinery development under the circular bioeconomy framework. In this aspect, this review discusses the recent advancements in the cultivation and harvesting of Tetraselmis sp. for wider application in different sectors. Furthermore, this review highlights the key challenges associated with large-scale cultivation, biomass harvesting, and commercial applications for Tetraselmis sp.
Collapse
Affiliation(s)
- Sanjeet Mehariya
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Senthil Nagappan Annamalai
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Mahmoud Ibrahim Thaher
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Mohammed Abdul Quadir
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Shoyeb Khan
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Ali Rahmanpoor
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Abdurahman Kashem
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Mohamed Faisal
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Sami Sayadi
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Alaa Al Hawari
- Department of Civil and Environmental Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
| | - Hareb Al-Jabri
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Probir Das
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar.
| |
Collapse
|
5
|
Vazquez-Martel C, Florido Martins L, Genthner E, Almeida C, Martel Quintana A, Bastmeyer M, Gómez Pinchetti JL, Blasco E. Printing Green: Microalgae-Based Materials for 3D Printing with Light. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402786. [PMID: 38876261 DOI: 10.1002/adma.202402786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Microalgae have emerged as sustainable feedstocks due to their ability to fix CO2 during cultivation, rapid growth rates, and capability to produce a wide variety of metabolites. Several microalgae accumulate lipids in high concentrations, especially triglycerides, along with lipid-soluble, photoactive pigments such as chlorophylls and derivatives. Microalgae-derived triglycerides contain longer fatty acid chains with more double bonds on average than vegetable oils, allowing a higher degree of post-functionalization. Consequently, they are especially suitable as precursors for materials that can be used in 3D printing with light. This work presents the use of microalgae as "biofactories" to generate materials that can be further 3D printed in high resolution. Two taxonomically different strains -Odontella aurita (O. aurita, BEA0921B) and Tetraselmis striata (T. striata, BEA1102B)- are identified as suitable microalgae for this purpose. The extracts obtained from the microalgae (mainly triglycerides with chlorophyll derivatives) are functionalized with photopolymerizable groups and used directly as printable materials (inks) without the need for additional photoinitiators. The fabrication of complex 3D microstructures with sub-micron resolution is demonstrated. Notably, the 3D printed materials show biocompatibility. These findings open new possibilities for the next generation of sustainable, biobased, and biocompatible materials with great potential in life science applications.
Collapse
Affiliation(s)
- Clara Vazquez-Martel
- Institute of Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Lilliana Florido Martins
- Institute of Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Elisa Genthner
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Carlos Almeida
- Banco Español de Algas (BEA), Universidad de Las Palmas de Gran Canaria (ULPGC), Muelle de Taliarte s/n, Telde, Las Palmas, 35214, Spain
| | - Antera Martel Quintana
- Banco Español de Algas (BEA), Universidad de Las Palmas de Gran Canaria (ULPGC), Muelle de Taliarte s/n, Telde, Las Palmas, 35214, Spain
| | - Martin Bastmeyer
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), KIT, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Juan Luis Gómez Pinchetti
- Banco Español de Algas (BEA), Universidad de Las Palmas de Gran Canaria (ULPGC), Muelle de Taliarte s/n, Telde, Las Palmas, 35214, Spain
| | - Eva Blasco
- Institute of Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| |
Collapse
|
6
|
Dammak M, Ben Hlima H, Fendri I, Smaoui S, Abdelkafi S. Tetraselmis species for environmental sustainability: biology, water bioremediation, and biofuel production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34247-0. [PMID: 39060891 DOI: 10.1007/s11356-024-34247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
With increasing demand of fossil fuels and water pollution and their environmental impacts, marine green microalgae have gained special attention in both scientific and industrial fields. This is due to their fast growth in non-arable lands with high photosynthetic activity, their metabolic plasticity, as well as their high CO2 capture capacity. Tetraselmis species, green and eukaryotic microalgae, are not only considered as a valuable source of biomolecules including pigments, lipids, and starch but also widely used in biotechnological applications. Tetraselmis cultivation for high-value biomolecules and industrial use was demonstrated to be a non-cost-effective strategy because of its low demand in nutrients, such as phosphorus and nitrogen. Recently, phycoremediation of wastewater rich in nutrients, chemicals, and heavy metals has become an efficient and economic-alternative that allows the detoxification of waters and induces mechanisms in algal cells for biomolecules rich-energy synthesis to regulate their metabolic pathways. This review aims to shed light on Tetraselmis species for their different culture conditions and metabolites bioaccumulation, as well as their human health and environmental applications. Additionally, phycoremediation of contaminants associated to biofuel production in Tetraselmis cells and their different intracellular and extracellular mechanisms have also been investigated.
Collapse
Affiliation(s)
- Mouna Dammak
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Département de Génie Biologique, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Hajer Ben Hlima
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Département de Génie Biologique, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Imen Fendri
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, Sfax, Tunisia
| | - Slim Smaoui
- Laboratoire de Biotechnologie des Plantes Appliquée À l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Département de Génie Biologique, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia.
| |
Collapse
|
7
|
Li D, Shen J, Ding Q, Wu J, Chen X. Recent progress of atmospheric and room-temperature plasma as a new and promising mutagenesis technology. Cell Biochem Funct 2024; 42:e3991. [PMID: 38532652 DOI: 10.1002/cbf.3991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
At present, atmospheric and room-temperature plasma (ARTP) is regarded as a new and powerful mutagenesis technology with the advantages of environment-friendliness, operation under mild conditions, and fast mutagenesis speed. Compared with traditional mutagenesis strategies, ARTP is used mainly to change the structure of microbial DNA, enzymes, and proteins through a series of physical, chemical, and electromagnetic effects with the organisms, leading to nucleotide breakage, conversion or inversion, causing various DNA damages, so as to screen out the microbial mutants with better biological characteristics. As a result, in recent years, ARTP mutagenesis and the combination of ARTP with traditional mutagenesis have been widely used in microbiology, showing great potential for application. In this review, the recent progress of ARTP mutagenesis in different application fields and bottlenecks of this technology are systematically summarized, with a view to providing a theoretical basis and technical support for better application. Finally, the outlook of ARTP mutagenesis is presented, and we identify the challenges in the field of microbial mutagenesis by ARTP.
