1
|
Normandin K, Coulombe-Huntington J, St-Denis C, Bernard A, Bourouh M, Bertomeu T, Tyers M, Archambault V. Genetic enhancers of partial PLK1 inhibition reveal hypersensitivity to kinetochore perturbations. PLoS Genet 2023; 19:e1010903. [PMID: 37639469 PMCID: PMC10491399 DOI: 10.1371/journal.pgen.1010903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/08/2023] [Accepted: 08/06/2023] [Indexed: 08/31/2023] Open
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine kinase required for mitosis and cytokinesis. As cancer cells are often hypersensitive to partial PLK1 inactivation, chemical inhibitors of PLK1 have been developed and tested in clinical trials. However, these small molecule inhibitors alone are not completely effective. PLK1 promotes numerous molecular and cellular events in the cell division cycle and it is unclear which of these events most crucially depend on PLK1 activity. We used a CRISPR-based genome-wide screening strategy to identify genes whose inactivation enhances cell proliferation defects upon partial chemical inhibition of PLK1. Genes identified encode proteins that are functionally linked to PLK1 in multiple ways, most notably factors that promote centromere and kinetochore function. Loss of the kinesin KIF18A or the outer kinetochore protein SKA1 in PLK1-compromised cells resulted in mitotic defects, activation of the spindle assembly checkpoint and nuclear reassembly defects. We also show that PLK1-dependent CENP-A loading at centromeres is extremely sensitive to partial PLK1 inhibition. Our results suggest that partial inhibition of PLK1 compromises the integrity and function of the centromere/kinetochore complex, rendering cells hypersensitive to different kinetochore perturbations. We propose that KIF18A is a promising target for combinatorial therapies with PLK1 inhibitors.
Collapse
Affiliation(s)
- Karine Normandin
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | | | - Corinne St-Denis
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Alexandre Bernard
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Mohammed Bourouh
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Thierry Bertomeu
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Département de médecine, Université de Montréal, Montréal, Canada
| | - Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Canada
| |
Collapse
|
2
|
Chapagai D, Merhej G, McInnes C, Wyatt MD. Structural Basis for Variations in Polo-like Kinase 1 Conformation and Intracellular Stability Induced by ATP-Competitive and Novel Noncompetitive Abbapolin Inhibitors. ACS Chem Biol 2023; 18:1642-1652. [PMID: 37433100 PMCID: PMC11295584 DOI: 10.1021/acschembio.3c00269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Polo-like kinase 1 (PLK1) is an essential protein kinase with multiple roles in mitotic progression. PLK1 consists of a kinase domain (KD) and a phosphopeptide-binding polobox domain (PBD), which is responsible for substrate recognition and subcellular localization. The regulation of PLK1 involves an autoinhibitory conformation in which KD and PBD interact. Our previous work identified PBD-binding molecules termed abbapolins that inhibit the cellular phosphorylation of a PLK1 substrate and induce the loss of intracellular PLK1. Here, we describe a comparison of the abbapolin activity with that of KD inhibitors to gain insight into conformational features of PLK1. As measured by a cellular thermal shift assay, abbapolins produce ligand-induced thermal stabilization of PLK1. In contrast, KD inhibitors decreased the soluble PLK1, suggesting that catalytic-site binding causes a less thermally stable PLK1 conformation. Binding measurements with full-length PLK1 and a KD inhibitor also demonstrated a conformational change. Interestingly, the cellular consequences of KD versus PBD engagement contrast as KD binding causes the accumulation of intracellular PLK1, whereas PBD binding produces a striking loss of nuclear PLK1. These data are consistent with the relief of autoinhibited PLK1 by KD binders; an explanation for these observations is presented using structures for the catalytic domain and full-length PLK1 predicted by AlphaFold. Collectively, the results highlight an underappreciated aspect of targeting PLK1, namely, conformational perturbations induced by KD versus PBD binding. In addition to their significance for PBD-binding ligands, these observations have implications for the development of ATP-competitive PLK1 inhibitors because catalytic inhibitors may conversely promote PLK1 noncatalytic functions, which may explain their lack of clinical efficacy to date.
