1
|
Hatsuoka R, Yamasaki K, Wada K, Matsuyama T, Okamoto K. Tunable Plasmon Resonance in Silver Nanodisk-on-Mirror Structures and Scattering Enhancement by Annealing. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1559. [PMID: 39404285 PMCID: PMC11477715 DOI: 10.3390/nano14191559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
In this study, we evaluated the surface plasmon characteristics of periodic silver nanodisk structures fabricated on a dielectric thin-film spacer layer on a Ag mirror substrate (NanoDisk on Mirror: NDoM) through finite difference time domain (FDTD) simulations and experiments involving actual sample fabrication. Through FDTD simulations, it was confirmed that the NDoM structure exhibits two sharp peaks in the visible range, and by adjusting the thickness of the spacer layer and the size of the nanodisk structure, sharp peaks can be obtained across the entire visible range. Additionally, we fabricated the NDoM structure using electron beam lithography (EBL) and experimentally confirmed that the obtained peaks matched the simulation results. Furthermore, we discovered that applying annealing at an appropriate temperature to the fabricated structure enables the adjustment of the resonance peak wavelength and enhances the scattering intensity by approximately five times. This enhancement is believed to result from changes in the shape and size of the nanodisk structure, as well as a reduction in grain boundaries in the metal crystal due to annealing. These results have the potential to contribute to technological advancements in various application fields, such as optical sensing and emission enhancement.
Collapse
Affiliation(s)
- Ryohei Hatsuoka
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Kota Yamasaki
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Kenji Wada
- Equipment Sharing Center for Advanced Research and Innovation, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan;
| | - Tetsuya Matsuyama
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Koichi Okamoto
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| |
Collapse
|
2
|
Ebrahimi M, Luo B, Wang Q, Attarilar S. Enhanced Multifaceted Properties of Nanoscale Metallic Multilayer Composites. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4004. [PMID: 39203182 PMCID: PMC11355961 DOI: 10.3390/ma17164004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024]
Abstract
This study explored the fascinating field of high-performance nanoscale metallic multilayer composites, focusing on their magnetic, optical, and radiation tolerance properties, as well as their thermal and electrical properties. In general, nanoscale metallic multilayer composites have a wide range of outstanding properties, which differ greatly from those observed in monolithic films. Their exceptional properties are primarily due to the large number of interfaces and nanoscale layer thicknesses. Through a comprehensive review of existing literature and experimental data, this paper highlights the remarkable performance enhancements achieved by the precise control of layer thicknesses and interfaces in these composites. Furthermore, it will discuss the underlying mechanisms responsible for their exceptional properties and provide insights into future research directions in this rapidly evolving field. Many studies have investigated these materials, focusing on their magnetic, mechanical, optical, or radiation-tolerance properties. This paper summarizes the findings in each area, including a description of the general attributes, the adopted synthesis methods, and the most common characterization techniques used. The paper also covers related experimental data, as well as existing and promising applications. The paper also covers other phenomena of interest, such as thermal stability studies, self-propagating reactions, and the progression from nanomultilayers to amorphous and/or crystalline alloys. Finally, the paper discusses challenges and future perspectives relating to nanomaterials. Overall, this paper is a valuable resource for researchers and engineers interested in harnessing the full potential of nanoscale metallic multilayer composites for advanced technological applications.