Collapse
Affiliation(s)
- Dongao Li
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Jie Shen
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
| | - Qiang Ding
- Yichang Sanxia Pharmaceutical Co., Ltd., Yichang City, Hubei Province, China
| | - Jinyong Wu
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
| | - Xiangsong Chen
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
| |
Collapse
|
8
|
Goswami RK, Agrawal K, Mehariya S, Verma P. Current perspective on wastewater treatment using photobioreactor for Tetraselmis sp.: an emerging and foreseeable sustainable approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61905-61937. [PMID: 34618318 DOI: 10.1007/s11356-021-16860-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Urbanization is a revolutionary and necessary step for the development of nations. However, with development emanates its drawback i.e., generation of a huge amount of wastewater. The existence of diverse types of nutrient loads and toxic compounds in wastewater can reduce the pristine nature of the ecosystem and adversely affects human and animal health. The conventional treatment system reduces most of the chemical contaminants but their removal efficiency is low. Thus, microalgae-based biological wastewater treatment is a sustainable approach for the removal of nutrient loads from wastewater. Among various microalgae, Tetraselmis sp. is a robust strain that can remediate industrial, municipal, and animal-based wastewater and reduce significant amounts of nutrient loads and heavy metals. The produced biomass contains lipids, carbohydrates, and pigments. Among them, carbohydrates and lipids can be used as feedstock for the production of bioenergy products. Moreover, the usage of a photobioreactor (PBR) system improves biomass production and nutrient removal efficiency. Thus, the present review comprehensively discusses the latest studies on Tetraselmis sp. based wastewater treatment processes, focusing on the use of different bioreactor systems to improve pollutant removal efficiency. Moreover, the applications of Tetraselmis sp. biomass, advancement and research gap such as immobilized and co-cultivation have also been discussed. Furthermore, an insight into the harvesting of Tetraselmis biomass, effects of physiological, and nutritional parameters for their growth has also been provided. Thus, the present review will broaden the outlook and help to develop a sustainable and feasible approach for the restoration of the environment.
Collapse
Affiliation(s)
- Rahul Kumar Goswami
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India
| | - Komal Agrawal
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India
| | | | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
9
|
Trovão M, Schüler LM, Machado A, Bombo G, Navalho S, Barros A, Pereira H, Silva J, Freitas F, Varela J. Random Mutagenesis as a Promising Tool for Microalgal Strain Improvement towards Industrial Production. Mar Drugs 2022; 20:440. [PMID: 35877733 PMCID: PMC9318807 DOI: 10.3390/md20070440] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Microalgae have become a promising novel and sustainable feedstock for meeting the rising demand for food and feed. However, microalgae-based products are currently hindered by high production costs. One major reason for this is that commonly cultivated wildtype strains do not possess the robustness and productivity required for successful industrial production. Several strain improvement technologies have been developed towards creating more stress tolerant and productive strains. While classical methods of forward genetics have been extensively used to determine gene function of randomly generated mutants, reverse genetics has been explored to generate specific mutations and target phenotypes. Site-directed mutagenesis can be accomplished by employing different gene editing tools, which enable the generation of tailor-made genotypes. Nevertheless, strategies promoting the selection of randomly generated mutants avoid the introduction of foreign genetic material. In this paper, we review different microalgal strain improvement approaches and their applications, with a primary focus on random mutagenesis. Current challenges hampering strain improvement, selection, and commercialization will be discussed. The combination of these approaches with high-throughput technologies, such as fluorescence-activated cell sorting, as tools to select the most promising mutants, will also be discussed.
Collapse
Affiliation(s)
- Mafalda Trovão
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (M.T.); (A.M.); (A.B.); (J.S.)
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Lisa M. Schüler
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
| | - Adriana Machado
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (M.T.); (A.M.); (A.B.); (J.S.)
| | - Gabriel Bombo
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
| | - Sofia Navalho
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
| | - Ana Barros
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (M.T.); (A.M.); (A.B.); (J.S.)
| | - Hugo Pereira
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
| | - Joana Silva
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (M.T.); (A.M.); (A.B.); (J.S.)
| | - Filomena Freitas
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - João Varela
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
10
|
Apostolopoulou NG, Smeti E, Lamorgese M, Varkitzi I, Whitfield P, Regnault C, Spatharis S. Microalgae show a range of responses to exometabolites of foreign species. ALGAL RES 2022; 62:None. [PMID: 35311224 PMCID: PMC8924005 DOI: 10.1016/j.algal.2021.102627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/14/2021] [Accepted: 12/23/2021] [Indexed: 12/01/2022]
Abstract
Studies on microalgae interspecific interactions have so far focused either on nutrient competition or allelopathic effects due to excreted substances from Harmful Algal Bloom (HAB) species. Evidence from plants, bacteria and specific microalgae groups, point to a range of responses mediated by sensing or direct chemical impact of exometabolites from foreign species. Such processes remain under-investigated, especially in non-HAB microalgae, despite the importance of such knowledge in ecology and industrial applications. Here, we study the directional effect of exometabolites of 4 "foreign" species Heterosigma akashiwo, Phaeocystis sp., Tetraselmis sp. and Thalassiosira sp. to each of three "target" species across a total of 12 treatments. We disentangle these effects from nutrient competition by adding cell free medium of each "foreign" species into our treatment cultures. We measured the biomass response, to the foreign exometabolites, as cell number and photosynthetic biomass (Chla), whereas nutrient use was measured as residual phosphorus (PO4) and intracellular phosphorus (P). Exometabolites from filtrate of foreign species were putatively annotated by untargeted metabolomics analysis and were discussed in association to observed responses of target species. Among others, these metabolites included L-histidinal, Tiliacorine and dimethylsulfoniopropionate (DMSP). Our findings show that species show a range of responses with the most common being biomass suppression, and less frequent biomass enhancement and intracellular P storage. Filtrate from the green microalgae Tetraselmis caused the most pronounced negative effects suggesting that non-HAB species can also cause negative chemical interference. A candidate metabolite inducing this response is L-histidinal which was measured in high abundance uniquely in Tetraselmis and its L-histidine form derived from bacteria was previously confirmed as a microalgal algicidal. H. akashiwo also induced biomass suppression on other microalgae and a candidate metabolite for this response is Tiliacorine, a plant-derived alkaloid with confirmed cytotoxic activity.