Collapse
Affiliation(s)
| | - George Merhej
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208
| | - Campbell McInnes
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208
| | - Michael D. Wyatt
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208
| |
Collapse
|
3
|
Stafford JM, Wyatt MD, McInnes C. Inhibitors of the PLK1 polo-box domain: drug design strategies and therapeutic opportunities in cancer. Expert Opin Drug Discov 2023; 18:65-81. [PMID: 36524399 DOI: 10.1080/17460441.2023.2159942] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Polo Like Kinase 1 (PLK1) is a key regulator of mitosis and its overexpression is frequently observed in a wide variety of human cancers, while often being associated with poor survival rates. Therefore, it is considered a potential and attractive target for cancer therapeutic development. The Polo like kinase family is characterized by the presence of a unique C terminal polobox domain (PBD) involved in regulating kinase activity and subcellular localization. Among the two functionally essential, druggable sites with distinct properties that PLK1 offers, targeting the PBD presents an alternative approach for therapeutic development. AREAS COVERED Significant progress has been made in progressing from the peptidic PBD inhibitors first identified, to peptidomimetic and recently drug-like small molecules. In this review, the rationale for targeting the PBD over the ATP binding site is discussed, along with recent progress, challenges, and outlook. EXPERT OPINION The PBD has emerged as a viable alternative target for the inhibition of PLK1, and progress has been made in using compounds to elucidate mechanistic aspects of activity regulation and in determining roles of the PBD. Studies have resulted in proof of concept of in vivo efficacy suggesting promise for PBD binders in clinical development.
Collapse
Affiliation(s)
- Jessy M Stafford
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Michael D Wyatt
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Campbell McInnes
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
4
|
Elwakeel A. Abrogating the Interaction Between p53 and Mortalin (Grp75/HSPA9/mtHsp70) for Cancer Therapy: The Story so far. Front Cell Dev Biol 2022; 10:879632. [PMID: 35493098 PMCID: PMC9047732 DOI: 10.3389/fcell.2022.879632] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022] Open
Abstract
p53 is a transcription factor that activates the expression of a set of genes that serve as a critical barrier to oncogenesis. Inactivation of p53 is the most common characteristic in sporadic human cancers. Mortalin is a differentially sub-cellularly localized member of the heat shock protein 70 family of chaperones that has essential mitochondrial and extra-mitochondrial functions. Elevated mortalin levels in multiple cancerous tissues and tumor-derived cell lines emphasized its key role in oncogenesis. One of mortalin’s major oncogenic roles is the inactivation of p53. Mortalin binds to p53 sequestering it in the cytoplasm. Hence, p53 cannot freely shuttle to the nucleus to perform its tumor suppressor functions as a transcription factor. This protein-protein interaction was reported to be cancer-specific, hence, a selective druggable target for a rationalistic cancer therapeutic strategy. In this review article, the chronological identification of mortalin-p53 interactions is summarized, the challenges and general strategies for targeting protein-protein interactions are briefly discussed, and information about compounds that have been reported to abrogate mortalin-p53 interaction is provided. Finally, the reasons why the disruption of this druggable interaction has not yet been applied clinically are discussed.
Collapse
|
5
|
Dos Santos A, Elowe S. Moonlighting at the Centrosome: RXRα Turns to Plk1. Dev Cell 2020; 55:672-674. [PMID: 33352140 DOI: 10.1016/j.devcel.2020.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the hardest working mitotic proteins, Polo-like kinase 1 (PLK1), functions at mitotic entry, cytokinesis, and many steps in between. In this issue, Xie et al. (2020) describe a centrosome-specific interaction between PLK1 and Retinoid X Receptor-α and they test selective inhibition of this interaction as an anti-mitotic cancer therapy.
