1
|
Li Y, Mu L, Li Y, Mi Y, Hu Y, Li X, Tao D, Qin J. Golgi dispersal in cancer stem cells promotes chemoresistance of colorectal cancer via the Golgi stress response. Cell Death Dis 2024; 15:417. [PMID: 38879509 PMCID: PMC11180190 DOI: 10.1038/s41419-024-06817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/19/2024]
Abstract
Chemotherapy is a crucial treatment for colorectal tumors. However, its efficacy is restricted by chemoresistance. Recently, Golgi dispersal has been suggested to be a potential response to chemotherapy, particularly to drugs that induce DNA damage. However, the underlying mechanisms by which Golgi dispersal enhances the capacity to resist DNA-damaging agents remain unclear. Here, we demonstrated that DNA-damaging agents triggered Golgi dispersal in colorectal cancer (CRC), and cancer stem cells (CSCs) possessed a greater degree of Golgi dispersal compared with differentiated cancer cells (non-CSCs). We further revealed that Golgi dispersal conferred resistance against the lethal effects of DNA-damaging agents. Momentously, Golgi dispersal activated the Golgi stress response via the PKCα/GSK3α/TFE3 axis, resulting in enhanced protein and vesicle trafficking, which facilitated drug efflux through ABCG2. Identification of Golgi dispersal indicated an unexpected pathway regulating chemoresistance in CRC.
Collapse
Affiliation(s)
- Yangkun Li
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Lei Mu
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yanqi Li
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yulong Mi
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Surgical Oncology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350013, Fujian, China
| | - Yibing Hu
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518000, Guangdong, China
| | - Xiaolan Li
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Deding Tao
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jichao Qin
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
2
|
DeKryger W, Chroneos ZC. Emerging concepts of myosin 18A isoform mechanobiology in organismal and immune system physiology, development, and function. FASEB J 2024; 38:e23649. [PMID: 38776246 DOI: 10.1096/fj.202400350r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024]
Abstract
Alternative and combinatorial splicing of myosin 18A (MYO18A) gene transcripts results in expression of MYO18A protein isoforms and isoform variants with different membrane and subcellular localizations, and functional properties. MYO18A proteins are members of the myosin superfamily consisting of a myosin-like motor domain, an IQ motif, and a coiled-coil domain. MYO18A isoforms, however, lack the ability to hydrolyze ATP and do not perform ATP-dependent motor activity. MYO18A isoforms are distinguished by different amino- and carboxy-terminal extensions and domains. The domain organization and functions of MYO18Aα, MYO18Aβ, and MYO18Aγ have been studied experimentally. MYO18Aα and MYO18Aβ have a common carboxy-terminal extension but differ by the presence or absence of an amino-terminal KE repeat and PDZ domain, respectively. The amino- and carboxy-terminal extensions of MYO18Aγ contain unique proline and serine-rich domains. Computationally predicted MYO18Aε and MYO18Aδ isoforms contain the carboxy-terminal serine-rich extension but differ by the presence or absence of the amino-terminal KE/PDZ extension. Additional isoform variants within each category arise by alternative utilization or inclusion/exclusion of small exons. MYO18Aα variants are expressed in somatic cells and mature immune cells, whereas MYO18Aβ variants occur mainly in myeloid and natural killer cells. MYO18Aγ expression is selective to cardiac and skeletal muscle. In the present review perspective, we discuss current and emerging concepts of the functional specialization of MYO18A proteins in membrane and cytoskeletal dynamics, cellular communication and signaling, endocytic and exocytic organelle movement, viral infection, and as the SP-R210 receptor for surfactant protein A.