Collapse
Affiliation(s)
- Natalia G. Apostolopoulou
- Department of Ecology and Systematics, National and Kapodistrian University of Athens, 10679, Greece
- School of Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Evangelia Smeti
- Institute of Marine Biological Resources and Inland Waters, HCMR Hellenic Centre for Marine Research, PO Box 713, Anavyssos 19013, Greece
| | | | - Ioanna Varkitzi
- Institute of Oceanography, HCMR Hellenic Centre for Marine Research, PO Box 713, Anavyssos 19013, Greece
| | | | | | - Sofie Spatharis
- School of Life Sciences, University of Glasgow, G12 8QQ, UK
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, G12 8QQ, UK
| |
Collapse
|
11
|
Intensive production of the harpacticoid copepod Tigriopus californicus in a zero-effluent 'green water' bioreactor. Sci Rep 2022; 12:466. [PMID: 35013518 PMCID: PMC8748651 DOI: 10.1038/s41598-021-04516-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/23/2021] [Indexed: 11/08/2022] Open
Abstract
Aquaculture is looking for substitutes for fishmeal and fish oil to maintain its continued growth. Zooplankton is the most nutritious option, but its controlled mass production has not yet been achieved. In this context, we have developed a monoalgal 'green water' closed-loop bioreactor with the microalgae Tetraselmis chui that continuously produced the harpacticoid copepod Tigriopus californicus. During 145 days of operation, the 2.2 m3 bioreactor produced 3.9 kg (wet weight) of Tigriopus with (dry weight) 0.79 ± 0.29% eicosapentaenoic acid (EPA), 0.82 ± 0.26% docosahexaenoic acid (DHA), 1.89 ± 0,60% 3S,3'S-astaxanthin and an essential amino acid index (EAAI) of 97% for juvenile Atlantic salmon. The reactor kept the pH stable over the operation time (pH 8.81 ± 0.40 in the algae phase and pH 8.22 ± 2.96 in the zooplankton phase), while constantly removed nitrate (322.6 mg L-1) and phosphate (20.4 mg L-1) from the water. As a result of the stable pH and nutrient removal, the bioreactor achieved zero effluent discharges. The upscaling of monoalgal, closed-loop 'green water' bioreactors could help standardize zooplankton mass production to supply the aquafeeds industry.
Collapse
|
12
|
Microalgal Systems for Wastewater Treatment: Technological Trends and Challenges towards Waste Recovery. ENERGIES 2021. [DOI: 10.3390/en14238112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Wastewater (WW) treatment using microalgae has become a growing trend due the economic and environmental benefits of the process. As microalgae need CO2, nitrogen, and phosphorus to grow, they remove these potential pollutants from wastewaters, making them able to replace energetically expensive treatment steps in conventional WW treatment. Unlike traditional sludge, biomass can be used to produce biofuels, biofertilizers, high value chemicals, and even next-generation growth media for “organically” grown microalgal biomass targeting zero-waste policies and contributing to a more sustainable circular bioeconomy. The main challenge in this technology is the techno-economic feasibility of the system. Alternatives such as the isolation of novel strains, the use of native consortia, and the design of new bioreactors have been studied to overcome this and aid the scale-up of microalgal systems. This review focuses on the treatment of urban, industrial, and agricultural wastewaters by microalgae and their ability to not only remove, but also promote the reuse, of those pollutants. Opportunities and future prospects are discussed, including the upgrading of the produced biomass into valuable compounds, mainly biofuels.
Collapse
|
13
|
Farahin AW, Natrah I, Nagao N, Katayama T, Imaizumi Y, Mamat NZ, Yusoff FM, Shariff M. High intensity of light: A potential stimulus for maximizing biomass by inducing photosynthetic activity in marine microalga, Tetraselmis tetrathele. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Schüler LM, Bombo G, Duarte P, Santos TF, Maia IB, Pinheiro F, Marques J, Jacinto R, Schulze PSC, Pereira H, Barreira L, Varela JCS. Carotenoid biosynthetic gene expression, pigment and n-3 fatty acid contents in carotenoid-rich Tetraselmis striata CTP4 strains under heat stress combined with high light. BIORESOURCE TECHNOLOGY 2021; 337:125385. [PMID: 34147770 DOI: 10.1016/j.biortech.2021.125385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
In this study, two carotenoid-rich strains of the euryhaline microalga Tetraselmis striata CTP4 were isolated by random mutagenesis combined with selection via fluorescence activated cell sorting and growth on norflurazon. Both strains, ED5 and B11, showed an up to 1.5-fold increase in carotenoid contents as compared with the wildtype, independent of the growth conditions. More specifically, violaxanthin, β-carotene and lutein contents reached as high as 1.63, 4.20 and 3.81 mg g-1 DW, respectively. Genes coding for phytoene synthase, phytoene desaturase, lycopene-β-cyclase and ε-ring hydroxylase involved in carotenoid biosynthesis were found to be upregulated in ED5 and B11 cells as compared to the wildtype. Both strains showed higher contents of eicosapentaenoic acid as compared with those of the wildtype, reaching up to 4.41 and 2.88 mg g-1 DW, respectively. Overall, these results highlight the complexity of changes in carotenoid biosynthesis regulation that are required to improve pigment contents in microalgae.
