1
|
Meier SSM, Multamäki E, Ranzani AT, Takala H, Möglich A. Leveraging the histidine kinase-phosphatase duality to sculpt two-component signaling. Nat Commun 2024; 15:4876. [PMID: 38858359 PMCID: PMC11164954 DOI: 10.1038/s41467-024-49251-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
Bacteria must constantly probe their environment for rapid adaptation, a crucial need most frequently served by two-component systems (TCS). As one component, sensor histidine kinases (SHK) control the phosphorylation of the second component, the response regulator (RR). Downstream responses hinge on RR phosphorylation and can be highly stringent, acute, and sensitive because SHKs commonly exert both kinase and phosphatase activity. With a bacteriophytochrome TCS as a paradigm, we here interrogate how this catalytic duality underlies signal responses. Derivative systems exhibit tenfold higher red-light sensitivity, owing to an altered kinase-phosphatase balance. Modifications of the linker intervening the SHK sensor and catalytic entities likewise tilt this balance and provide TCSs with inverted output that increases under red light. These TCSs expand synthetic biology and showcase how deliberate perturbations of the kinase-phosphatase duality unlock altered signal-response regimes. Arguably, these aspects equally pertain to the engineering and the natural evolution of TCSs.
Collapse
Affiliation(s)
| | - Elina Multamäki
- Department of Anatomy, University of Helsinki, Helsinki, Finland
| | - Américo T Ranzani
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Heikki Takala
- Department of Anatomy, University of Helsinki, Helsinki, Finland.
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland.
| | - Andreas Möglich
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany.
- Bayreuth Center for Biochemistry & Molecular Biology, Universität Bayreuth, Bayreuth, Germany.
- North-Bavarian NMR Center, Universität Bayreuth, Bayreuth, Germany.
| |
Collapse
|
2
|
Gupta A, Pandey P, Gupta R, Tiwari S, Singh SP. Responding to light signals: a comprehensive update on photomorphogenesis in cyanobacteria. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1915-1930. [PMID: 38222287 PMCID: PMC10784256 DOI: 10.1007/s12298-023-01386-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 01/16/2024]
Abstract
Cyanobacteria are ancestors of chloroplast and perform oxygen-evolving photosynthesis similar to higher plants and algae. However, an obligatory requirement of photons for their growth results in the exposure of cyanobacteria to varying light conditions. Therefore, the light environment could act as a signal to drive the developmental processes, in addition to photosynthesis, in cyanobacteria. These Gram-negative prokaryotes exhibit characteristic light-dependent developmental processes that maximize their fitness and resource utilization. The development occurring in response to radiance (photomorphogenesis) involves fine-tuning cellular physiology, morphology and metabolism. The best-studied example of cyanobacterial photomorphogenesis is chromatic acclimation (CA), which allows a selected number of cyanobacteria to tailor their light-harvesting antenna called phycobilisome (PBS). The tailoring of PBS under existing wavelengths and abundance of light gives an advantage to cyanobacteria over another photoautotroph. In this work, we will provide a comprehensive update on light-sensing, molecular signaling and signal cascades found in cyanobacteria. We also include recent developments made in other aspects of CA, such as mechanistic insights into changes in the size and shape of cells, filaments and carboxysomes.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Priyul Pandey
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Rinkesh Gupta
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Sapna Tiwari
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Shailendra Pratap Singh
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| |
Collapse
|
3
|
Larsen B, Hofmann R, Camacho IS, Clarke RW, Lagarias JC, Jones AR, Jones AM. Highlighter: An optogenetic system for high-resolution gene expression control in plants. PLoS Biol 2023; 21:e3002303. [PMID: 37733664 PMCID: PMC10513317 DOI: 10.1371/journal.pbio.3002303] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 08/18/2023] [Indexed: 09/23/2023] Open
Abstract