Collapse
Affiliation(s)
- William DeKryger
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Zissis C Chroneos
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
3
|
Horsthemke M, Arnaud CA, Hanley PJ. Are the class 18 myosins Myo18A and Myo18B specialist sarcomeric proteins? Front Physiol 2024; 15:1401717. [PMID: 38784114 PMCID: PMC11112018 DOI: 10.3389/fphys.2024.1401717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Initially, the two members of class 18 myosins, Myo18A and Myo18B, appeared to exhibit highly divergent functions, complicating the assignment of class-specific functions. However, the identification of a striated muscle-specific isoform of Myo18A, Myo18Aγ, suggests that class 18 myosins may have evolved to complement the functions of conventional class 2 myosins in sarcomeres. Indeed, both genes, Myo18a and Myo18b, are predominantly expressed in the heart and somites, precursors of skeletal muscle, of developing mouse embryos. Genetic deletion of either gene in mice is embryonic lethal and is associated with the disorganization of cardiac sarcomeres. Moreover, Myo18Aγ and Myo18B localize to sarcomeric A-bands, albeit the motor (head) domains of these unconventional myosins have been both deduced and biochemically demonstrated to exhibit negligible ATPase activity, a hallmark of motor proteins. Instead, Myo18Aγ and Myo18B presumably coassemble with thick filaments and provide structural integrity and/or internal resistance through interactions with F-actin and/or other proteins. In addition, Myo18Aγ and Myo18B may play distinct roles in the assembly of myofibrils, which may arise from actin stress fibers containing the α-isoform of Myo18A, Myo18Aα. The β-isoform of Myo18A, Myo18Aβ, is similar to Myo18Aα, except that it lacks the N-terminal extension, and may serve as a negative regulator through heterodimerization with either Myo18Aα or Myo18Aγ. In this review, we contend that Myo18Aγ and Myo18B are essential for myofibril structure and function in striated muscle cells, while α- and β-isoforms of Myo18A play diverse roles in nonmuscle cells.
Collapse
Affiliation(s)
- Markus Horsthemke
- IMM Institute for Molecular Medicine, HMU Health and Medical University Potsdam, Potsdam, Germany
| | - Charles-Adrien Arnaud
- IMM Institute for Molecular Medicine, HMU Health and Medical University Potsdam, Potsdam, Germany
- Department of Medicine, Science Faculty, MSB Medical School Berlin, Berlin, Germany
| | - Peter J. Hanley
- IMM Institute for Molecular Medicine, HMU Health and Medical University Potsdam, Potsdam, Germany
| |
Collapse
|
4
|
Yang Q, Liu H, Zhong D, Li Z, Li J, Xiao K, Liu W. Tanc1/2 TPR domain interacts with Myo18a C-terminus and undergoes liquid-liquid phase separation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119650. [PMID: 38092135 DOI: 10.1016/j.bbamcr.2023.119650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/07/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
Tanc1 and its homologous protein Tanc2 are critical synaptic scaffold proteins which regulate synaptic spine densities and excitatory synapse strength. Recent studies indicated TANC1 and TANC2 are candidate genes of several neurodevelopmental disorders (NDDs). In this study, we identified and characterized a novel interaction between Tanc1/2 and Myo18a, mediated by the Tanc1/2 TPR domains and Myo18a coiled-coil domain and C-extension (CCex). Sequence analysis and size exclusion chromatography experiments reveal that high salt disrupts the interaction between Myo18a and Tanc1/2, indicating that the interaction is primarily driven by charge-charge interactions. More importantly, we found that the Tanc1-TPR/Myo18a CCex interaction could undergo liquid-liquid phase separation (LLPS) in both cultured cells and test tubes, which provides the biochemical basis and potential molecular mechanisms for the LLPS-mediated interactions between Myo18a and Tanc1/2.
Collapse
Affiliation(s)
- Qingqing Yang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Haiyang Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; State Key Laboratory of Molecular Neuroscience, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Dengqin Zhong
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Zhiwei Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jianchao Li
- State Key Laboratory of Molecular Neuroscience, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Kang Xiao
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, China.
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Institute of Geriatric Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China.
