1
|
Lemańska-Perek A, Krzyżanowska-Gołąb D, Wysoczański G, Barteczko-Grajek B, Goździk W, Adamik B. Changes in various forms of fibronectin in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass - a prospective, observational study. Sci Rep 2024; 14:30790. [PMID: 39730478 DOI: 10.1038/s41598-024-80765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/21/2024] [Indexed: 12/29/2024] Open
Abstract
Coronary artery bypass grafting (CABG) with cardiopulmonary bypass (CPB) is associated with the transient activation of a systemic inflammatory response. Fibronectin (FN), an endogenous inflammatory mediator, is a key component of the extracellular matrix. This study aimed to detect changes in cellular and plasma FN levels, as well as its potential fragmentation or FN-fibrin complex formation, in 40 patients undergoing CABG with CPB. Our results indicate that CPB was associated with changes in the levels of cellular and plasma FN and with intensified FN fragmentation. Moreover, FN-fibrin complexes were detected in all patients, indicating activation of the coagulation process during CPB. In a multivariate regression analysis, a history of arterial hypertension and CPB duration influenced plasma FN levels at 6 h (β = -0.458, p = 0.001; -0.375, p = 0.008, respectively) and 12 h (β = -0.293, p = 0.026; -0.554, p = 0.000) after surgery. Alterations in FN concentration, intensified FN degradation, and the presence of FN-fibrin complexes after surgery may suggest that these changes are related to the remodelling of the extracellular matrix resulting from cardiac surgery and the associated repair processes. The results indicate that FN has clinical potential as a marker of repair processes.
Collapse
Affiliation(s)
- Anna Lemańska-Perek
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, M. Sklodowskiej-Curie 48/50, 50-369, Wroclaw, Poland.
| | - Dorota Krzyżanowska-Gołąb
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, M. Sklodowskiej-Curie 48/50, 50-369, Wroclaw, Poland
| | | | - Barbara Barteczko-Grajek
- Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, Poland
| | - Waldemar Goździk
- Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, Poland
| | - Barbara Adamik
- Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, Poland
| |
Collapse
|
2
|
Gortan Cappellari G, Aleksova A, Dal Ferro M, Cannatà A, Semolic A, Guarnaccia A, Zanetti M, Giacca M, Sinagra G, Barazzoni R. n-3 PUFA-Enriched Diet Preserves Skeletal Muscle Mitochondrial Function and Redox State and Prevents Muscle Mass Loss in Mice with Chronic Heart Failure. Nutrients 2023; 15:3108. [PMID: 37513526 PMCID: PMC10383889 DOI: 10.3390/nu15143108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Rationale and Methods: Skeletal muscle derangements, potentially including mitochondrial dysfunction with altered mitochondrial dynamics and high reactive oxygen species (ROS) generation, may lead to protein catabolism and muscle wasting, resulting in low exercise capacity and reduced survival in chronic heart failure (CHF). We hypothesized that 8-week n-3-PUFA isocaloric partial dietary replacement (Fat = 5.5% total cal; EPA + DHA = 27% total fat) normalizes gastrocnemius muscle (GM) mitochondrial dynamics regulators, mitochondrial and tissue pro-oxidative changes, and catabolic derangements, resulting in preserved GM mass in rodent CHF [Myocardial infarction (MI)-induced CHF by coronary artery ligation, left-ventricular ejection fraction <50%]. Results: Compared to control animals (Sham), CHF had a higher GM mitochondrial fission-fusion protein ratio, with low ATP and high ROS production, pro-inflammatory changes, and low insulin signalling. n-3-PUFA normalized all mitochondrial derangements and the pro-oxidative state (oxidized to total glutathione ratio), associated with normalized GM cytokine profile, and enhanced muscle-anabolic insulin signalling and prevention of CHF-induced GM weight loss (all p < 0.05 vs. CHF and p = NS vs. S). Conclusions:n-3-PUFA isocaloric partial dietary replacement for 8 weeks normalizes CHF-induced derangements of muscle mitochondrial dynamics regulators, ROS production and function. n-3-PUFA mitochondrial effects result in preserved skeletal muscle mass, with potential to improve major patient outcomes in clinical settings.
