1
|
Preger C, Rissler J, Kivimäki A, Eriksson AC, Walsh N. A versatile sample-delivery system for X-ray photoelectron spectroscopy of in-flight aerosols and free nanoparticles at MAX IV Laboratory. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1382-1392. [PMID: 39110676 PMCID: PMC11371056 DOI: 10.1107/s1600577524005411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/06/2024] [Indexed: 09/04/2024]
Abstract
Aerosol science is of utmost importance for both climate and public health research, and in recent years X-ray techniques have proven effective tools for aerosol-particle characterization. To date, such methods have often involved the study of particles collected onto a substrate, but a high photon flux may cause radiation damage to such deposited particles and volatile components can potentially react with the surrounding environment after sampling. These and many other factors make studies on collected aerosol particles challenging. Therefore, a new aerosol sample-delivery system dedicated to X-ray photoelectron spectroscopy studies of aerosol particles and gas molecules in-flight has been developed at the MAX IV Laboratory. The aerosol particles are brought from atmospheric pressure to vacuum in a continuous flow, ensuring that the sample is constantly renewed, thus avoiding radiation damage, and allowing measurements on the true unsupported aerosol. At the same time, available gas molecules can be used for energy calibration and to study gas-particle partitioning. The design features of the aerosol sample-delivery system and important information on the operation procedures are described in detail here. Furthermore, to demonstrate the experimental range of the aerosol sample-delivery system, results from aerosol particles of different shape, size and composition are presented, including inorganic atmospheric aerosols, secondary organic aerosols and engineered nanoparticles.
Collapse
Affiliation(s)
- C. Preger
- Ergonomics and Aerosol TechnologyLund UniversityBox 118221 00LundSweden
- MAX IV LaboratoryLund UniversityBox 118221 00LundSweden
- NanoLundLund UniversityBox 118221 00LundSweden
| | - J. Rissler
- Ergonomics and Aerosol TechnologyLund UniversityBox 118221 00LundSweden
- NanoLundLund UniversityBox 118221 00LundSweden
- RISE Research Institutes of SwedenScheelevägen 17223 70LundSweden
| | - A. Kivimäki
- MAX IV LaboratoryLund UniversityBox 118221 00LundSweden
| | - A. C. Eriksson
- Ergonomics and Aerosol TechnologyLund UniversityBox 118221 00LundSweden
- NanoLundLund UniversityBox 118221 00LundSweden
| | - N. Walsh
- MAX IV LaboratoryLund UniversityBox 118221 00LundSweden
| |
Collapse
|
2
|
Rashid MH, Borca CN, Xto JM, Huthwelker T. X-Ray absorption spectroscopy on airborne aerosols. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2022; 2:1338-1350. [PMID: 36561554 PMCID: PMC9648630 DOI: 10.1039/d2ea00016d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
Abstract
Here we demonstrate a method for performing X-ray absorption spectroscopy (XAS) on airborne aerosols. XAS provides unique insight into elemental composition, chemical and phase state, local coordination and electronic structure of both crystalline and amorphous matter. The aerosol is generated from different salt solutions using a commercial atomizer and dried using a diffusion drier. Embedded in a carrier gas, the aerosol is guided into the experimental chamber for XAS analysis. Typical particle sizes range from some 10 to a few 100 nm. Inside the chamber the aerosol bearing gas is then confined into a region of about 1-2 cm3 in size, by a pure flow of helium, generating a stable free-flowing stream of aerosol. It is hit by a monochromatic X-ray beam, and the emitted fluorescent light is used for spectroscopic analysis. Using an aerosol generated from CaCl2, KCl, and (NH4)2SO4 salt solutions, we demonstrate the functionality of the system in studying environmentally relevant systems. In addition, we show that the detection limits are sufficient to also observe subtle spectroscopic signatures in XAS spectra with integration times of about 1-2 hours using a bright undulator beamline. This novel setup opens new research opportunities for studying the nucleation of new phases in multicomponent aerosol systems in situ, and for investigating (photo-) chemical reactions on airborne matter, as relevant to both atmospheric science and also for general chemical application.