| |
Collapse
|
5
|
Li JT, Cheng XN, Zhang C, Shi DL, Shao M. The Adaptor Protein Lurap1 Is Required for Cell Cohesion during Epiboly Movement in Zebrafish. BIOLOGY 2021; 10:biology10121337. [PMID: 34943252 PMCID: PMC8699034 DOI: 10.3390/biology10121337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 11/23/2022]
Abstract
Simple Summary Cell adhesion and active cell shape changes play an important role in morphogenetic movements during embryonic development. Zebrafish is an attractive model for the study of cellular and molecular mechanisms underlying these processes. Epiboly is a conserved gastrulation cell movement, which describes the thinning and spreading of an external sheet of cells to cover other groups of cells in the embryo. It involves differential cellular adhesive properties and dynamic cytoskeletal organization across the embryo, but how these are regulated remains elusive. We found that the adaptor protein Lurap1, which interacts with other proteins required for cell migration, plays a role in cell adhesion during epiboly. In zebrafish mutants with loss of Lurap1 function, there is a reduced cellular cohesion in the epithelial blastoderm cells and a delayed epiboly movement. Our observations suggest that Lurap1 is implicated in the regulation of cellular behavior changes for coordinated morphogenetic movements in vertebrate embryos. Abstract Cell adhesion and polarized cellular behaviors play critical roles in a wide variety of morphogenetic events. In the zebrafish embryo, epiboly represents an important process of epithelial morphogenesis that involves differential cell adhesion and dynamic cell shape changes for coordinated movements of different cell populations, but the underlying mechanism remains poorly understood. The adaptor protein Lurap1 functions to link myotonic dystrophy kinase-related Rac/Cdc42-binding kinase with MYO18A for actomyosin retrograde flow in cell migration. We previously reported that it interacts with Dishevelled in convergence and extension movements during gastrulation. Here, we show that it regulates blastoderm cell adhesion and radial cell intercalation during epiboly. In zebrafish mutant embryos with loss of both maternal and zygotic Lurap1 function, deep cell multilayer of the blastoderm exhibit delayed epiboly with respect to the superficial layer. Time-lapse imaging reveals that these deep cells undergo unstable intercalation, which impedes their expansion over the yolk cell. Cell sorting and adhesion assays indicate reduced cellular cohesion of the blastoderm. These defects are correlated with disrupted cytoskeletal organization in the cortex of blastoderm cells. Thus, the present results extend our previous works by demonstrating that Lurap1 is required for cell adhesion and cell behavior changes to coordinate cell movements during epithelial morphogenesis. They provide insights for a further understanding of the regulation of cytoskeletal organization during gastrulation cell movements.
Collapse
Affiliation(s)
- Ji-Tong Li
- School of Life Sciences, Shandong University, Qingdao 266237, China; (J.-T.L.); (C.Z.)
| | - Xiao-Ning Cheng
- Laboratory of Zebrafish Model for Development and Disease, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China;
| | - Chong Zhang
- School of Life Sciences, Shandong University, Qingdao 266237, China; (J.-T.L.); (C.Z.)
| | - De-Li Shi
- Laboratory of Zebrafish Model for Development and Disease, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China;
- Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine, Sorbonne University, 75005 Paris, France
- Correspondence: (D.-L.S.); (M.S.)
| | - Ming Shao
- School of Life Sciences, Shandong University, Qingdao 266237, China; (J.-T.L.); (C.Z.)
- Correspondence: (D.-L.S.); (M.S.)
| |
Collapse
|
6
|
Cheung MB, Enyindah-Asonye G, Matsui K, Kosik I, Dvorina N, Baldwin WM, Yewdell JW, Gupta N. Cutting Edge: Myosin 18A Is a Novel Checkpoint Regulator in B Cell Differentiation and Antibody-Mediated Immunity. THE JOURNAL OF IMMUNOLOGY 2021; 206:2521-2526. [PMID: 34001658 DOI: 10.4049/jimmunol.2100084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/04/2021] [Indexed: 01/28/2023]
Abstract
We investigated the function of the newly discovered myosin family protein myosin 18A (Myo18A) in Ab-mediated immunity by generating B cell-conditional Myo18A-deficient mice. Myo18A deficiency led to expansion of bone marrow progenitor B cells and mature B cells in secondary lymphoid organs. Myo18A-deficient mice displayed serum IgM hyperglobulinemia and increased splenic IgM-secreting cells, with older mice switching to IgG1 hyperglobulinemia and autoantibody development. Immunization of Myo18A-deficient mice with inactivated influenza virus led to development of more potent neutralizing Abs against the major Ag hemagglutinin, associated with persistent accumulation of Ag-specific germinal center B cells and more Ag-specific bone marrow plasma cells. In vitro stimulation with TLR7 and BCR ligands revealed a greater ability of Myo18A-deficient B cells to differentiate into Ab-secreting cells, associated with higher AID and Blimp-1 expression. Overall, our study demonstrates that Myo18A is a novel negative regulator of B cell homeostasis, differentiation, and humoral immunity.