Collapse
Affiliation(s)
- Mahmoud Ebrahimi
- Department of Mechanical Engineering, Faculty of Engineering, University of Maragheh, Maragheh 83111-55181, Iran;
- National Engineering Research Center of Light Alloy Net Forming and Key State Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Bangcai Luo
- Ningbo Major Draft Beer Equipment Co., Ltd., Ningbo 315033, China;
| | - Qudong Wang
- National Engineering Research Center of Light Alloy Net Forming and Key State Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Shokouh Attarilar
- National Engineering Research Center of Light Alloy Net Forming and Key State Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
- Department of Materials Engineering, Faculty of Engineering, University of Maragheh, Maragheh 83111-55181, Iran
| |
Collapse
|
3
|
Maeda S, Osaka N, Niguma R, Matsuyama T, Wada K, Okamoto K. Plasmonic Metamaterial Ag Nanostructures on a Mirror for Colorimetric Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101650. [PMID: 37242066 DOI: 10.3390/nano13101650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
In this study, we demonstrate the localized surface plasmon resonance (LSPR) in the visible range by using nanostructures on mirrors. The nanohemisphere-on-mirror (NHoM) structure is based on random nanoparticles that were obtained by heat-treating silver thin films and does not require any top-down nanofabrication processes. We were able to successfully tune over a wide wavelength range and obtain full colors using the NHoM structures, which realized full coverage of the Commission Internationale de l'Eclairage (CIE) standard RGB (sRGB) color space. Additionally, we fabricated the periodic nanodisk-on-glass (NDoG) structure using electron beam lithography and compared it with the NHoM structure. Our analysis of dark-field microscopic images observed by a hyperspectral camera showed that the NHoM structure had less variation in the resonant wavelength by observation points compared with the periodic NDoG structure. In other words, the NHoM structure achieved a high color quality that is comparable to the periodic structure. Finally, we proposed colorimetric sensing as an application of the NHoM structure. We confirmed the significant improvement in performance of colorimetric sensing using the NHoM structure and succeeded in colorimetric sensing using protein drops. The ability to fabricate large areas in full color easily and inexpensively with our proposed structures makes them suitable for industrial applications, such as displays, holograms, biosensing, and security applications.
Collapse
Affiliation(s)
- Sayako Maeda
- Department of Physics and Electronics, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Noboru Osaka
- Department of Physics and Electronics, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Rei Niguma
- Department of Physics and Electronics, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Tetsuya Matsuyama
- Department of Physics and Electronics, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Kenji Wada
- Department of Physics and Electronics, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Koichi Okamoto
- Department of Physics and Electronics, Osaka Metropolitan University, Osaka 599-8531, Japan
| |
Collapse
|
4
|
Huang Y, Nakamura K, Takida Y, Minamide H, Hane K, Kanamori Y. Actively tunable THz filter based on an electromagnetically induced transparency analog hybridized with a MEMS metamaterial. Sci Rep 2020; 10:20807. [PMID: 33257698 PMCID: PMC7705675 DOI: 10.1038/s41598-020-77922-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/18/2020] [Indexed: 11/08/2022] Open
Abstract
Electromagnetically induced transparency (EIT) analogs in classical oscillator systems have been investigated due to their potential in optical applications such as nonlinear devices and the slow-light field. Metamaterials are good candidates that utilize EIT-like effects to regulate optical light. Here, an actively reconfigurable EIT metamaterial for controlling THz waves, which consists of a movable bar and a fixed wire pair, is numerically and experimentally proposed. By changing the distance between the bar and wire pair through microelectromechanical system (MEMS) technology, the metamaterial can controllably regulate the EIT behavior to manipulate the waves around 1.832 THz, serving as a dynamic filter. A high transmittance modulation rate of 38.8% is obtained by applying a drive voltage to the MEMS actuator. The dispersion properties and polarization of the metamaterial are also investigated. Since this filter is readily miniaturized and integrated by taking advantage of MEMS, it is expected to significantly promote the development of THz-related practical applications such as THz biological detection and THz communications.
