1
|
Goodhill GJ. Theoretical Models of Neural Development. iScience 2018; 8:183-199. [PMID: 30321813 PMCID: PMC6197653 DOI: 10.1016/j.isci.2018.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/06/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022] Open
Abstract
Constructing a functioning nervous system requires the precise orchestration of a vast array of mechanical, molecular, and neural-activity-dependent cues. Theoretical models can play a vital role in helping to frame quantitative issues, reveal mathematical commonalities between apparently diverse systems, identify what is and what is not possible in principle, and test the abilities of specific mechanisms to explain the data. This review focuses on the progress that has been made over the last decade in our theoretical understanding of neural development.
Collapse
Affiliation(s)
- Geoffrey J Goodhill
- Queensland Brain Institute and School of Mathematics and Physics, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
2
|
Wefers AK, Haberlandt C, Tekin NB, Fedorov DA, Timmermann A, van der Want JJL, Chaudhry FA, Steinhäuser C, Schilling K, Jabs R. Synaptic input as a directional cue for migrating interneuron precursors. Development 2017; 144:4125-4136. [PMID: 29061636 DOI: 10.1242/dev.154096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/11/2017] [Indexed: 02/02/2023]
Abstract
During CNS development, interneuron precursors have to migrate extensively before they integrate in specific microcircuits. Known regulators of neuronal motility include classical neurotransmitters, yet the mechanisms that assure interneuron dispersal and interneuron/projection neuron matching during histogenesis remain largely elusive. We combined time-lapse video microscopy and electrophysiological analysis of the nascent cerebellum of transgenic Pax2-EGFP mice to address this issue. We found that cerebellar interneuronal precursors regularly show spontaneous postsynaptic currents, indicative of synaptic innervation, well before settling in the molecular layer. In keeping with the sensitivity of these cells to neurotransmitters, ablation of synaptic communication by blocking vesicular release in acute slices of developing cerebella slows migration. Significantly, abrogation of exocytosis primarily impedes the directional persistence of migratory interneuronal precursors. These results establish an unprecedented function of the early synaptic innervation of migrating neuronal precursors and demonstrate a role for synapses in the regulation of migration and pathfinding.
Collapse
Affiliation(s)
- Annika K Wefers
- Anatomisches Institut, Anatomie & Zellbiologie, Medizinische Fakultät, University of Bonn, 53115 Bonn, Germany.,Institut für Zelluläre Neurowissenschaften, Medizinische Fakultät, University of Bonn, 53105 Bonn, Germany
| | - Christian Haberlandt
- Institut für Zelluläre Neurowissenschaften, Medizinische Fakultät, University of Bonn, 53105 Bonn, Germany
| | - Nuriye B Tekin
- Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | - Dmitry A Fedorov
- Institut für Zelluläre Neurowissenschaften, Medizinische Fakultät, University of Bonn, 53105 Bonn, Germany
| | - Aline Timmermann
- Institut für Zelluläre Neurowissenschaften, Medizinische Fakultät, University of Bonn, 53105 Bonn, Germany
| | - Johannes J L van der Want
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Farrukh A Chaudhry
- Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | - Christian Steinhäuser
- Institut für Zelluläre Neurowissenschaften, Medizinische Fakultät, University of Bonn, 53105 Bonn, Germany
| | - Karl Schilling
- Anatomisches Institut, Anatomie & Zellbiologie, Medizinische Fakultät, University of Bonn, 53115 Bonn, Germany
| | - Ronald Jabs
- Institut für Zelluläre Neurowissenschaften, Medizinische Fakultät, University of Bonn, 53105 Bonn, Germany
| |
Collapse
|
3
|
Revisiting chemoaffinity theory: Chemotactic implementation of topographic axonal projection. PLoS Comput Biol 2017; 13:e1005702. [PMID: 28792499 PMCID: PMC5562328 DOI: 10.1371/journal.pcbi.1005702] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/18/2017] [Accepted: 07/25/2017] [Indexed: 01/18/2023] Open
Abstract
Neural circuits are wired by chemotactic migration of growth cones guided by extracellular guidance cue gradients. How growth cone chemotaxis builds the macroscopic structure of the neural circuit is a fundamental question in neuroscience. I addressed this issue in the case of the ordered axonal projections called topographic maps in the retinotectal system. In the retina and tectum, the erythropoietin-producing hepatocellular (Eph) receptors and their ligands, the ephrins, are expressed in gradients. According to Sperry's chemoaffinity theory, gradients in both the source and target areas enable projecting axons to recognize their proper terminals, but how axons chemotactically decode their destinations is largely unknown. To identify the chemotactic mechanism of topographic mapping, I developed a mathematical model of intracellular signaling in the growth cone that focuses on the growth cone's unique chemotactic property of being attracted or repelled by the same guidance cues in different biological situations. The model presented mechanism by which the retinal growth cone reaches the correct terminal zone in the tectum through alternating chemotactic response between attraction and repulsion around a preferred concentration. The model also provided a unified understanding of the contrasting relationships between receptor expression levels and preferred ligand concentrations in EphA/ephrinA- and EphB/ephrinB-encoded topographic mappings. Thus, this study redefines the chemoaffinity theory in chemotactic terms.
Collapse
|
4
|
Rathod SG, Bhajantri RF, Ravindrachary V, Naik J, Kumar DJM. High mechanical and pressure sensitive dielectric properties of graphene oxide doped PVA nanocomposites. RSC Adv 2016. [DOI: 10.1039/c6ra16026c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tunable ac conductivity of 2 wt% GO doped PVA with applied pressures and TEM image of graphene oxide.
Collapse
Affiliation(s)
- Sunil G. Rathod
- Dept of Physics
- Mangalore University
- Mangalagangotri – 574199
- India
| | - R. F. Bhajantri
- Department of Physics
- Karnatak University
- Dharwad – 580003
- India
| | - V. Ravindrachary
- Dept of Physics
- Mangalore University
- Mangalagangotri – 574199
- India
| | - Jagadish Naik
- Dept of Physics
- Mangalore University
- Mangalagangotri – 574199
- India
| | - D. J. Madhu Kumar
- Department of Chemistry
- Mangalore University
- Mangalagangotri – 574199
- India
| |
Collapse
|