Collapse
Affiliation(s)
- Lisa M Schüler
- Marine Biotechnology Group, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Gabriel Bombo
- Marine Biotechnology Group, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Green Colab - Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Paulo Duarte
- Marine Biotechnology Group, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Tamára F Santos
- Marine Biotechnology Group, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Inês B Maia
- Marine Biotechnology Group, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Filipa Pinheiro
- Marine Biotechnology Group, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - José Marques
- Marine Biotechnology Group, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Rita Jacinto
- Green Colab - Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Peter S C Schulze
- Green Colab - Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Hugo Pereira
- Green Colab - Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Luísa Barreira
- Marine Biotechnology Group, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Green Colab - Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - João C S Varela
- Marine Biotechnology Group, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Green Colab - Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
15
|
Catone CM, Ripa M, Geremia E, Ulgiati S. Bio-products from algae-based biorefinery on wastewater: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112792. [PMID: 34058450 DOI: 10.1016/j.jenvman.2021.112792] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Increasing resource demand, predicted fossil resources shortage in the near future, and environmental concerns due to the production of greenhouse gas carbon dioxide have motivated the search for alternative 'circular' pathways. Among many options, microalgae have been recently 'revised' as one of the most promising due to their high growth rate (with low land use and without competing with food crops), high tolerance to nutrients and salts stresses and their variability in biochemical composition, in so allowing the supply of a plethora of possible bio-based products such as animal feeds, chemicals and biofuels. The recent raising popularity of Circular Bio-Economy (CBE) further prompted investment in microalgae, especially in combination with wastewater treatment, under the twofold aim of allowing the production of a wide range of bio-based products while bioremediating wastewater. With the aim of discussing the potential bio-products that may be gained from microalgae grown on urban wastewater, this paper presents an overview on microalgae production with particular emphasis on the main microalgae species suitable for growth on wastewater and the obtainable bio-based products from them. By selecting and reviewing 76 articles published in Scopus between 1992 and 2020, a number of interesting aspects, including the selection of algal species suitable for growing on urban wastewater, wastewater pretreatment and algal-bacterial cooperation, were carefully reviewed and discussed in this work. In this review, particular emphasis is placed on understanding of the main mechanisms driving formation of microalgal products (such as biofuels, biogas, etc.) and how they are affected by different environmental factors in selected species. Lastly, the quantitative information gathered from the articles were used to estimate the potential benefits gained from microalgae grown on urban wastewater in Campania Region, a region sometimes criticized for poor wastewater management.
Collapse
Affiliation(s)
- C M Catone
- Department of Science and Technology, Parthenope University of Naples, Naples, Italy
| | - M Ripa
- Department of Science and Technology, Parthenope University of Naples, Naples, Italy.
| | - E Geremia
- Department of Science and Technology, Parthenope University of Naples, Naples, Italy
| | - S Ulgiati
- Department of Science and Technology, Parthenope University of Naples, Naples, Italy; School of Environment, Beijing Normal University, Beijing, China
| |
Collapse
|
16
|
Scaling-Up and Semi-Continuous Cultivation of Locally Isolated Marine Microalgae Tetraselmis striata in the Subtropical Island of Gran Canaria (Canary Islands, Spain). Processes (Basel) 2021. [DOI: 10.3390/pr9081326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The goal of this study was to determine the feasibility of the large-scale cultivation of locally isolated Tetraselmis striata in different open ponds in Gran Canaria. The biomass productivities were 24.66 ± 0.53 kgDW in 32 days (28.9 t/ha/year) for 8000 L indoors, 42.32 ± 0.81 kgDW in 43 days (38.8 t/ha/year) for an 8000 L pond outdoors, and 54.9 ± 0.58 kgDW in 28 days (19.6 t/ha/year) for a 45,000 L pond outdoors. The photosynthetic efficiencies were 1.45 ± 0.03% for an 8000 L pond indoors, 1.95 ± 0.04% for 8000 L outdoors. and 1.10 ± 0.01% for a 45,000 L pond outdoors. The selected strain was fast-growing (µ = 0.21 day−1) and could be rapidly scaled up to 45,000 L; it formed healthy cultures that maintained high photosynthetic activity during long-term cultivation and provided stable biomass productivities, able to grow on urea, which acted as a cheap and effective grazer control. The obtained biomass is a good source of proteins and has an FA profile with a high content of some nutritionally important fatty acids: oleic, α-linolenic (ALA) and EPA. The high ash content in the biomass (>35%) can be reduced by the implementation of additional washing steps after the centrifugation of the culture.