Optogenetic actuators have revolutionized the resolution at which biological processes can be controlled. In plants, deployment of optogenetics is challenging due to the need for these light-responsive systems to function in the context of horticultural light environments. Furthermore, many available optogenetic actuators are based on plant photoreceptors that might crosstalk with endogenous signaling processes, while others depend on exogenously supplied cofactors. To overcome such challenges, we have developed Highlighter, a synthetic, light-gated gene expression system tailored for in planta function. Highlighter is based on the photoswitchable CcaS-CcaR system from cyanobacteria and is repurposed for plants as a fully genetically encoded system. Analysis of a re-engineered CcaS in Escherichia coli demonstrated green/red photoswitching with phytochromobilin, a chromophore endogenous to plants, but also revealed a blue light response likely derived from a flavin-binding LOV-like domain. We deployed Highlighter in transiently transformed Nicotiana benthamiana for optogenetic control of fluorescent protein expression. Using light to guide differential fluorescent protein expression in nuclei of neighboring cells, we demonstrate unprecedented spatiotemporal control of target gene expression. We implemented the system to demonstrate optogenetic control over plant immunity and pigment production through modulation of the spectral composition of broadband visible (white) light. Highlighter is a step forward for optogenetics in plants and a technology for high-resolution gene induction that will advance fundamental plant biology and provide new opportunities for crop improvement.
Collapse
Affiliation(s)
- Bo Larsen
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Roberto Hofmann
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Ines S. Camacho
- Biometrology, Chemical and Biological Sciences Department, National Physical Laboratory, Teddington, United Kingdom
| | - Richard W. Clarke
- Biometrology, Chemical and Biological Sciences Department, National Physical Laboratory, Teddington, United Kingdom
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | - Alex R. Jones
- Biometrology, Chemical and Biological Sciences Department, National Physical Laboratory, Teddington, United Kingdom
| | - Alexander M. Jones
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Chen KN, Ma BG. OptoCRISPRi-HD: Engineering a Bacterial Green-Light-Activated CRISPRi System with a High Dynamic Range. ACS Synth Biol 2023; 12:1708-1715. [PMID: 37217315 DOI: 10.1021/acssynbio.3c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The ability to modulate gene expression is crucial for studying gene function and programming cell behaviors. Combining the reliability of CRISPRi and the precision of optogenetics, the optoCRISPRi technique is emerging as an advanced tool for live-cell gene regulation. Since previous versions of optoCRISPRi often exhibit no more than a 10-fold dynamic range due to the leakage activity, they are not suitable for targets that are sensitive to such leakage or critical for cell growth. Here, we describe a green-light-activated CRISPRi system with a high dynamic range (40 fold) and the flexibility of changing targets in Escherichia coli. Our optoCRISPRi-HD system can efficiently repress essential genes, nonessential genes, or inhibit the initiation of DNA replication. Providing a regulative system with high resolution over space-time and extensive targets, our study would facilitate further research involving complex gene networks, metabolic flux redirection, or bioprinting.
Collapse
Affiliation(s)
- Ke-Ning Chen
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin-Guang Ma
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Ohlendorf R, Möglich A. Light-regulated gene expression in Bacteria: Fundamentals, advances, and perspectives. Front Bioeng Biotechnol 2022; 10:1029403. [PMID: 36312534 PMCID: PMC9614035 DOI: 10.3389/fbioe.2022.1029403] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Numerous photoreceptors and genetic circuits emerged over the past two decades and now enable the light-dependent i.e., optogenetic, regulation of gene expression in bacteria. Prompted by light cues in the near-ultraviolet to near-infrared region of the electromagnetic spectrum, gene expression can be up- or downregulated stringently, reversibly, non-invasively, and with precision in space and time. Here, we survey the underlying principles, available options, and prominent examples of optogenetically regulated gene expression in bacteria. While transcription initiation and elongation remain most important for optogenetic intervention, other processes e.g., translation and downstream events, were also rendered light-dependent. The optogenetic control of bacterial expression predominantly employs but three fundamental strategies: light-sensitive two-component systems, oligomerization reactions, and second-messenger signaling. Certain optogenetic circuits moved beyond the proof-of-principle and stood the test of practice. They enable unprecedented applications in three major areas. First, light-dependent expression underpins novel concepts and strategies for enhanced yields in microbial production processes. Second, light-responsive bacteria can be optogenetically stimulated while residing within the bodies of animals, thus prompting the secretion of compounds that grant health benefits to the animal host. Third, optogenetics allows the generation of precisely structured, novel biomaterials. These applications jointly testify to the maturity of the optogenetic approach and serve as blueprints bound to inspire and template innovative use cases of light-regulated gene expression in bacteria. Researchers pursuing these lines can choose from an ever-growing, versatile, and efficient toolkit of optogenetic circuits.