Collapse
Affiliation(s)
- Muhammad H. Rashid
- Paul Scherrer Institute, Swiss Light Source, Laboratory for FemtochemistryForschungsstrasse 111Villigen PSISwitzerland
| | - Camelia N. Borca
- Paul Scherrer Institute, Swiss Light Source, Laboratory for FemtochemistryForschungsstrasse 111Villigen PSISwitzerland
| | - Jacinta M. Xto
- Paul Scherrer Institute, Swiss Light Source, Laboratory for FemtochemistryForschungsstrasse 111Villigen PSISwitzerland
| | - Thomas Huthwelker
- Paul Scherrer Institute, Swiss Light Source, Laboratory for FemtochemistryForschungsstrasse 111Villigen PSISwitzerland
| |
Collapse
|
3
|
Pignié MC, Patra S, Huart L, Milosavljević AR, Renault JP, Leroy J, Nicolas C, Sublemontier O, Le Caër S, Thill A. Experimental determination of the curvature-induced intra-wall polarization of inorganic nanotubes. NANOSCALE 2021; 13:19650-19662. [PMID: 34816859 DOI: 10.1039/d1nr06462b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inspired by a natural nano-mineral known as imogolite, aluminosilicate inorganic nanotubes are appealing systems for photocatalysis. Here, we studied two types of synthetic imogolites: one is completely hydrophilic (IMO-OH), while the other has a hydrophilic exterior and a hydrophobic interior (IMO-CH3), enabling the encapsulation of organic molecules. We combined UV-Vis diffuse reflectance spectroscopy of imogolite powders and X-ray photoelectron spectroscopy of deposited imogolite films and isolated nanotubes agglomerates to obtain not only the band structure, but also the quantitative intra-wall polarization of both synthetic imogolites for the first time. The potential difference across the imogolite wall was determined to be 0.7 V for IMO-OH and around 0.2 V for IMO-CH3. The high curvature of the nanotubes, together with the thinness of their wall, favors efficient spontaneous charge separation and electron exchange reactions on both the internal and external nanotube surfaces. In addition, the positions of their valence and conduction band edges make them interesting candidates for co-catalysts or doped catalysts for water splitting, among other possible photocatalytic reactions relevant to energy and the environment.
Collapse
Affiliation(s)
- Marie-Claire Pignié
- NIMBE, UMR 3685 CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | - Sabyasachi Patra
- NIMBE, UMR 3685 CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | - Lucie Huart
- NIMBE, UMR 3685 CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | | | - Jean Philippe Renault
- NIMBE, UMR 3685 CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | - Jocelyne Leroy
- NIMBE, UMR 3685 CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | - Christophe Nicolas
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Olivier Sublemontier
- NIMBE, UMR 3685 CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | - Sophie Le Caër
- NIMBE, UMR 3685 CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | - Antoine Thill
- NIMBE, UMR 3685 CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
4
|
Abid AR, Reinhardt M, Boudjemia N, Pelimanni E, Milosavljević AR, Saak CM, Huttula M, Björneholm O, Patanen M. The effect of relative humidity on CaCl 2 nanoparticles studied by soft X-ray absorption spectroscopy. RSC Adv 2021; 11:2103-2111. [PMID: 35424180 PMCID: PMC8693708 DOI: 10.1039/d0ra08943e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/26/2020] [Indexed: 01/09/2023] Open
Abstract
Ca- and Cl-containing nanoparticles are common in atmosphere, originating for example from desert dust and sea water. The properties and effects on atmospheric processes of these aerosol particles depend on the relative humidity (RH) as they are often both hygroscopic and deliquescent. We present here a study of surface structure of free-flying CaCl2 nanoparticles (CaCl2-NPs) in the 100 nm size regime prepared at different humidity levels (RH: 11-85%). We also created mixed nanoparticles by aerosolizing a solution of CaCl2 and phenylalanine (Phe), which is a hydrophobic amino acid present in atmosphere. Information of hydration state of CaCl2-NPs and production of mixed CaCl2 + Phe nanoparticles was obtained using soft X-ray absorption spectroscopy (XAS) at Ca 2p, Cl 2p, C 1s, and O 1s edges. We also report Ca 2p and Cl 2p X-ray absorption spectra of an aqueous CaCl2 solution. The O 1s X-ray absorption spectra measured from hydrated CaCl2-NPs resemble liquid-like water spectrum, which is heavily influenced by the presence of ions. Core level spectra of Ca2+ and Cl- ions do not show a clear dependence of % RH, indicating that the first coordination shell remains similar in all measured hydrated CaCl2-NPs, but they differ from aqueous solution and solid CaCl2.