Collapse
|
17
|
Tetraselmis jejuensis sp. nov. (Chlorodendrophyceae), a Euryhaline Microalga Found in Supralittoral Tide Pools at Jeju Island, Korea. PLANTS 2021; 10:plants10071289. [PMID: 34202885 PMCID: PMC8309209 DOI: 10.3390/plants10071289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022]
Abstract
We found the euryhaline microalga, Tetraselmis jejuensis sp. nov., which was adapted to supralittoral tide pools with salinities varying from 0.3–3.1%. Fifteen strains of T. jejuensis were isolated from Daejeong (DJ) and Yongduam (YO), and clonal cultures were established in the laboratory. Morphological characterization revealed that the cells have a compressed shape, four flagella emerging from a depression near the apex in two opposite pairs, a cup-shaped chloroplast containing one pyrenoid surrounded by starch, and eyespot regions not located near the flagellar base. T. jejuensis cells showed distinct characteristics compared to other Tetraselmis species. First, a regular subunit pattern with honeycomb-like structures was predominantly displayed on the surface in the middle of the cell body. Second, the pyrenoid was invaded by both cytoplasmic channels comprising electron-dense material separated from the cytoplasm, and two branches of small cytoplasmic channels (canaliculi) in various directions, which characterize the subgenus Tetrathele. Eyespot regions containing a large number of osmiophilic globules, packed closely together and arranged in subcircular close packing of diverse sizes, were dispersed throughout the chloroplast. In the phylogenetic analysis of small subunit (SSU) rDNA sequences, the 15 strains isolated from DJ and YO separated a newly branched clade in the Chlorodendrophyceae at the base of a clade comprising the T. carteriiformi/subcordiformis clade, T. chuii/suecica clade, and T. striata/convolutae clade. The strains in the diverging clade were considered to belong to the same species. The SSU rDNA sequences of the DJ and YO strains showed a maximum difference of 1.53% and 1.19% compared to Tetraselmis suecica (MK541745), the closest species of the family based on the phylogenetic analysis, respectively. Based on morphological, molecular, and physiological features, we suggest a new species in the genus Tetraselmis named Tetraselmis jejuensis, with the species name “jejuensis” referring to the collection site, Jeju Island, Korea.
Collapse
|
18
|
Operation Regimes: A Comparison Based on Nannochloropsis oceanica Biomass and Lipid Productivity. ENERGIES 2021. [DOI: 10.3390/en14061542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microalgae are currently considered to be a promising feedstock for biodiesel production. However, significant research efforts are crucial to improve the current biomass and lipid productivities under real outdoor production conditions. In this context, batch, continuous and semi-continuous operation regimes were compared during the Spring/Summer seasons in 2.6 m3 tubular photobioreactors to select the most suitable one for the production of the oleaginous microalga Nannochloropsis oceanica. Results obtained revealed that N. oceanica grown using the semi-continuous and continuous operation regimes enabled a 1.5-fold increase in biomass volumetric productivity compared to that cultivated in batch. The lipid productivity was 1.7-fold higher under semi-continuous cultivation than that under a batch operation regime. On the other hand, the semi-continuous and continuous operation regimes spent nearly the double amount of water compared to that of the batch regime. Interestingly, the biochemical profile of produced biomass using the different operation regimes was not affected regarding the contents of proteins, lipids and fatty acids. Overall, these results show that the semi-continuous operation regime is more suitable for the outdoor production of N. oceanica, significantly improving the biomass and lipid productivities at large-scale, which is a crucial factor for biodiesel production.
Collapse
|
19
|
Picciotto S, Barone ME, Fierli D, Aranyos A, Adamo G, Božič D, Romancino DP, Stanly C, Parkes R, Morsbach S, Raccosta S, Paganini C, Cusimano A, Martorana V, Noto R, Carrotta R, Librizzi F, Capasso Palmiero U, Santonicola P, Iglič A, Gai M, Corcuera L, Kisslinger A, Di Schiavi E, Landfester K, Liguori GL, Kralj-Iglič V, Arosio P, Pocsfalvi G, Manno M, Touzet N, Bongiovanni A. Isolation of extracellular vesicles from microalgae: towards the production of sustainable and natural nanocarriers of bioactive compounds. Biomater Sci 2021; 9:2917-2930. [DOI: 10.1039/d0bm01696a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biophysical and biochemical characterisation of microalgae-derived extracellular vesicles.
Collapse
|
20
|
Deka D, Marwein R, Chikkaputtaiah C, Kaki SS, Azmeera T, Boruah HPD, Velmurugan N. Strain improvement of long-chain fatty acids producing Micractinium sp. by flow cytometry. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Incorporation of defatted microalgal biomass (Tetraselmis sp. CTP4) at the expense of soybean meal as a feed ingredient for juvenile gilthead seabream (Sparus aurata). ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101869] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
Improved production of lutein and β-carotene by thermal and light intensity upshifts in the marine microalga Tetraselmis sp. CTP4. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101732] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Schüler LM, Gangadhar KN, Duarte P, Placines C, Molina-Márquez AM, Léon-Bañares R, Sousa VS, Varela J, Barreira L. Improvement of carotenoid extraction from a recently isolated, robust microalga, Tetraselmis sp. CTP4 (chlorophyta). Bioprocess Biosyst Eng 2020; 43:785-796. [PMID: 31894389 DOI: 10.1007/s00449-019-02273-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023]
Abstract
In recent years, there has been increasing consumer interest in carotenoids, particularly of marine sustainable origin with applications in the food, cosmeceutical, nutritional supplement and pharmaceutical industries. For instance, microalgae belonging to the genus Tetraselmis are known for their biotechnologically relevant carotenoid profile. The recently isolated marine microalgal strain Tetraselmis sp. CTP4 is a fast-growing, robust industrial strain, which has successfully been produced in 100-m3 photobioreactors. However, there are no reports on total carotenoid contents from this strain belonging to T. striata/convolutae clade. Although there are several reports on extraction methods targeting chlorophytes, extraction depends on the strength of cell coverings, solvent polarity and the nature of the targeted carotenoids. Therefore, this article evaluates different extraction methods targeting Tetraselmis sp. CTP4, a strain known to contain a mechanically resistant theca. Here, we propose a factorial experimental design to compare extraction of total carotenoids from wet and freeze-dried microalgal biomass using four different solvents (acetone, ethanol, methanol or tetrahydrofuran) in combination with two types of mechanical cell disruption (glass beads or dispersion). The extraction efficiency of the methods was assessed by pigment contents and profiles present in the extracts. Extraction of wet biomass by means of glass bead-assisted cell disruption using tetrahydrofuran yielded the highest amounts of lutein and β-carotene (622 ± 40 and 618 ± 32 µg g-1 DW, respectively). Although acetone was slightly less efficient than tetrahydrofuran, it is preferable due to its lower costs and toxicity.