Collapse
Affiliation(s)
- Robert Ohlendorf
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Andreas Möglich
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
- Bayreuth Center for Biochemistry and Molecular Biology, Universität Bayreuth, Bayreuth, Germany
- North-Bavarian NMR Center, Universität Bayreuth, Bayreuth, Germany
| |
Collapse
|
6
|
Li X, Jiang W, Qi Q, Liang Q. A Gene Circuit Combining the Endogenous I-E Type CRISPR-Cas System and a Light Sensor to Produce Poly-β-Hydroxybutyric Acid Efficiently. BIOSENSORS 2022; 12:bios12080642. [PMID: 36005038 PMCID: PMC9405541 DOI: 10.3390/bios12080642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022]
Abstract
‘Metabolic burden,’ which arises when introducing exogenic synthesizing pathways into a host strain, remains a challenging issue in metabolic engineering. Redirecting metabolic flux from cell growth to product synthesis at an appropriate culture timepoint is ideal for resolving this issue. In this report, we introduce optogenetics—which is capable of precise temporal and spatial control—as a genetic switch, accompanied by the endogenous type I-E CRISPRi system in Escherichia coli (E. coli) to generate a metabolic platform that redirects metabolic flux. Poly-β-hydroxybutyric acid (PHB) production was taken as an example to demonstrate the performance of this platform. A two-to-three-fold increase in PHB content was observed under green light when compared with the production of PHB under red light, confirming the regulatory activity of this platform and its potential to redirect metabolic flux to synthesize target products.
Collapse
Affiliation(s)
- Xiaomeng Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao 266237, China
- The Second Laboratory of Lanzhou Institute of Biological Products Co., Ltd., No. 888, Yanchang Road, Lanzhou 730046, China
| | - Wei Jiang
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan 250013, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao 266237, China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao 266237, China
- Correspondence: ; Tel.: +86-13573163779
| |
Collapse
|
7
|
Baumschlager A. Engineering Light-Control in Biology. Front Bioeng Biotechnol 2022; 10:901300. [PMID: 35573251 PMCID: PMC9096073 DOI: 10.3389/fbioe.2022.901300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Unraveling the transformative power of optogenetics in biology requires sophisticated engineering for the creation and optimization of light-regulatable proteins. In addition, diverse strategies have been used for the tuning of these light-sensitive regulators. This review highlights different protein engineering and synthetic biology approaches, which might aid in the development and optimization of novel optogenetic proteins (Opto-proteins). Focusing on non-neuronal optogenetics, chromophore availability, general strategies for creating light-controllable functions, modification of the photosensitive domains and their fusion to effector domains, as well as tuning concepts for Opto-proteins are discussed. Thus, this review shall not serve as an encyclopedic summary of light-sensitive regulators but aims at discussing important aspects for the engineering of light-controllable proteins through selected examples.