Collapse
Affiliation(s)
- Alexsandro Dos Santos
- Programme en Médicine Moléculaire, Faculté de Médicine, Université Laval, Québec, QC G1V 0A6, Canada; Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de reproduction, santé de la mère et de l'enfant, Québec, QC G1V 4G2, Canada; PROTEO-regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Québec, QC G1V 0A6, Canada
| | - Sabine Elowe
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de reproduction, santé de la mère et de l'enfant, Québec, QC G1V 4G2, Canada; PROTEO-regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Québec, QC G1V 0A6, Canada; Département de Pédiatire, Faculté de Médicine, Université Laval et le Centre de recherche sur le cancer de l'Université Laval, Québec, QC G1R 2J6, Canada.
| |
Collapse
|
6
|
Alverez CN, Park JE, Toti KS, Xia Y, Krausz KW, Rai G, Bang JK, Gonzalez FJ, Jacobson KA, Lee KS. Identification of a New Heterocyclic Scaffold for Inhibitors of the Polo-Box Domain of Polo-like Kinase 1. J Med Chem 2020; 63:14087-14117. [PMID: 33175530 PMCID: PMC7769008 DOI: 10.1021/acs.jmedchem.0c01669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As a mitotic-specific target widely deregulated in various human cancers, polo-like kinase 1 (Plk1) has been extensively explored for anticancer activity and drug discovery. Although multiple catalytic domain inhibitors were tested in preclinical and clinical studies, their efficacies are limited by dose-limiting cytotoxicity, mainly from off-target cross reactivity. The C-terminal noncatalytic polo-box domain (PBD) of Plk1 has emerged as an attractive target for generating new protein-protein interaction inhibitors. Here, we identified a 1-thioxo-2,4-dihydro-[1,2,4]triazolo[4,3-a]quinazolin-5(1H)-one scaffold that efficiently inhibits Plk1 PBD but not its related Plk2 and Plk3 PBDs. Structure-activity relationship studies led to multiple inhibitors having ≥10-fold higher inhibitory activity than the previously characterized Plk1 PBD-specific phosphopeptide, PLHSpT (Kd ∼ 450 nM). In addition, S-methyl prodrugs effectively inhibited mitotic progression and cell proliferation and their metabolic stability was determined. These data describe a novel class of small-molecule inhibitors that offer a promising avenue for future drug discovery against Plk1-addicted cancers.
Collapse
Affiliation(s)
- Celeste N Alverez
- Chemistry Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Jung-Eun Park
- Chemistry Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kiran S Toti
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yangliu Xia
- Chemistry Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kristopher W Krausz
- Chemistry Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ganesha Rai
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Jeong K Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Frank J Gonzalez
- Chemistry Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kyung S Lee
- Chemistry Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
7
|
Abdeldayem A, Raouf YS, Constantinescu SN, Moriggl R, Gunning PT. Advances in covalent kinase inhibitors. Chem Soc Rev 2020; 49:2617-2687. [DOI: 10.1039/c9cs00720b] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This comprehensive review details recent advances, challenges and innovations in covalent kinase inhibition within a 10 year period (2007–2018).
Collapse
Affiliation(s)
- Ayah Abdeldayem
- Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Canada
- Department of Chemistry
| | - Yasir S. Raouf
- Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Canada
- Department of Chemistry
| | | | - Richard Moriggl
- Institute of Animal Breeding and Genetics
- University of Veterinary Medicine
- 1210 Vienna
- Austria
| | - Patrick T. Gunning
- Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Canada
- Department of Chemistry
| |
Collapse
|
8
|
Xia LW, Ba MY, Liu W, Cheng W, Hu CP, Zhao Q, Yao YF, Sun MR, Duan YT. Triazol: a privileged scaffold for proteolysis targeting chimeras. Future Med Chem 2019; 11:2919-2973. [PMID: 31702389 DOI: 10.4155/fmc-2019-0159] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Current traditional drugs such as enzyme inhibitors and receptor agonists/antagonists present inherent limitations due to occupancy-driven pharmacology as the mode of action. Proteolysis targeting chimeras (PROTACs) are composed of an E3 ligand, a connecting linker and a target protein ligand, and are an attractive approach to specifically knockdown-targeted proteins utilizing an event-driven mode of action. The length, hydrophilicity and rigidity of connecting linkers play important role in creating a successful PROTAC. Some PROTACs with a triazole linker have displayed promising anticancer activity. This review provides an overview of PROTACs with a triazole scaffold and discusses its structure-activity relationship. Important milestones in the development of PROTACs are addressed and a critical analysis of this drug discovery strategy is also presented.