Collapse
Affiliation(s)
- Lisa M Schüler
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Katkam N Gangadhar
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Paulo Duarte
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Chloé Placines
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Ana María Molina-Márquez
- Department of Chemistry, Biochemistry, University of Huelva, Avda de las Fuerzas Armadas s/n, 21071, Huelva, Spain
| | - Rosa Léon-Bañares
- Department of Chemistry, Biochemistry, University of Huelva, Avda de las Fuerzas Armadas s/n, 21071, Huelva, Spain
| | - Vânia S Sousa
- CIMA, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - João Varela
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Luísa Barreira
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
24
|
Lortou U, Gkelis S. Polyphasic taxonomy of green algae strains isolated from Mediterranean freshwaters. ACTA ACUST UNITED AC 2019; 26:11. [PMID: 31696064 PMCID: PMC6822476 DOI: 10.1186/s40709-019-0105-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/18/2019] [Indexed: 11/30/2022]
Abstract
Background Terrestrial, freshwater and marine green algae constitute the large and morphologically diverse phylum of Chlorophyta, which gave rise to the core chlorophytes. Chlorophyta are abundant and diverse in freshwater environments where sometimes they form nuisance blooms under eutrophication conditions. The phylogenetic relationships among core chlorophyte clades (Chlorodendrophyceae, Ulvophyceae, Trebouxiophyceae and Chlorophyceae), are of particular interest as it is a species-rich phylum with ecological importance worldwide, but are still poorly understood. In the Mediterranean ecoregion, data on molecular characterization of eukaryotic microalgae strains are limited and current knowledge is based on ecological studies of natural populations. In the present study we report the isolation and characterization of 11 green microalgae strains from Greece contributing more information for the taxonomy of Chlorophyta. The study combined morphological and molecular data. Results Phylogenetic analysis based on 18S rRNA, internal transcribed spacer (ITS) region and the large subunit of the ribulose-bisphosphate carboxylase (rbcL) gene revealed eight taxa. Eleven green algae strains were classified in four orders (Sphaeropleales, Chlorellales, Chlamydomonadales and Chaetophorales) and were represented by four genera; one strain was not assigned to any genus. Most strains (six) were classified to the genus Desmodesmus, two strains to genus Chlorella, one to genus Spongiosarcinopsis and one filamentous strain to genus Uronema. One strain is placed in a separate independent branch within the Chlamydomonadales and deserves further research. Conclusions Our study reports, for the first time, the presence of Uronema in an aquatic environment up to 40 °C and reveals new diversity within the Chlamydomonadales. The results from the ITS region and the rbcL gene corroborated those obtained from 18S rRNA without providing further information or resolving the phylogenetic relationships within certain genera, due to the limited number of ITS and rbcL sequences available. The comparison of molecular and morphological data showed that they were congruent. Cosmopolitan genera with high worldwide distribution inhabit Greek freshwaters.
Collapse
Affiliation(s)
- Urania Lortou
- Department of Botany, Aristotle University of Thessaloniki, P.O. Box 109, 541 24 Thessaloniki, Greece
| | - Spyros Gkelis
- Department of Botany, Aristotle University of Thessaloniki, P.O. Box 109, 541 24 Thessaloniki, Greece
| |
Collapse
|
25
|
Pereira H, Silva J, Santos T, Gangadhar KN, Raposo A, Nunes C, Coimbra MA, Gouveia L, Barreira L, Varela J. Nutritional Potential and Toxicological Evaluation of Tetraselmis sp. CTP4 Microalgal Biomass Produced in Industrial Photobioreactors. Molecules 2019; 24:E3192. [PMID: 31484299 PMCID: PMC6749414 DOI: 10.3390/molecules24173192] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 12/26/2022] Open
Abstract
Commercial production of microalgal biomass for food and feed is a recent worldwide trend. Although it is common to publish nutritional data for microalgae grown at the lab-scale, data about industrial strains cultivated in an industrial setting are scarce in the literature. Thus, here we present the nutritional composition and a microbiological and toxicological evaluation of Tetraselmis sp. CTP4 biomass, cultivated in 100-m3 photobioreactors at an industrial production facility (AlgaFarm). This microalga contained high amounts of protein (31.2 g/100 g), dietary fibres (24.6 g/100 g), digestible carbohydrates (18.1 g/100 g) and ashes (15.2 g/100 g), but low lipid content (7.04 g/100 g). The biomass displayed a balanced amount of essential amino acids, n-3 polyunsaturated fatty acids, and starch-like polysaccharides. Significant levels of chlorophyll (3.5 g/100 g), carotenoids (0.61 g/100 g), and vitamins (e.g., 79.2 mg ascorbic acid /100 g) were also found in the biomass. Conversely, pathogenic bacteria, heavy metals, cyanotoxins, mycotoxins, polycyclic aromatic hydrocarbons, and pesticides were absent. The biomass showed moderate antioxidant activity in several in vitro assays. Taken together, as the biomass produced has a balanced biochemical composition of macronutrients and (pro-)vitamins, lacking any toxic contaminants, these results suggest that this strain can be used for nutritional applications.