Collapse
Affiliation(s)
- Armin Baumschlager
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland
| |
Collapse
|
8
|
Optogenetic tools for microbial synthetic biology. Biotechnol Adv 2022; 59:107953. [DOI: 10.1016/j.biotechadv.2022.107953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/09/2022] [Accepted: 04/04/2022] [Indexed: 12/22/2022]
|
9
|
Zhang C, Zhao W, Duvall SW, Kowallis KA, Childers WS. Regulation of the activity of bacterial histidine kinase PleC by the scaffolding protein PodJ. J Biol Chem 2022; 298:101683. [PMID: 35124010 PMCID: PMC8980812 DOI: 10.1016/j.jbc.2022.101683] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
Scaffolding proteins can customize the response of signaling networks to support cell development and behaviors. PleC is a bifunctional histidine kinase whose signaling activity coordinates asymmetric cell division to yield a motile swarmer cell and a stalked cell in the gram-negative bacterium Caulobacter crescentus. Past studies have shown that PleC’s switch in activity from kinase to phosphatase correlates with a change in its subcellular localization pattern from diffuse to localized at the new cell pole. Here we investigated how the bacterial scaffolding protein PodJ regulates the subcellular positioning and activity of PleC. We reconstituted the PleC-PodJ signaling complex through both heterologous expressions in Escherichia coli and in vitro studies. In vitro, PodJ phase separates as a biomolecular condensate that recruits PleC and inhibits its kinase activity. We also constructed an in vivo PleC-CcaS chimeric histidine kinase reporter assay and demonstrated using this method that PodJ leverages its intrinsically disordered region to bind to PleC’s PAS sensory domain and regulate PleC-CcaS signaling. Regulation of the PleC-CcaS was most robust when PodJ was concentrated at the cell poles and was dependent on the allosteric coupling between PleC-CcaS’s PAS sensory domain and its downstream histidine kinase domain. In conclusion, our in vitro biochemical studies suggest that PodJ phase separation may be coupled to changes in PleC enzymatic function. We propose that this coupling of phase separation and allosteric regulation may be a generalizable phenomenon among enzymes associated with biomolecular condensates.
Collapse
|
10
|
Wang S, Luo Y, Jiang W, Li X, Qi Q, Liang Q. Development of Optogenetic Dual-Switch System for Rewiring Metabolic Flux for Polyhydroxybutyrate Production. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030617. [PMID: 35163885 PMCID: PMC8838604 DOI: 10.3390/molecules27030617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 11/30/2022]
Abstract
Several strategies, including inducer addition and biosensor use, have been developed for dynamical regulation. However, the toxicity, cost, and inflexibility of existing strategies have created a demand for superior technology. In this study, we designed an optogenetic dual-switch system and applied it to increase polyhydroxybutyrate (PHB) production. First, an optimized chromatic acclimation sensor/regulator (RBS10–CcaS#10–CcaR) system (comprising an optimized ribosomal binding site (RBS), light sensory protein CcaS, and response regulator CcaR) was selected for a wide sensing range of approximately 10-fold between green-light activation and red-light repression. The RBS10–CcaS#10–CcaR system was combined with a blue light-activated YF1–FixJ–PhlF system (containing histidine kinase YF1, response regulator FixJ, and repressor PhlF) engineered with reduced crosstalk. Finally, the optogenetic dual-switch system was used to rewire the metabolic flux for PHB production by regulating the sequences and intervals of the citrate synthase gene (gltA) and PHB synthesis gene (phbCAB) expression. Consequently, the strain RBS34, which has high gltA expression and a time lag of 3 h, achieved the highest PHB content of 16.6 wt%, which was approximately 3-fold that of F34 (expressed at 0 h). The results indicate that the optogenetic dual-switch system was verified as a practical and convenient tool for increasing PHB production.
Collapse
Affiliation(s)
- Sumeng Wang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, China; (S.W.); (Y.L.); (W.J.); (X.L.)
| | - Yue Luo
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, China; (S.W.); (Y.L.); (W.J.); (X.L.)
| | - Wei Jiang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, China; (S.W.); (Y.L.); (W.J.); (X.L.)
| | - Xiaomeng Li
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, China; (S.W.); (Y.L.); (W.J.); (X.L.)