Collapse
Affiliation(s)
- Michael B Cheung
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and
| | - Gospel Enyindah-Asonye
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and
| | - Ken Matsui
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and
| | - Ivan Kosik
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Nina Dvorina
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and
| | - William M Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Neetu Gupta
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and
| |
Collapse
|
7
|
Ouyang Z, Zhao S, Yao S, Wang J, Cui Y, Wei K, Jiu Y. Multifaceted Function of Myosin-18, an Unconventional Class of the Myosin Superfamily. Front Cell Dev Biol 2021; 9:632445. [PMID: 33634131 PMCID: PMC7900500 DOI: 10.3389/fcell.2021.632445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Myosin is a diverse superfamily of motor proteins responsible for actin-based motility and contractility in eukaryotic cells. Myosin-18 family, including myosin-18A and myosin-18B, belongs to an unconventional class of myosin, which lacks ATPase motor activity, and the investigations on their functions and molecular mechanisms in vertebrate development and diseases have just been initiated in recent years. Myosin-18A is ubiquitously expressed in mammalian cells, whereas myosin-18B shows strong enrichment in striated muscles. Myosin-18 family is important for cell motility, sarcomere formation, and mechanosensing, mostly by interacting with other cytoskeletal proteins and cellular apparatus. Myosin-18A participates in several intracellular transport processes, such as Golgi trafficking, and has multiple roles in focal adhesions, stress fibers, and lamellipodia formation. Myosin-18B, on the other hand, participates in actomyosin alignment and sarcomere assembly, thus relating to cell migration and muscle contractility. Mutations of either Myo18a or Myo18b cause cardiac developmental defects in mouse, emphasizing their crucial role in muscle development and cardiac diseases. In this review, we revisit the discovery history of myosin-18s and summarize the evolving understanding of the molecular functions of myosin-18A and myosin-18B, with an emphasis on their separate yet closely related functions in cell motility and contraction. Moreover, we discuss the diseases tightly associated with myosin-18s, especially cardiovascular defects and cancer, as well as highlight the unanswered questions and potential future research perspectives on myosin-18s.
Collapse
Affiliation(s)
- Zhaohui Ouyang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shuangshuang Zhao
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Su Yao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jing Wang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanqin Cui
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Ke Wei
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yaming Jiu
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Abstract
Class XVIII myosins represent a branch of the myosin family tree characterized by the presence of large N- and C-terminal extensions flanking a generic myosin core. These myosins display the highest sequence similarity to conventional class II muscle myosins and are compatible with but not restricted to myosin-2 contractile structures. Instead, they fulfill their functions at diverse localities, such as lamella, actomyosin bundles, the Golgi apparatus, focal adhesions, the cell membrane, and within sarcomeres. Sequence comparison of active-site residues and biochemical data available thus far indicate that this myosin class lacks active ATPase-driven motor activity, suggesting that its members function as structural myosins. An emerging body of evidence indicates that this structural capability is essential for the organization, maturation, and regulation of the contractile machinery in both muscle and nonmuscle cells. This is supported by the clear association of myosin-18A (Myo18A) and myosin-18B (Myo18B) dysregulation with diseases such as cancer and various myopathies.
Collapse
|
9
|
Horsthemke M, Nutter LMJ, Bachg AC, Skryabin BV, Honnert U, Zobel T, Bogdan S, Stoll M, Seidl MD, Müller FU, Ravens U, Unger A, Linke WA, van Gorp PRR, de Vries AAF, Bähler M, Hanley PJ. A novel isoform of myosin 18A (Myo18Aγ) is an essential sarcomeric protein in mouse heart. J Biol Chem 2019; 294:7202-7218. [PMID: 30737279 DOI: 10.1074/jbc.ra118.004560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/19/2019] [Indexed: 01/19/2023] Open
Abstract
Whereas myosin 18B (Myo18B) is known to be a critical sarcomeric protein, the function of myosin 18A (Myo18A) is unclear, although it has been implicated in cell motility and Golgi shape. Here, we show that homozygous deletion (homozygous tm1a, tm1b, or tm1d alleles) of Myo18a in mouse is embryonic lethal. Reminiscent of Myo18b, Myo18a was highly expressed in the embryo heart, and cardiac-restricted Myo18a deletion in mice was embryonic lethal. Surprisingly, using Western blot analysis, we were unable to detect the known isoforms of Myo18A, Myo18Aα and Myo18Aβ, in mouse heart using a custom C-terminal antibody. However, alternative anti-Myo18A antibodies detected a larger than expected protein, and RNA-Seq analysis indicated that a novel Myo18A transcript is expressed in mouse ventricular myocytes (and human heart). Cloning and sequencing revealed that this cardiac isoform, denoted Myo18Aγ, lacks the PDZ-containing N terminus of Myo18Aα but includes an alternative N-terminal extension and a long serine-rich C terminus. EGFP-tagged Myo18Aγ expressed in ventricular myocytes localized to the level of A-bands in sarcomeres, and Myo18a knockout embryos at day 10.5 exhibited disorganized sarcomeres with wavy thick filaments. We additionally generated myeloid-restricted Myo18a knockout mice to investigate the role of Myo18A in nonmuscle cells, exemplified by macrophages, which express more Myo18Aβ than Myo18Aα, but no defects in cell shape, motility, or Golgi shape were detected. In summary, we have identified a previously unrecognized sarcomere component, a large novel isoform (denoted Myo18Aγ) of Myo18A. Thus, both members of class XVIII myosins are critical components of cardiac sarcomeres.