Collapse
Affiliation(s)
- Li-Wen Xia
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
- Collaborative Innovation Center of Henan New Drug Research & Safety Evaluation, Zhengzhou, Henan 450001, China
| | - Meng-Yu Ba
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
- Collaborative Innovation Center of Henan New Drug Research & Safety Evaluation, Zhengzhou, Henan 450001, China
| | - Wei Liu
- Henan Provincial Key Laboratory of Children's Genetics & Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou 450018, China
| | - Weyland Cheng
- Henan Provincial Key Laboratory of Children's Genetics & Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou 450018, China
| | - Chao-Ping Hu
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
- Collaborative Innovation Center of Henan New Drug Research & Safety Evaluation, Zhengzhou, Henan 450001, China
| | - Qing Zhao
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
- Collaborative Innovation Center of Henan New Drug Research & Safety Evaluation, Zhengzhou, Henan 450001, China
| | - Yong-Fang Yao
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
- Collaborative Innovation Center of Henan New Drug Research & Safety Evaluation, Zhengzhou, Henan 450001, China
| | - Mo-Ran Sun
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
- Collaborative Innovation Center of Henan New Drug Research & Safety Evaluation, Zhengzhou, Henan 450001, China
| | - Yong-Tao Duan
- Henan Provincial Key Laboratory of Children's Genetics & Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou 450018, China
| |
Collapse
|
9
|
Abdullah M, Guruprasad L. Structural insights into the inhibitor binding and new inhibitor design to Polo-like kinase-1 Polo-box domain using computational studies. J Biomol Struct Dyn 2019; 37:3410-3421. [PMID: 30146942 DOI: 10.1080/07391102.2018.1515663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 08/13/2018] [Indexed: 12/27/2022]
Abstract
Polo box domain (PBD) from Polo-Like Kinase-1 (PLK-1) a cell cycle regulator is one of the important non-kinase targets implicated in various cancers. The crystal structure of PLK-1 PBD bound to phosphopeptide inhibitor is available and acylthiourea derivatives have been reported as potent PBD inhibitors. In this work, structure and ligand-based pharmacophore methods have been used to identify new PBD inhibitors. The binding of acylthiourea analogs and new inhibitors to PBD were assessed using molecular docking and molecular dynamics simulations to understand their binding interactions, investigate the complex stability and reveal the molecular basis for inhibition. This study provides the binding free energies and residue-wise contributions to decipher the essential interactions in the protein-inhibitor complementarity for complex formation and the design of new PBD inhibitors with better binding. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maaged Abdullah
- a School of Chemistry , University of Hyderabad , Hyderabad , India
| | | |
Collapse
|
10
|
Rubner S, Schubert S, Berg T. Poloxin-2HT+: changing the hydrophobic tag of Poloxin-2HT increases Plk1 degradation and apoptosis induction in tumor cells. Org Biomol Chem 2019; 17:3113-3117. [PMID: 30848278 DOI: 10.1039/c9ob00080a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report the hydrophobically-tagged Plk1 PBD inhibitor Poloxin-2HT+, which selectively degrades the tumor target Plk1 and induces apoptosis in human tumor cells with higher potency than the hydrophobically-tagged inhibitor Poloxin-2HT. Our data provide further evidence that hydrophobically tagged inhibitors of protein-protein interactions can target and destroy disease-relevant proteins.
Collapse
Affiliation(s)
- Stefan Rubner
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany.