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, China; (S.W.); (Y.L.); (W.J.); (X.L.)
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Correspondence: (Q.Q.); (Q.L.)
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, China; (S.W.); (Y.L.); (W.J.); (X.L.)
- Correspondence: (Q.Q.); (Q.L.)
| |
Collapse
|
11
|
Ariyanti D, Ikebukuro K, Sode K. Artificial complementary chromatic acclimation gene expression system in Escherichia coli. Microb Cell Fact 2021; 20:128. [PMID: 34225717 PMCID: PMC8256508 DOI: 10.1186/s12934-021-01621-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/26/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The development of multiple gene expression systems, especially those based on the physical signals, such as multiple color light irradiations, is challenging. Complementary chromatic acclimation (CCA), a photoreversible process that facilitates the control of cellular expression using light of different wavelengths in cyanobacteria, is one example. In this study, an artificial CCA systems, inspired by type III CCA light-regulated gene expression, was designed by employing a single photosensor system, the CcaS/CcaR green light gene expression system derived from Synechocystis sp. PCC6803, combined with G-box (the regulator recognized by activated CcaR), the cognate cpcG2 promoter, and the constitutively transcribed promoter, the PtrcΔLacO promoter. RESULTS One G-box was inserted upstream of the cpcG2 promoter and a reporter gene, the rfp gene (green light-induced gene expression), and the other G-box was inserted between the PtrcΔLacO promoter and a reporter gene, the bfp gene (red light-induced gene expression). The Escherichia coli transformants with plasmid-encoded genes were evaluated at the transcriptional and translational levels under red or green light illumination. Under green light illumination, the transcription and translation of the rfp gene were observed, whereas the expression of the bfp gene was repressed. Under red light illumination, the transcription and translation of the bfp gene were observed, whereas the expression of the rfp gene was repressed. During the red and green light exposure cycles at every 6 h, BFP expression increased under red light exposure while RFP expression was repressed, and RFP expression increased under green light exposure while BFP expression was repressed. CONCLUSION An artificial CCA system was developed to realize a multiple gene expression system, which was regulated by two colors, red and green lights, using a single photosensor system, the CcaS/CcaR system derived from Synechocystis sp. PCC6803, in E. coli. The artificial CCA system functioned repeatedly during red and green light exposure cycles. These results demonstrate the potential application of this CCA gene expression system for the production of multiple metabolites in a variety of microorganisms, such as cyanobacteria.
Collapse
Affiliation(s)
- Dwi Ariyanti
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
- Faculty of Biotechnology, Sumbawa University of Technology, Olat Maras, Moyo Hulu, Sumbawa, West Nusa Tenggara, 84371, Indonesia
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| | - Koji Sode
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
12
|
Baumschlager A, Khammash M. Synthetic Biological Approaches for Optogenetics and Tools for Transcriptional Light-Control in Bacteria. Adv Biol (Weinh) 2021; 5:e2000256. [PMID: 34028214 DOI: 10.1002/adbi.202000256] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/11/2021] [Indexed: 12/22/2022]
Abstract
Light has become established as a tool not only to visualize and investigate but also to steer biological systems. This review starts by discussing the unique features that make light such an effective control input in biology. It then gives an overview of how light-control came to progress, starting with photoactivatable compounds and leading up to current genetic implementations using optogenetic approaches. The review then zooms in on optogenetics, focusing on photosensitive proteins, which form the basis for optogenetic engineering using synthetic biological approaches. As the regulation of transcription provides a highly versatile means for steering diverse biological functions, the focus of this review then shifts to transcriptional light regulators, which are presented in the biotechnologically highly relevant model organism Escherichia coli.