Collapse
Affiliation(s)
- Abdul Rahman Abid
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 90570 Oulu Finland +358 46 9691089
- Molecular and Condensed Matter Physics, Uppsala University Ångströmlaboratoriet 752 37 Uppsala Sweden
| | - Maximilian Reinhardt
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 90570 Oulu Finland +358 46 9691089
| | - Nacer Boudjemia
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 90570 Oulu Finland +358 46 9691089
| | - Eetu Pelimanni
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 90570 Oulu Finland +358 46 9691089
| | | | - Clara-Magdalena Saak
- Molecular and Condensed Matter Physics, Uppsala University Ångströmlaboratoriet 752 37 Uppsala Sweden
| | - Marko Huttula
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 90570 Oulu Finland +358 46 9691089
| | - Olle Björneholm
- Molecular and Condensed Matter Physics, Uppsala University Ångströmlaboratoriet 752 37 Uppsala Sweden
| | - Minna Patanen
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 90570 Oulu Finland +358 46 9691089
| |
Collapse
|
5
|
Mahrt F, Alpert PA, Dou J, Grönquist P, Arroyo PC, Ammann M, Lohmann U, Kanji ZA. Aging induced changes in ice nucleation activity of combustion aerosol as determined by near edge X-ray absorption fine structure (NEXAFS) spectroscopy. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:895-907. [PMID: 32188960 DOI: 10.1039/c9em00525k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fresh soot particles are generally hydrophobic, however, particle hydrophilicity can be increased through atmospheric aging processes. At present little is known on how particle chemical composition and hydrophilicity change upon atmospheric aging and associated uncertainties governing the ice cloud formation potential of soot. Here we sampled two propane flame soots referred to as brown and black soot, characterized as organic carbon rich and poor, respectively. We investigated how the ice nucleation activity of these particles changed through aging in water and aqueous acidic solutions, using a continuous flow diffusion chamber operated at cirrus cloud temperatures (T ≤ 233 K). Single aggregates of both unaged and aged soot were chemically characterized by scanning transmission X-ray microscopy and near edge X-ray absorption fine structure (STXM/NEXAFS) measurements. Particle wettability was determined through water sorption measurements. Unaged black and brown soot particles exhibited significantly different ice nucleation activities. Our experiments revealed significantly enhanced ice nucleation activity of the aged soot particles compared to the fresh samples, lowering the required relative humidities at which ice formation can take place at T = 218 K by up to 15% with respect to water (ΔRHi ≈ 25%). We observed an enhanced water uptake capacity for the aged compared to the unaged samples, which was more pronounced for the black soot. From these measurements we concluded that there is a change in ice nucleation mechanism when aging brown soot. Comparison of the NEXAFS spectra of unaged soot samples revealed a unique spectral feature around 287.5 eV in the case of black soot that was absent for the brown soot, indicative of carbon with hydroxyl functionalities. Comparison of the NEXAFS spectra of unaged and aged soot particles indicates changes in organic functional groups, and the aged spectra were found to be largely similar across soot types, with the exception of the water aged brown soot. Overall, we conclude that atmospheric aging is important to representatively assess the ice cloud formation activity of soot particles.