| | | | | |
Collapse
|
11
|
Goroshchuk O, Kolosenko I, Vidarsdottir L, Azimi A, Palm-Apergi C. Polo-like kinases and acute leukemia. Oncogene 2019; 38:1-16. [PMID: 30104712 DOI: 10.1038/s41388-018-0443-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/09/2018] [Accepted: 07/20/2018] [Indexed: 12/17/2022]
Abstract
Acute leukemia is a common malignancy among children and adults worldwide and many patients suffer from chronic health issues using current therapeutic approaches. Therefore, there is a great need for the development of novel and more specific therapies with fewer side effects. The family of Polo-like kinases (Plks) is a group of five serine/threonine kinases that play an important role in cell cycle regulation and are critical targets for therapeutic invention. Plk1 and Plk4 are novel targets for cancer therapy as leukemic cells often express higher levels than normal cells. In contrast, Plk2 and Plk3 are considered to be tumor suppressors. Several small molecule inhibitors have been developed for targeting Plk1 inhibition. Despite reaching phase III clinical trials, one of the ATP-competitive Plk1 inhibitor, volasertib, did not induce an objective clinical response and even caused lethal side effects in some patients. In order to improve the specificity of the Plk1 inhibitors and reduce off-target side effects, novel RNA interference (RNAi)-based therapies have been developed. In this review, we summarize the mechanisms of action of the Plk family members in acute leukemia, describe preclinical studies and clinical trials involving Plk-targeting drugs and discuss novel approaches in Plk targeting.
Collapse
Affiliation(s)
- Oksana Goroshchuk
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Iryna Kolosenko
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Linda Vidarsdottir
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Alireza Azimi
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Palm-Apergi
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
Rubner S, Scharow A, Schubert S, Berg T. Selective Degradation of Polo-like Kinase 1 by a Hydrophobically Tagged Inhibitor of the Polo-Box Domain. Angew Chem Int Ed Engl 2018; 57:17043-17047. [PMID: 30351497 DOI: 10.1002/anie.201809640] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/09/2018] [Indexed: 12/18/2022]
Abstract
Hydrophobic tagging (HT) of bioactive compounds can induce target degradation via the proteasomal pathway. The first application of hydrophobic tagging to an existing inhibitor of protein-protein interactions is now presented. We developed Poloxin-2HT by fusing an adamantyl tag to Poloxin-2, an inhibitor of the polo-box domain of the protein kinase Plk1, which is a target for tumor therapy. Poloxin-2HT selectively reduced the protein levels of Plk1 in HeLa cells and had a significantly stronger effect on cell viability and the induction of apoptosis than the untagged PBD inhibitor Poloxin-2. The change in cellular phenotype associated with the addition of the hydrophobic tag to Poloxin-2 demonstrated that Poloxin-2HT targets Plk1 in living cells. Our data validate hydrophobic tagging of selective inhibitors of protein-protein interactions as a novel strategy to target and destroy disease-relevant proteins.
Collapse
Affiliation(s)
- Stefan Rubner
- Leipzig University, Institute of Organic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Andrej Scharow
- Leipzig University, Institute of Organic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Sabine Schubert
- Leipzig University, Institute of Organic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Thorsten Berg
- Leipzig University, Institute of Organic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| |
Collapse
|
13
|
Rubner S, Scharow A, Schubert S, Berg T. Selective Degradation of Polo‐like Kinase 1 by a Hydrophobically Tagged Inhibitor of the Polo‐Box Domain. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Stefan Rubner
- Leipzig University Institute of Organic Chemistry Johannisallee 29 04103 Leipzig Germany
| | - Andrej Scharow
- Leipzig University Institute of Organic Chemistry Johannisallee 29 04103 Leipzig Germany
| | - Sabine Schubert
- Leipzig University Institute of Organic Chemistry Johannisallee 29 04103 Leipzig Germany
| | - Thorsten Berg
- Leipzig University Institute of Organic Chemistry Johannisallee 29 04103 Leipzig Germany
| |
Collapse
|
14
|
Kachaner D, Garrido D, Mehsen H, Normandin K, Lavoie H, Archambault V. Coupling of Polo kinase activation to nuclear localization by a bifunctional NLS is required during mitotic entry. Nat Commun 2017; 8:1701. [PMID: 29167465 PMCID: PMC5700101 DOI: 10.1038/s41467-017-01876-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/22/2017] [Indexed: 02/07/2023] Open
Abstract
The Polo kinase is a master regulator of mitosis and cytokinesis conserved from yeasts to humans. Polo is composed of an N-term kinase domain (KD) and a C-term polo-box domain (PBD), which regulates its subcellular localizations. The PBD and KD can interact and inhibit each other, and this reciprocal inhibition is relieved when Polo is phosphorylated at its activation loop. How Polo activation and localization are coupled during mitotic entry is unknown. Here we report that PBD binding to the KD masks a nuclear localization signal (NLS). Activating phosphorylation of the KD leads to exposure of the NLS and entry of Polo into the nucleus before nuclear envelope breakdown. Failures of this mechanism result in misregulation of the Cdk1-activating Cdc25 phosphatase and lead to mitotic and developmental defects in Drosophila. These results uncover spatiotemporal mechanisms linking master regulatory enzymes during mitotic entry. Drosophila Polo kinase is the founding member of the Polo-Like Kinase (PLK) family and a master regulator of mitosis and cytokinesis. Here the authors uncover a molecular mechanism for the spatiotemporal regulation of Polo kinase during mitotic entry through a phosphorylation event that triggers nuclear import.