Collapse
Affiliation(s)
- Armin Baumschlager
- Department of Biosystems Science and Engineering (D-BSSE), ETH-Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering (D-BSSE), ETH-Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| |
Collapse
|
13
|
Shono C, Ariyanti D, Abe K, Sakai Y, Sakamoto I, Tsukakoshi K, Sode K, Ikebukuro K. A Green Light-Regulated T7 RNA Polymerase Gene Expression System for Cyanobacteria. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:31-38. [PMID: 32979137 DOI: 10.1007/s10126-020-09997-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
In this study, we developed a green light-regulated T7 RNA polymerase expression system (T7 RNAP system), to provide a novel and versatile high-expression system for cyanobacteria without using any chemical inducer, realizing high expression levels comparable with previously reported for recombinant gene expression in cyanobacteria. The T7 RNAP system was constructed and introduced into Synechocystis sp. PCC6803. T7 RNAP was inserted downstream of the cpcG2 promoter, which is recognized and activated by the CcaS/CcaR two-component green-light-sensing system, to compose a vector plasmid, pKT-CS01, to achieve the induction of T7 RNAP expression only under green light illumination, with repression under red light illumination. The reporter gene, superfolder green fluorescent protein (sfGFP), was inserted downstream of the T7 promoter. Transcriptional analyses revealed that T7 RNAP was induced under green light but repressed under red light. Expression of the sfGFP protein derived from pKT-CS01 was observed under green light illumination and was approximately 10-fold higher than that in the control transformant, which expressed sfGFP directly under the cpcG2 promoter, which is directly regulated by CcaS/CcaR, under green light illumination. Comparison with the strong promoter expression systems Pcpc560 and PtrcΔlacO revealed that the expression of sfGFP by the T7 RNAP system was comparable with the levels obtained with strong promoters. These results demonstrated that the green light-regulated T7 RNAP gene expression system will be a versatile tool for future technological platform to regulate gene expression in cyanobacterial bioprocesses.
Collapse
Affiliation(s)
- Chika Shono
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Dwi Ariyanti
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
- Faculty of Biotechnology, Sumbawa University of Technology, Olat Maras, Moyo Hulu, Sumbawa, West Nusa Tenggara, 84371, Indonesia
| | - Koichi Abe
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Yuta Sakai
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Ippei Sakamoto
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Koji Sode
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan.
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA.
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan.
| |
Collapse
|
14
|
Kobayashi S, Nakajima M, Asano R, Ferreira EA, Abe K, Tamagnini P, Atsumi S, Sode K. Application of an engineered chromatic acclimation sensor for red-light-regulated gene expression in cyanobacteria. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Optogenetic switch for controlling the central metabolic flux of Escherichia coli. Metab Eng 2019; 55:68-75. [DOI: 10.1016/j.ymben.2019.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/28/2019] [Accepted: 06/12/2019] [Indexed: 01/09/2023]
|
16
|
Fushimi K, Narikawa R. Cyanobacteriochromes: photoreceptors covering the entire UV-to-visible spectrum. Curr Opin Struct Biol 2019; 57:39-46. [DOI: 10.1016/j.sbi.2019.01.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/08/2019] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
|
17
|
Castillo-Hair SM, Baerman EA, Fujita M, Igoshin OA, Tabor JJ. Optogenetic control of Bacillus subtilis gene expression. Nat Commun 2019; 10:3099. [PMID: 31308373 PMCID: PMC6629627 DOI: 10.1038/s41467-019-10906-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/07/2019] [Indexed: 01/27/2023] Open
Abstract
The Gram-positive bacterium Bacillus subtilis exhibits complex spatial and temporal gene expression signals. Although optogenetic tools are ideal for studying such processes, none has been engineered for this organism. Here, we port a cyanobacterial light sensor pathway comprising the green/red photoreversible two-component system CcaSR, two metabolic enzymes for production of the chromophore phycocyanobilin (PCB), and an output promoter to control transcription of a gene of interest into B. subtilis. Following an initial non-functional design, we optimize expression of pathway genes, enhance PCB production via a translational fusion of the biosynthetic enzymes, engineer a strong chimeric output promoter, and increase dynamic range with a miniaturized photosensor kinase. Our final design exhibits over 70-fold activation and rapid response dynamics, making it well-suited to studying a wide range of gene regulatory processes. In addition, the synthetic biology methods we develop to port this pathway should make B. subtilis easier to engineer in the future.