Collapse
Affiliation(s)
- Gianluca Gortan Cappellari
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Cattinara Hospital, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34149 Trieste, Italy
| | - Aneta Aleksova
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34128 Trieste, Italy
| | - Matteo Dal Ferro
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34128 Trieste, Italy
| | - Antonio Cannatà
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34128 Trieste, Italy
| | - Annamaria Semolic
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Cattinara Hospital, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34149 Trieste, Italy
| | - Alberto Guarnaccia
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34128 Trieste, Italy
| | - Michela Zanetti
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Cattinara Hospital, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34149 Trieste, Italy
| | - Mauro Giacca
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London WC2R 2LS, UK
- Molecular Medicine Laboratory, International Centre for Genetic, Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Gianfranco Sinagra
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34128 Trieste, Italy
| | - Rocco Barazzoni
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Cattinara Hospital, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34149 Trieste, Italy
| |
Collapse
|
3
|
Wang D, Li J, Luo G, Zhou J, Wang N, Wang S, Zhao R, Cao X, Ma Y, Liu G, Hao L. Nox4 as a novel therapeutic target for diabetic vascular complications. Redox Biol 2023; 64:102781. [PMID: 37321060 PMCID: PMC10363438 DOI: 10.1016/j.redox.2023.102781] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
Diabetic vascular complications can affect both microvascular and macrovascular. Diabetic microvascular complications, such as diabetic nephropathy, diabetic retinopathy, diabetic neuropathy, and diabetic cardiomyopathy, are believed to be caused by oxidative stress. The Nox family of NADPH oxidases is a significant source of reactive oxygen species and plays a crucial role in regulating redox signaling, particularly in response to high glucose and diabetes mellitus. This review aims to provide an overview of the current knowledge about the role of Nox4 and its regulatory mechanisms in diabetic microangiopathies. Especially, the latest novel advances in the upregulation of Nox4 that aggravate various cell types within diabetic kidney disease will be highlighted. Interestingly, this review also presents the mechanisms by which Nox4 regulates diabetic microangiopathy from novel perspectives such as epigenetics. Besides, we emphasize Nox4 as a therapeutic target for treating microvascular complications of diabetes and summarize drugs, inhibitors, and dietary components targeting Nox4 as important therapeutic measures in preventing and treating diabetic microangiopathy. Additionally, this review also sums up the evidence related to Nox4 and diabetic macroangiopathy.
Collapse
Affiliation(s)
- Dongxia Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China; Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Jiaying Li
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Gang Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Juan Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Ning Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Shanshan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Rui Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Xin Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, 050000, China.
| | - Liping Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China.
| |
Collapse
|
4
|
Venu VKP, Moregola A, Da Dalt L, Uboldi P, Bonacina F, Muro AF, Norata GD. Fibronectin extra domain a limits liver dysfunction and protects mice during acute inflammation. ATHEROSCLEROSIS PLUS 2023; 52:23-31. [PMID: 37287804 PMCID: PMC10242638 DOI: 10.1016/j.athplu.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023]
Abstract
Background and aim The primary transcript of fibronectin (FN) undergoes alternative splicing to generate different isoforms, including FN containing the Extra Domain A (FN_EDA+), whose expression is regulated spatially and temporarily during developmental and disease conditions including acute inflammation. The role of FN_EDA+ during sepsis, however, remains elusive. Methods Mice constitutively express the EDA domain of fibronectin (EDA+/+); lacking the FN EDA domain (EDA-/-) or with a conditional ablation of EDA + inclusion only in liver produced FN (alb-CRE+EDA floxed mice) thus expressing normal plasma FN were used. Systemic inflammation and sepsis were induced by either LPS injection (70 mg/kg) or by cecal ligation and puncture (CLP) Neutrophils isolated from septic patients were tested for neutrophil binding ability. Results We observed that EDA+/+ were protected toward sepsis as compared to EDA-/- mice. Also alb-CRE+EDA floxed mice presented reduced survival, thus indicating a key role for EDA in protecting toward sepsis. This phenotype was associated with improved liver and spleen inflammatory profile. Ex vivo experiments showed that neutrophils bind to a larger extent to an FN_EDA + coated surface as compared to FN, thus potentially limiting their over-reactivity. Conclusions Our study demonstrates that the inclusion of the EDA domain in fibronectin dampens the nflammatoryi consequences of sepsis.
Collapse
Affiliation(s)
| | - Annalisa Moregola
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Da Dalt
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Patrizia Uboldi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
5
|
Kanta J, Zavadakova A, Sticova E, Dubsky M. Fibronectin in hyperglycaemia and its potential use in the treatment of diabetic foot ulcers: A review. Int Wound J 2022; 20:1750-1761. [PMID: 36537075 PMCID: PMC10088845 DOI: 10.1111/iwj.13997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 12/24/2022] Open
Abstract
Metabolism of fibronectin, the protein that plays a key role in the healing of wounds, is changed in the patients with diabetes mellitus. Fibronectin can interact with other proteins and proteoglycans and organise them to form the extracellular matrix, the basis of the granulation tissue in healing wounds. However, diabetic foot ulcers (DFUs) suffer from inadequate deposition of this protein. Degradation prevails over fibronectin synthesis in the proteolytic inflammatory environment in the ulcers. Because of the lack of fibronectin in the wound bed, the assembly of the extracellular matrix and the deposition of the granulation tissue cannot be started. A number of methods have been designed that prevents fibronectin degradation, replace lacking fibronectin or support its formation in non-healing wounds in animal models of diabetes. The aim of this article is to review the metabolism of fibronectin in DFUs and to emphasise that it would be useful to pay more attention to fibronectin matrix assembly in the ulcers when laboratory methods are translated to clinical practice.