Collapse
Affiliation(s)
| | - Lauryl M J Nutter
- the Centre for Phenogenomics, Hospital for Sick Children, Toronto, Ontario M5T 3H7, Canada
| | | | - Boris V Skryabin
- Department of Medicine, Transgenic Animal and Genetic Engineering Models (TRAM)
| | | | - Thomas Zobel
- the Center for Advanced Imaging, Heinrich Heine Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Sven Bogdan
- the Institut für Physiologie und Pathophysiologie, Abteilung Molekulare Zellphysiologie, Philipps-Universität Marburg, 35037 Marburg, Germany
| | | | - Matthias D Seidl
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Frank U Müller
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Ursula Ravens
- the Institut für Experimentelle Kardiovaskuläre Medizin, Universitätsklinikum Freiburg, 79110 Freiburg, Germany
| | - Andreas Unger
- the Institut für Physiologie II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Strasse 27b, 48149 Münster, Germany, and
| | - Wolfgang A Linke
- the Institut für Physiologie II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Strasse 27b, 48149 Münster, Germany, and
| | - Pim R R van Gorp
- the Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Antoine A F de Vries
- the Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | | | | |
Collapse
|
10
|
Leucine repeat adaptor protein 1 interacts with Dishevelled to regulate gastrulation cell movements in zebrafish. Nat Commun 2017; 8:1353. [PMID: 29116181 PMCID: PMC5677176 DOI: 10.1038/s41467-017-01552-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/27/2017] [Indexed: 01/08/2023] Open
Abstract
Gastrulation is a fundamental morphogenetic event that requires polarised cell behaviours for coordinated asymmetric cell movements. Wnt/PCP signalling plays a critical role in this process. Dishevelled is an important conserved scaffold protein that relays Wnt/PCP signals from membrane receptors to the modulation of cytoskeleton organisation. However, it remains unclear how its activity is regulated for the activation of downstream effectors. Here, we report that Lurap1 is a Dishevelled-interacting protein that regulates Wnt/PCP signalling in convergence and extension movements during vertebrate gastrulation. Its loss-of-function leads to enhanced Dishevelled membrane localisation and increased JNK activity. In maternal-zygotic lurap1 mutant zebrafish embryos, cell polarity and directional movement are disrupted. Time-lapse analyses indicate that Lurap1, Dishevelled, and JNK functionally interact to orchestrate polarised cellular protrusive activity, and Lurap1 is required for coordinated centriole/MTOC positioning in movement cells. These findings demonstrate that Lurap1 functions to regulate cellular polarisation and motile behaviours during gastrulation movements. Gastrulation is an early morphogenic event driven by coordinated asymmetric/polarised cell movements. Here, the authors show in zebrafish that Lurap1, a protein that interacts with Dishevelled, regulates Wnt and planar cell polarity, coordinating centriole positioning during convergence and extension.
Collapse
|
11
|
Abstract
MYO18A is a divergent member of the myosin family characterized by the presence of an amino-terminal PDZ domain. MYO18A has been found in a few different complexes involved in intracellular transport processes. MYO18A is found in a complex with LURAP1 and MRCK that functions in retrograde treadmilling of actin. It also has been found in a complex with PAK2, βPIX, and GIT1, functioning to transport that protein complex from focal adhesions to the leading edge. Finally, a high proportion of MYO18A is found in complex with GOLPH3 at the trans Golgi, where it functions to promote vesicle budding for Golgi-to-plasma membrane trafficking. Interestingly, MYO18A has been implicated as a cancer driver, as have other components of the GOLPH3 pathway. It remains uncertain as to whether or not MYO18A has intrinsic motor activity. While many questions remain, MYO18A is a fascinatingly unique myosin that is essential in higher organisms.
Collapse
|