Collapse
Affiliation(s)
| | - Elliot A Baerman
- Department of Biosciences, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Masaya Fujita
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Rd., Houston, TX, 77004, USA
| | - Oleg A Igoshin
- Department of Bioengineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Department of Biosciences, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Center for Theoretical Biophysics, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Jeffrey J Tabor
- Department of Bioengineering, Rice University, 6100 Main St., Houston, TX, 77005, USA.
- Department of Biosciences, Rice University, 6100 Main St., Houston, TX, 77005, USA.
| |
Collapse
|
18
|
Abstract
Genetically engineered bacteria have the potential to diagnose and treat a wide range of diseases linked to the gastrointestinal tract, or gut. Such engineered microbes will be less expensive and invasive than current diagnostics and more effective and safe than current therapeutics. Recent advances in synthetic biology have dramatically improved the reliability with which bacteria can be engineered with the sensors, genetic circuits, and output (actuator) genes necessary for diagnostic and therapeutic functions. However, to deploy such bacteria in vivo, researchers must identify appropriate gut-adapted strains and consider performance metrics such as sensor detection thresholds, circuit computation speed, growth rate effects, and the evolutionary stability of engineered genetic systems. Other recent reviews have focused on engineering bacteria to target cancer or genetically modifying the endogenous gut microbiota in situ. Here, we develop a standard approach for engineering "smart probiotics," which both diagnose and treat disease, as well as "diagnostic gut bacteria" and "drug factory probiotics," which perform only the former and latter function, respectively. We focus on the use of cutting-edge synthetic biology tools, gut-specific design considerations, and current and future engineering challenges.
Collapse
|
19
|
Kreslavski VD, Los DA, Schmitt FJ, Zharmukhamedov SK, Kuznetsov VV, Allakhverdiev SI. The impact of the phytochromes on photosynthetic processes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:400-408. [DOI: 10.1016/j.bbabio.2018.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/04/2018] [Accepted: 03/09/2018] [Indexed: 10/17/2022]
|
20
|
Correlating structural and photochemical heterogeneity in cyanobacteriochrome NpR6012g4. Proc Natl Acad Sci U S A 2018; 115:4387-4392. [PMID: 29632180 DOI: 10.1073/pnas.1720682115] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phytochrome photoreceptors control plant growth, development, and the shade avoidance response that limits crop yield in high-density agricultural plantings. Cyanobacteriochromes (CBCRs) are distantly related photosensory proteins that control cyanobacterial metabolism and behavior in response to light. Photoreceptors in both families reversibly photoconvert between two photostates via photoisomerization of linear tetrapyrrole (bilin) chromophores. Spectroscopic and biochemical studies have demonstrated heterogeneity in both photostates, but the structural basis for such heterogeneity remains unclear. We report solution NMR structures for both photostates of the red/green CBCR NpR6012g4 from Nostoc punctiforme In addition to identifying structural changes accompanying photoconversion, these structures reveal structural heterogeneity for residues Trp655 and Asp657 in the red-absorbing NpR6012g4 dark state, yielding two distinct environments for the phycocyanobilin chromophore. We use site-directed mutagenesis and fluorescence and absorbance spectroscopy to assign an orange-absorbing population in the NpR6012g4 dark state to the minority configuration for Asp657. This population does not undergo full, productive photoconversion, as shown by time-resolved spectroscopy and absorption spectroscopy at cryogenic temperature. Our studies thus elucidate the spectral and photochemical consequences of structural heterogeneity in a member of the phytochrome superfamily, insights that should inform efforts to improve photochemical or fluorescence quantum yields in the phytochrome superfamily.