Collapse
Affiliation(s)
- Hugo Pereira
- CCMAR-Centre of Marine Sciences, University of Algarve, Gambelas, 8005-139 Faro, Portugal
| | - Joana Silva
- CMP-Cimentos Maceira e Pataias, ALGAFARM - Unidade de Produção de Microalgas, 2445-411 Pataias, Portugal
| | - Tamára Santos
- CCMAR-Centre of Marine Sciences, University of Algarve, Gambelas, 8005-139 Faro, Portugal
| | - Katkam N Gangadhar
- CCMAR-Centre of Marine Sciences, University of Algarve, Gambelas, 8005-139 Faro, Portugal
- LEPABE-Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Ana Raposo
- CCMAR-Centre of Marine Sciences, University of Algarve, Gambelas, 8005-139 Faro, Portugal
| | - Cláudia Nunes
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- QOPNA and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Manuel A Coimbra
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- QOPNA and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luísa Gouveia
- LNEG-Laboratório Nacional de Energia e Geologia, I.P./Bioenergy Unit, Estrada do Paço do Lumiar 22, 1649-038 Lisbon, Portugal
| | - Luísa Barreira
- CCMAR-Centre of Marine Sciences, University of Algarve, Gambelas, 8005-139 Faro, Portugal
| | - João Varela
- CCMAR-Centre of Marine Sciences, University of Algarve, Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
26
|
Schulze PS, Hulatt CJ, Morales-Sánchez D, Wijffels RH, Kiron V. Fatty acids and proteins from marine cold adapted microalgae for biotechnology. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101604] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Trovão M, Pereira H, Silva J, Páramo J, Quelhas P, Santos T, Silva JT, Machado A, Gouveia L, Barreira L, Varela J. Growth performance, biochemical composition and sedimentation velocity of Tetraselmis sp. CTP4 under different salinities using low-cost lab- and pilot-scale systems. Heliyon 2019; 5:e01553. [PMID: 31193744 PMCID: PMC6538959 DOI: 10.1016/j.heliyon.2019.e01553] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/01/2018] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
Biomass harvesting is one of the most expensive steps of the whole microalgal production pipeline. Therefore, the present work aimed to understand the effect of salinity on the growth performance, biochemical composition and sedimentation velocity of Tetraselmis sp. CTP4, in order to establish an effective low-cost pilot-scale harvesting system for this strain. At lab scale, similar growth performance was obtained in cultures grown at salinities of 5, 10 and 20 g L-1 NaCl. In addition, identical settling velocities (2.4-3.6 cm h-1) were observed on all salinities under study, regardless of the growth stage. However, higher salinities (20 g L-1) promoted a significant increase in lipid contents in this strain compared to when this microalga was cultivated at 5 or 10 g L-1 NaCl. At pilot-scale, cultures were cultivated semi-continuously in 2.5-m3 tubular photobioreactors, fed every four days, and stored in a 1-m3 harvesting tank. Upon a 24-hour settling step, natural sedimentation of the microalgal cells resulted in the removal of 93% of the culture medium in the form of a clear liquid containing only vestigial amounts of biomass (0.07 ± 0.02 g L-1 dry weight; DW). The remaining culture was recovered as a highly concentrated culture (19.53 ± 4.83 g L-1 DW) and wet microalgal paste (272.7 ± 18.5 g L-1 DW). Overall, this method provided an effective recovery of 97% of the total biomass, decreasing significantly the harvesting costs.
Collapse
Affiliation(s)
- Mafalda Trovão
- CMP - Cimentos Maceira e Pataias, ALGAFARM - Microalgae Production Unit, 2445-411 Pataias, Portugal
| | - Hugo Pereira
- CCMAR - Centre of Marine Sciences, University of Algarve, Gambelas, 8005-139 Faro, Portugal
| | - Joana Silva
- CMP - Cimentos Maceira e Pataias, ALGAFARM - Microalgae Production Unit, 2445-411 Pataias, Portugal
| | - Jaime Páramo
- CMP - Cimentos Maceira e Pataias, ALGAFARM - Microalgae Production Unit, 2445-411 Pataias, Portugal
| | - Pedro Quelhas
- CMP - Cimentos Maceira e Pataias, ALGAFARM - Microalgae Production Unit, 2445-411 Pataias, Portugal
| | - Tamára Santos
- CCMAR - Centre of Marine Sciences, University of Algarve, Gambelas, 8005-139 Faro, Portugal
| | - Joana T Silva
- CMP - Cimentos Maceira e Pataias, ALGAFARM - Microalgae Production Unit, 2445-411 Pataias, Portugal
| | - Adriana Machado
- CMP - Cimentos Maceira e Pataias, ALGAFARM - Microalgae Production Unit, 2445-411 Pataias, Portugal
| | - Luísa Gouveia
- LNEG - Laboratório Nacional de Energia e Geologia, I.P./Bioenergy Unit, Estrada do Paço do Lumiar 22, 1649-038 Lisbon, Portugal
| | - Luísa Barreira
- CCMAR - Centre of Marine Sciences, University of Algarve, Gambelas, 8005-139 Faro, Portugal
| | - João Varela
- CCMAR - Centre of Marine Sciences, University of Algarve, Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
28
|
Elucidating the unique physiological responses of halotolerant Scenedesmus sp. cultivated in sea water for biofuel production. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
29
|
Patidar SK, Kim SH, Kim JH, Park J, Park BS, Han MS. Pelagibaca bermudensis promotes biofuel competence of Tetraselmis striata in a broad range of abiotic stressors: dynamics of quorum-sensing precursors and strategic improvement in lipid productivity. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:102. [PMID: 29636820 PMCID: PMC5889607 DOI: 10.1186/s13068-018-1097-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/26/2018] [Indexed: 05/28/2023]
Abstract
BACKGROUND Amelioration of biofuel feedstock of microalgae using sustainable means through synthetic ecology is a promising strategy. The co-cultivation model (Tetraselmis striata and Pelagibaca bermudensis) was evaluated for the robust biofuel production under varying stressors as well as with the selected two-stage cultivation modes. In addition, the role of metabolic exudates including the quorum-sensing precursors was assessed. RESULTS The co-cultivation model innovated in this study supported the biomass production of T. striata in a saline/marine medium at a broad range of pH, salinity, and temperature/light conditions, as well as nutrient limitation with a growth promotion of 1.2-3.6-fold. Hence, this developed model could contribute to abiotic stress mitigation of T. striata. The quorum-sensing precursor dynamics of the growth promoting bacteria P. bermudensis exhibited unique pattern under varying stressors as revealed through targeted metabolomics (using liquid chromatography-mass spectrometry, LC-MS). P. bermudensis and its metabolic exudates mutually promoted the growth of T. striata, which elevated the lipid productivity. Interestingly, hydroxy alkyl quinolones independently showed growth inhibition of T. striata on elevated concentration. Among two-stage cultivation modes (low pH, elevated salinity, and nitrate limitation), specifically, nitrate limitation induced a 1.5 times higher lipid content (30-31%) than control in both axenic and co-cultivated conditions. CONCLUSION Pelagibaca bermudensis is established as a potential growth promoting native phycospheric bacteria for robust biomass generation of T. striata in varying environment, and two-stage cultivation using nitrate limitation strategically maximized the biofuel precursors for both axenic and co-cultivation conditions (T and T-PB, respectively). Optimum metabolic exudate of P. bermudensis which act as a growth substrate to T. striata surpasses the antagonistic effect of excessive hydroxy alkyl quinolones [HHQ, 4-hydroxy-2-alkylquinolines and PQS (pseudomonas quorum signal), 2-heptyl-3-hydroxy-4(1H)-quinolone].