Collapse
Affiliation(s)
- Fabian Mahrt
- Department of Environmental System Science, Institute for Atmospheric and Climate Science, ETH Zurich, 8092 Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Duca D, Irimiea C, Faccinetto A, Noble JA, Vojkovic M, Carpentier Y, Ortega IK, Pirim C, Focsa C. On the benefits of using multivariate analysis in mass spectrometric studies of combustion-generated aerosols. Faraday Discuss 2020; 218:115-137. [PMID: 31123727 DOI: 10.1039/c8fd00238j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The intricate chemistry of the carbonaceous particle surface layer (which drives their reactivity, environmental and health impacts) results in complex mass spectra. In this respect, detailed molecular-level analysis of combustion emissions may be challenging even with high-resolution mass spectrometry. Building on a recently proposed comprehensive methodology (encompassing all stages from sampling to data reduction), we propose herein a comparative analysis of soot particles produced by three different sources: a miniCAST standard generator, a laboratory diffusion flame and a single cylinder internal combustion engine. The surface composition is probed by either laser or secondary ion mass spectrometry. Two examples of multivariate analysis, Principal component analysis and hierarchical clustering analysis proved their efficiency in both identifying general trends and evidencing subtle differences that otherwise would remain unnoticed in the plethora of data generated during mass spectrometric analyses. Chemical information extracted from these multivariate statistical procedures contributes to a better understanding of fundamental combustion processes and also opens to practical applications such as the tracing of engine emissions.
Collapse
Affiliation(s)
- D Duca
- Univ. Lille, CNRS, UMR 8523, PhLAM - Laboratoire de Physique des Lasers Atomes et Molécules, F-59000 Lille, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Jacobs MI, Xu B, Kostko O, Wiegel AA, Houle FA, Ahmed M, Wilson KR. Using Nanoparticle X-ray Spectroscopy to Probe the Formation of Reactive Chemical Gradients in Diffusion-Limited Aerosols. J Phys Chem A 2019; 123:6034-6044. [DOI: 10.1021/acs.jpca.9b04507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Michael I. Jacobs
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Bo Xu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Oleg Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Aaron A. Wiegel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Frances A. Houle
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kevin R. Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Abstract
We examine the quantum confinement in the photoemission ionization energy in air and optical band gap of carbon nanoparticles (CNPs). Premixed, stretched-stabilized ethylene flames are used to generate the CNPs reproducibly over the range of 4-23 nm in volume median diameter. The results reveal that flame-formed CNPs behave like an indirect band gap material, and that the existence of the optical band gap is attributed to the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap in the polycyclic aromatic hydrocarbons comprising the CNPs. Both the ionization energy and optical band gap are found to follow closely the quantum confinement effect. The optical band gaps, measured both in situ and ex situ on the CNPs prepared in several additional flames, are consistent with the theory and the baseline data of CNPs from stretched-stabilized ethylene flames, thus indicating the observed effect to be general and that the particle size is the single most important factor governing the variation of the band gap of the CNPs studied. Cyclic voltammetry measurements and density functional theory calculations provide additional support for the quantum dot behavior observed.