Collapse
Affiliation(s)
- Ying Huang
- Department of Robotics, Tohoku University, Sendai, 980-8579, Japan
| | - Kenta Nakamura
- Department of Finemechanics, Tohoku University, Sendai, 980-8579, Japan
| | - Yuma Takida
- RIKEN Center for Advanced Photonics, RIKEN, Sendai, 980-0845, Japan
| | - Hiroaki Minamide
- RIKEN Center for Advanced Photonics, RIKEN, Sendai, 980-0845, Japan
| | - Kazuhiro Hane
- Department of Finemechanics, Tohoku University, Sendai, 980-8579, Japan
| | | |
Collapse
|
5
|
Zhong N, Dai Q, Liang R, Li X, Tan X, Zhang X, Wei Z, Wang F, Liu H, Meng H. Analogue of electromagnetically induced absorption with double absorption windows in a plasmonic system. PLoS One 2017; 12:e0179609. [PMID: 28662059 PMCID: PMC5491032 DOI: 10.1371/journal.pone.0179609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/01/2017] [Indexed: 11/19/2022] Open
Abstract
We report the observation of an analog of double electromagnetically induced absorption (EIA) in a plasmonic system consisting of two disk resonators side-coupled to a discrete metal-insulator-metal (MIM) waveguide. The finite-difference time-domain (FDTD) simulation calculations show that two absorption windows are obtained and can be easily tuned by adjusting the parameters of the two resonance cavities. The consistence between the coupled-model theory and FDTD simulation results verify the feasibility of the proposed system. Since the scheme is easy to be fabricated, our proposed configuration may thus be applied to narrow-band filtering, absorptive switching, and absorber applications.
Collapse
Affiliation(s)
- Nianfa Zhong
- Guangzhou Key Laboratory for Special Fiber Photonic Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangdong, China
| | - Qiaofeng Dai
- Guangzhou Key Laboratory for Special Fiber Photonic Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangdong, China
- * E-mail: (QFD); (ZCW)
| | - Ruisheng Liang
- Guangzhou Key Laboratory for Special Fiber Photonic Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangdong, China
| | - Xianping Li
- Guangzhou Key Laboratory for Special Fiber Photonic Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangdong, China
| | - Xiaopei Tan
- Guangzhou Key Laboratory for Special Fiber Photonic Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangdong, China
| | - Xiaomeng Zhang
- Guangzhou Key Laboratory for Special Fiber Photonic Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangdong, China
| | - Zhongchao Wei
- Guangzhou Key Laboratory for Special Fiber Photonic Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangdong, China
- * E-mail: (QFD); (ZCW)
| | - Faqiang Wang
- Guangzhou Key Laboratory for Special Fiber Photonic Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangdong, China
| | - Hongzhan Liu
- Guangzhou Key Laboratory for Special Fiber Photonic Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangdong, China
| | - Hongyun Meng
- Guangzhou Key Laboratory for Special Fiber Photonic Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangdong, China
| |
Collapse
|
6
|
Masuda S, Yanase Y, Usukura E, Ryuzaki S, Wang P, Okamoto K, Kuboki T, Kidoaki S, Tamada K. High-resolution imaging of a cell-attached nanointerface using a gold-nanoparticle two-dimensional sheet. Sci Rep 2017. [PMID: 28623338 PMCID: PMC5473937 DOI: 10.1038/s41598-017-04000-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This paper proposes a simple, effective, non-scanning method for the visualization of a cell-attached nanointerface. The method uses localized surface plasmon resonance (LSPR) excited homogeneously on a two-dimensional (2D) self-assembled gold-nanoparticle sheet. The LSPR of the gold-nanoparticle sheet provides high-contrast interfacial images due to the confined light within a region a few tens of nanometers from the particles and the enhancement of fluorescence. Test experiments on rat basophilic leukemia (RBL-2H3) cells with fluorescence-labeled actin filaments revealed high axial and lateral resolution even under a regular epifluorescence microscope, which produced higher quality images than those captured under a total internal reflection fluorescence (TIRF) microscope. This non-scanning-type, high-resolution imaging method will be an effective tool for monitoring interfacial phenomena that exhibit relatively rapid reaction kinetics in various cellular and molecular dynamics.
Collapse
Affiliation(s)
- Shihomi Masuda
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuhki Yanase
- Graduate School of Biomedical & Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City Hiroshima, 734-8553, Japan
| | - Eiji Usukura
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Sou Ryuzaki
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Pangpang Wang
- Education Center for Global Leaders in Molecular Systems for Devices, Kyushu University, Fukuoka, 819-0395, Japan
| | - Koichi Okamoto
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Thasaneeya Kuboki
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Satoru Kidoaki
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kaoru Tamada
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|