Collapse
Affiliation(s)
- Shailesh Kumar Patidar
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea
- Research Institute of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Sae-Hee Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea
- Research Institute of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Jin Ho Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea
- Research Institute of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Jungsoo Park
- Research Institute of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Bum Soo Park
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea
- Research Institute of Natural Sciences, Hanyang University, Seoul, South Korea
- Present Address: Marine Science Institute, University of Texas at Austin, Port Aransas, TX USA
| | - Myung-Soo Han
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea
- Research Institute of Natural Sciences, Hanyang University, Seoul, South Korea
| |
Collapse
|
30
|
Scale-up and large-scale production of Tetraselmis sp. CTP4 (Chlorophyta) for CO 2 mitigation: from an agar plate to 100-m 3 industrial photobioreactors. Sci Rep 2018; 8:5112. [PMID: 29572455 PMCID: PMC5865139 DOI: 10.1038/s41598-018-23340-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/01/2018] [Indexed: 12/01/2022] Open
Abstract
Industrial production of novel microalgal isolates is key to improving the current portfolio of available strains that are able to grow in large-scale production systems for different biotechnological applications, including carbon mitigation. In this context, Tetraselmis sp. CTP4 was successfully scaled up from an agar plate to 35- and 100-m3 industrial scale tubular photobioreactors (PBR). Growth was performed semi-continuously for 60 days in the autumn-winter season (17th October – 14th December). Optimisation of tubular PBR operations showed that improved productivities were obtained at a culture velocity of 0.65–1.35 m s−1 and a pH set-point for CO2 injection of 8.0. Highest volumetric (0.08 ± 0.01 g L−1 d−1) and areal (20.3 ± 3.2 g m−2 d−1) biomass productivities were attained in the 100-m3 PBR compared to those of the 35-m3 PBR (0.05 ± 0.02 g L−1 d−1 and 13.5 ± 4.3 g m−2 d−1, respectively). Lipid contents were similar in both PBRs (9–10% of ash free dry weight). CO2 sequestration was followed in the 100-m3 PBR, revealing a mean CO2 mitigation efficiency of 65% and a biomass to carbon ratio of 1.80. Tetraselmis sp. CTP4 is thus a robust candidate for industrial-scale production with promising biomass productivities and photosynthetic efficiencies up to 3.5% of total solar irradiance.
Collapse
|
31
|
Pereira H, Schulze PS, Schüler LM, Santos T, Barreira L, Varela J. Fluorescence activated cell-sorting principles and applications in microalgal biotechnology. ALGAL RES 2018. [DOI: 10.1016/j.algal.2017.12.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
Schulze PSC, Carvalho CFM, Pereira H, Gangadhar KN, Schüler LM, Santos TF, Varela JCS, Barreira L. Urban wastewater treatment by Tetraselmis sp. CTP4 (Chlorophyta). BIORESOURCE TECHNOLOGY 2017; 223:175-183. [PMID: 27792927 DOI: 10.1016/j.biortech.2016.10.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/06/2016] [Accepted: 10/08/2016] [Indexed: 05/12/2023]
Abstract
The ability of a recent isolate, Tetraselmis sp. CTP4, for nutrient removal from sewage effluents before and after the nitrification process under batch and continuous cultivation was studied. Biomass productivities in both wastewaters were similar under continuous conditions (0.343±0.053gL-1d-1) and nutrient uptake rates were maximal 31.4±0.4mgNL-1d-1 and 6.66±1.57mgP-PO43-L-1d-1 in WW before nitrification when cultivated in batch. Among batch treatments, cellular protein, carbohydrate and lipid levels shifted with aging cultures from 71.7±6.3 to 29.2±1.2%, 17.4±7.2 to 57.2±3.9% and 10.9±1.7 to 13.7±4.7%, respectively. In contrast, CTP4 cultivated continuously in Algal medium (control) showed lower biomass productivities (0.282gVSSL-1d-1) although improved lipid content (up to 20% lipids) in batch cultivation. Overall, Tetraselmis sp. CTP4 is promising for WW treatment as a replacement of the costly nitrification process, fixating more nutrients and providing a protein and carbohydrate-rich biomass as by-product.
Collapse
Affiliation(s)
- Peter S C Schulze
- CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; FBA - Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Carolina F M Carvalho
- CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Hugo Pereira
- CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Katkam N Gangadhar
- CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; LEPABE - Laboratory of Engineering of Processes, Environment, Biotechnology and Energy, University of Porto, Rua Dr. Roberto Frias s/n, P-4200-465 Porto, Portugal
| | - Lisa M Schüler
- CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Tamára F Santos
- CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - João C S Varela
- CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Luísa Barreira
- CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|