Collapse
|
9
|
Ma J, Guo A, Wang S, Man S, Zhang Y, Liu S, Liu Y. From the lung to the knee joint: Toxicity evaluation of carbon black nanoparticles on macrophages and chondrocytes. JOURNAL OF HAZARDOUS MATERIALS 2018; 353:329-339. [PMID: 29680691 DOI: 10.1016/j.jhazmat.2018.04.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
Carbon black (CB), a core elemental carbon component of airborne particles, has been used as a model material to study environmental safety and health impacts of airborne particles. Although potential adverse effects of CB have been reported, limited knowledge is available regarding CB-induced metabolic disorders and secondary effects distant from primary target organs, such as the effects on joints. The knee cavity is a relatively closed space along the peripheral circulation route with a slow rate of interchange of nutrition with blood. While epidemiologic studies have indicated that airborne particle exposure may affect the occurrence and severity of inflammatory knee diseases, no research has been performed to understand the potential hazardous direct/indirect interactions between particles and knee cells. Herein, we have scrutinized the toxicity of four commercial nano-sized CB samples in the lung and a distant site: knee joint. Our results indicated that CB triggered pulmonary and systemic inflammation upon inhalation exposure, and, more strikingly, CB also elicited injuries of the knee joint, as demonstrated by thickened synovial membrane, suggesting disordered cellular metabolism within the knee joint. Our data recognized the CB toxicity profiles to macrophages as characterized by pro-inflammatory reactions, and also defined an activated metabolic state of chondrocytes, as evidenced by metalloproteinase (MMP) induction. Of note, remarkable variations were also found for these changes induced by these four CB samples, due to their distinct physicochemical properties. Collectively, our results uncovered a significant toxicity of CB inhalation exposure to the knee joint, as reflected by metabolic activation of chondrocytes, and, more importantly, these findings unearthed CB-induced metabolic disorders and secondary effects owing to systemic pro-inflammatory conditions upon CB exposure, in addition to the likelihood of direct toxicity to knee cells.
Collapse
Affiliation(s)
- Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Anyi Guo
- Beijing Jishuitan Hospital, Peking University Health Science Center, Beijing, 100035, PR China
| | - Shunhao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Siliang Man
- Beijing Jishuitan Hospital, Peking University Health Science Center, Beijing, 100035, PR China
| | - Yunjian Zhang
- Beijing Jishuitan Hospital, Peking University Health Science Center, Beijing, 100035, PR China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yajun Liu
- Beijing Jishuitan Hospital, Peking University Health Science Center, Beijing, 100035, PR China.
| |
Collapse
|
10
|
Antonsson E, Raschpichler C, Langer B, Marchenko D, Rühl E. Surface Composition of Free Mixed NaCl/Na 2SO 4 Nanoscale Aerosols Probed by X-ray Photoelectron Spectroscopy. J Phys Chem A 2018; 122:2695-2702. [PMID: 29481078 DOI: 10.1021/acs.jpca.8b00615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The local chemical surface composition of unsupported mixed solid NaCl/Na2SO4 aerosols ( d ∼ 70 nm) is studied by X-ray photoelectron spectroscopy. The solid aerosols are generated by drying aqueous droplets containing mixtures of the two salts in different mole fractions. The mole fraction of these salts is found to deviate at the solid aerosol surface significantly from the initial droplet composition. The minority species in the droplets are found to be enhanced at the surface of the solid mixed aerosols. This surface enhancement is rationalized in terms of the nucleation/crystallization process, where the salts evidently do not cocrystallize, rather than each salt forms pure crystal moieties. Characteristic variations of the surface ion concentration as a function of the mole fraction of the salts in the initial droplet are observed in the nanometer size regime. This is unlike core-shell architectures previously found in mixed micron salt aerosols, indicating that aerosol models derived from micron-sized aerosols are evidently not fully reliable to describe the surface composition of nanosized aerosols. Furthermore, surface enhancement of the minority component in mixed NaCl/Na2SO4 aerosols is also different from previous results on surface segregation of mixed NaCl/NaBr aerosols, where one of the anionic species is surface segregated for all mole fractions, which was explained in terms of the ability of the involved salts to cocrystallize and forming solid solutions. The present results rather indicate that mixed NaCl/Na2SO4 aerosols do not cocrystallize. Electron microscopy of deposited mixed salt aerosols reveals mostly a cubic structure of pure NaCl aerosols, whereas mixed salt aerosols are found to show a grainy structure composed of multiple small crystals which supports the present findings obtained from photoelectron spectroscopy.