Collapse
|
21
|
Ong NT, Tabor JJ. A Miniaturized Escherichia coli Green Light Sensor with High Dynamic Range. Chembiochem 2018; 19:1255-1258. [PMID: 29420866 DOI: 10.1002/cbic.201800007] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Indexed: 12/16/2022]
Abstract
Genetically engineered photoreceptors enable unrivaled control over gene expression. Previously, we ported the Synechocystis PCC 6803 CcaSR two-component system, which is activated by green light and deactivated by red, into Escherichia coli, resulting in a sensor with a sixfold dynamic range. Later, we optimized pathway protein expression levels and the output promoter sequence to decrease transcriptional leakiness and to increase the dynamic range to approximately 120-fold. These CcaSR v 1.0 and v 2.0 systems have been used for precise quantitative, temporal, and spatial control of gene expression for a variety of applications. Recently, other workers deleted two PAS domains of unknown function from the CcaS sensor histidine kinase in a system similar to CcaSR v 1.0. Here we apply these deletions to CcaSR v 2.0, resulting in a v 3.0 light sensor with an output four times less leaky and a dynamic range of nearly 600-fold. We demonstrate that the PAS domain deletions have no deleterious effect on CcaSR green light sensitivity or response dynamics. CcaSR v 3.0 is the best-performing engineered bacterial green light sensor available, and should have broad applications in fundamental and synthetic biology studies.
Collapse
Affiliation(s)
- Nicholas T Ong
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Jeffrey J Tabor
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA.,Department of Biosciences, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| |
Collapse
|
22
|
Wang Y, Jiang X, Hu C, Sun T, Zeng Z, Cai X, Li H, Hu Z. Optogenetic regulation of artificial microRNA improves H 2 production in green alga Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:257. [PMID: 29151886 PMCID: PMC5678773 DOI: 10.1186/s13068-017-0941-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/21/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Chlamydomonas reinhardtii is an ideal model organism not only for the study of basic metabolic processes in both plants and animals but also the production of biofuels including hydrogen. Transgenic analysis of C. reinhardtii is now well established and very convenient, but inducible exogenous gene expression systems remain under-studied. The most commonly used heat shock-inducible system has serious effects on algal cell growth and is difficult and costly to control in large-scale culture. Previous studies of hydrogen photoproduction in Chlamydomonas also use this heat-inducible system to activate target gene transcription and hydrogen synthesis. RESULTS Here we describe a blue light-inducible system with which we achieved optogenetic regulation of target gene expression in C. reinhardtii. This light-inducible system was engineered in a photosynthetic organism for the first time. The photo-inducible heterodimerizing proteins CRY2 and CIB1 were fused to VP16 transcription activation domain and the GAL4 DNA-binding domain, respectively. This scheme allows for transcription activation of the target gene downstream of the activation sequence in response to blue light. Using this system, we successfully engineered blue light-inducible hydrogen-producing transgenic alga. The transgenic alga was cultured under red light and grew approximately normally until logarithmic phase. When illuminated with blue light, the transgenic alga expressed the artificial miRNA targeting photosynthetic system D1 protein, and altered hydrogen production was observed. CONCLUSIONS The light-inducible system successfully activated the artificial miRNA and, consequently, regulation of its target gene under blue light. Moreover, hydrogen production was enhanced using this system, indicating a more convenient and efficient approach for gene expression regulation in large-scale microalgae cultivation. This optogenetic gene control system is a useful tool for gene regulation and also establishes a novel way to improve hydrogen production in green algae.
Collapse
Affiliation(s)
- Yuting Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Xinqin Jiang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Changxing Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Ting Sun
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Zhiyong Zeng
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Xiaoqi Cai
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Hui Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| |
Collapse
|