Collapse
Affiliation(s)
- David Kachaner
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7.,Département de biochimie et médecine moléculaire, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7
| | - Damien Garrido
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7.,Département de biochimie et médecine moléculaire, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7
| | - Haytham Mehsen
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7
| | - Karine Normandin
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7
| | - Hugo Lavoie
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7
| | - Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7. .,Département de biochimie et médecine moléculaire, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7.
| |
Collapse
|
15
|
Park JE, Hymel D, Burke TR, Lee KS. Current progress and future perspectives in the development of anti-polo-like kinase 1 therapeutic agents. F1000Res 2017; 6:1024. [PMID: 28721210 PMCID: PMC5497816 DOI: 10.12688/f1000research.11398.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/23/2017] [Indexed: 12/21/2022] Open
Abstract
Although significant levels of side effects are often associated with their use, microtubule-directed agents that primarily target fast-growing mitotic cells have been considered to be some of the most effective anti-cancer therapeutics. With the hope of developing new-generation anti-mitotic agents with reduced side effects and enhanced tumor specificity, researchers have targeted various proteins whose functions are critically required for mitotic progression. As one of the highly attractive mitotic targets, polo-like kinase 1 (Plk1) has been the subject of an extensive effort for anti-cancer drug discovery. To date, a variety of anti-Plk1 agents have been developed, and several of them are presently in clinical trials. Here, we will discuss the current status of generating anti-Plk1 agents as well as future strategies for designing and developing more efficacious anti-Plk1 therapeutics.
Collapse
Affiliation(s)
- Jung-Eun Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Hymel
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Kyung S Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
16
|
Archambault V, Normandin K. Several inhibitors of the Plk1 Polo-Box Domain turn out to be non-specific protein alkylators. Cell Cycle 2017; 16:1220-1224. [PMID: 28521657 PMCID: PMC5499904 DOI: 10.1080/15384101.2017.1325043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/18/2017] [Accepted: 04/24/2017] [Indexed: 12/16/2022] Open
Abstract
For almost a decade, there has been much interest in the development of chemical inhibitors of Polo-like kinase 1 (Plk1) protein interactions. Plk1 is a master regulator of the cell division cycle that controls numerous substrates. It is a promising target for cancer drug development. Inhibitors of the kinase domain of Plk1 had some success in clinical trials. However, they are not perfectly selective. In principle, Plk1 can also be inhibited by interfering with its protein interaction domain, the Polo-Box Domain (PBD). Selective chemical inhibitors of the PBD would constitute tools to probe for PBD-dependent functions of Plk1 and could be advantageous in cancer therapy. The discovery of Poloxin and thymoquinone as PBD inhibitors indicated that small, cell-permeable chemical inhibitors could be identified. Other efforts followed, including ours, reporting additional molecules capable of blocking the PBD. It is now clear that, unfortunately, most of these compounds are non-specific protein alkylators (defined here as groups covalently added via a carbon) that have little or no potential for the development of real Plk1 PBD-specific drugs. This situation should be minded by biologists potentially interested in using these compounds to study Plk1. Further efforts are needed to develop selective, cell-permeable PBD inhibitors.
Collapse
Affiliation(s)
- Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, Canada
| | - Karine Normandin
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
| |
Collapse
|