Collapse
Affiliation(s)
- E Antonsson
- Physical Chemistry , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
| | - C Raschpichler
- Physical Chemistry , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
| | - B Langer
- Physical Chemistry , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
| | - D Marchenko
- Physical Chemistry , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
| | - E Rühl
- Physical Chemistry , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
| |
Collapse
|
11
|
Tchaplyguine M, Mikkelä MH, Mårsell E, Polley C, Mikkelsen A, Zhang W, Yartsev A, Hetherington CJD, Wallenberg LR, Björneholm O. Metal-passivated PbS nanoparticles: fabrication and characterization. Phys Chem Chem Phys 2018; 19:7252-7261. [PMID: 28239693 DOI: 10.1039/c6cp06870g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic-shell-free PbS nanoparticles have been produced in the size range relevant for quantum-dot solar cells (QDSCs) by a vapor aggregation method involving magnetron reactive sputtering. This method creates a beam of free 5-10 nm particles in a vacuum. The dimensions of the particles were estimated after their deposition on a substrate by imaging them using ex situ SEM and HRTEM electron microscopy. The particle structure and chemical composition could be deduced "on the fly", prior to deposition, using X-ray photoelectron spectroscopy (XPS) with tunable synchrotron radiation. Our XPS results suggest that under certain conditions it is possible to fabricate particles with a semiconductor core and 1 to 2 monolayer shells of metallic lead. For this case the absolute energy of the highest occupied molecular orbital (HOMO) in PbS has been determined to be (5.0 ± 0.5) eV below the vacuum level. For such particles deposited on a substrate HRTEM has confirmed the XPS-based conclusions on the crystalline PbS structure of the semiconductor core. Absorption spectroscopy on the deposited film has given a value of ∼1 eV for the lowest exciton. Together with the valence XPS results this has allowed us to reconstruct the energy level scheme of the particles. The results obtained are discussed in the context of the properties of PbS QDSCs.
Collapse
Affiliation(s)
- M Tchaplyguine
- MAX-lab, Lund University, P.O. Box SE-118, 22100 Lund, Sweden.
| | - M-H Mikkelä
- MAX-lab, Lund University, P.O. Box SE-118, 22100 Lund, Sweden.
| | - E Mårsell
- Synchrotron Radiation Research Division, Department of Physics, Lund University, Box 118, SE-22100 Lund, Sweden
| | - C Polley
- MAX-lab, Lund University, P.O. Box SE-118, 22100 Lund, Sweden.
| | - A Mikkelsen
- Synchrotron Radiation Research Division, Department of Physics, Lund University, Box 118, SE-22100 Lund, Sweden
| | - W Zhang
- Physical Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - A Yartsev
- Physical Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - C J D Hetherington
- nCHREM, Center for analysis and synthesis, Lund University, Box 124, SE-22100 Lund, Sweden
| | - L R Wallenberg
- nCHREM, Center for analysis and synthesis, Lund University, Box 124, SE-22100 Lund, Sweden
| | - O Björneholm
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
| |
Collapse
|
12
|
Kostko O, Xu B, Jacobs MI, Ahmed M. Soft X-ray spectroscopy of nanoparticles by velocity map imaging. J Chem Phys 2017; 147:013931. [DOI: 10.1063/1.4982822] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- O. Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - B. Xu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - M. I. Jacobs
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - M. Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
13
|
Jacobs MI, Kostko O, Ahmed M, Wilson KR. Low energy electron attenuation lengths in core–shell nanoparticles. Phys Chem Chem Phys 2017; 19:13372-13378. [DOI: 10.1039/c7cp00663b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A velocity map imaging spectrometer is used to measure photoemission from free core–shell nanoparticles, where a salt core is coated with a liquid hydrocarbon shell (i.e. squalane).
Collapse
Affiliation(s)
- Michael I. Jacobs
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| | - Oleg Kostko
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Musahid Ahmed
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Kevin R. Wilson
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| |
Collapse
|