Collapse
Affiliation(s)
- Jiri Kanta
- Faculty of Medicine Charles University Hradec Kralove Czech Republic
| | - Anna Zavadakova
- Biomedical Center, Faculty of Medicine Charles University Pilsen Czech Republic
| | - Eva Sticova
- Diabetes Center Institute for Clinical and Experimental Medicine Prague Czech Republic
- Third Faculty of Medicine Charles University Prague Czech Republic
| | - Michal Dubsky
- Diabetes Center Institute for Clinical and Experimental Medicine Prague Czech Republic
- First Faculty of Medicine Charles University Prague Czech Republic
| |
Collapse
|
6
|
Gortan Cappellari G, Semolic A, Ruozi G, Barbetta D, Bortolotti F, Vinci P, Zanetti M, Mak RH, Garibotto G, Giacca M, Barazzoni R. n-3 PUFA dietary lipid replacement normalizes muscle mitochondrial function and oxidative stress through enhanced tissue mitophagy and protects from muscle wasting in experimental kidney disease. Metabolism 2022; 133:155242. [PMID: 35750236 DOI: 10.1016/j.metabol.2022.155242] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 11/15/2022]
Abstract
INTRODUCTION AND METHODS Skeletal muscle mitochondrial dysfunction may cause tissue oxidative stress and consequent catabolism in chronic kidney disease (CKD), contributing to patient mortality. We investigated in 5/6-nephrectomized (Nx) rats the impact of n3-polyunsaturated fatty-acids (n3-PUFA) isocaloric partial dietary replacement on gastrocnemius muscle (Gm) mitochondrial master-regulators, ATP production, ROS generation and related muscle-catabolic derangements. RESULTS Nx had low Gm mitochondrial nuclear respiratory factor-2 and peroxisome proliferator-activated receptor gamma coactivator-1alpha, low ATP production and higher mitochondrial fission-fusion protein ratio with ROS overproduction. n3-PUFA normalized all mitochondrial derangements and pro-oxidative tissue redox state (oxydized to total glutathione ratio). n3-PUFA also normalized Nx-induced muscle-catabolic proinflammatory cytokines, insulin resistance and low muscle weight. Human uremic serum reproduced mitochondrial derangements in C2C12 myotubes, while n3-PUFA coincubation prevented all effects. n3-PUFA also enhanced muscle mitophagy in-vivo and siRNA-mediated autophagy inhibition selectively blocked n3-PUFA-induced normalization of C2C12 mitochondrial ROS production. CONCLUSIONS In conclusion, dietary n3-PUFA normalize mitochondrial master-regulators, ATP production and dynamics in experimental CKD. These effects occur directly in muscle cells and they normalize ROS production through enhanced mitophagy. Dietary n3-PUFA mitochondrial effects result in normalized catabolic derangements and protection from muscle wasting, with potential positive impact on patient survival.
Collapse
Affiliation(s)
| | - Annamaria Semolic
- Dept of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Giulia Ruozi
- Molecular Medicine Lab., International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | - Francesca Bortolotti
- Molecular Medicine Lab., International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Pierandrea Vinci
- Dept of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Michela Zanetti
- Dept of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Robert H Mak
- Division of Pediatric Nephrology, Rady Children's Hospital, University of California, San Diego, USA
| | - Giacomo Garibotto
- Division of Nephrology, Dialysis and Transplantation, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, University of Genova, Genova, Italy
| | - Mauro Giacca
- Molecular Medicine Lab., International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; School of Cardiovascular Medicine & Sciences, King's College London, London, UK
| | - Rocco Barazzoni
- Dept of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
7
|
Resnikoff HA, Miller CG, Schwarzbauer JE. Implications of fibrotic extracellular matrix in diabetic retinopathy. Exp Biol Med (Maywood) 2022; 247:1093-1102. [PMID: 35410521 PMCID: PMC9335512 DOI: 10.1177/15353702221087175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Fibrosis is an accumulation of extracellular matrix (ECM) proteins and fibers in a disordered fashion, which compromises cell and tissue functions. High glucose-induced fibrosis, a major pathophysiological change of diabetic retinopathy (DR), severely affects vision by compromising the retinal vasculature and ultimately disrupting retinal tissue organization. The retina is a highly vascularized, stratified tissue with multiple cell types organized into distinct layers. Chronically high blood glucose stimulates certain retinal cells to increase production and assembly of ECM proteins resulting in excess ECM deposition primarily in the capillary walls on the basal side of the endothelium. This subendothelial fibrosis of the capillaries is the earliest histological change in the diabetic retina and has been linked to the vascular dysfunction that underlies DR. Proteins that are not normally abundant in the capillary basement membrane (BM) matrix, such as the ECM protein fibronectin, are assembled in significant quantities, disrupting the architecture of the BM and altering its properties. Cell culture models have identified multiple mechanisms through which elevated glucose can stimulate fibronectin matrix assembly, including intracellular signaling pathways, alternative splicing, and non-enzymatic glycation of the ECM. The fibrotic subendothelial matrix alters cell adhesion and supports further accumulation of other ECM proteins leading to disruption of endothelial cell-cell junctions. We review evidence supporting the notion that these molecular changes in the ECM contribute to the pathogenesis of DR, including vascular leakage, loss of endothelial cells and pericytes, changes in blood flow, and neovascularization. We propose that the accumulation of ECM, especially fibronectin matrix, first around the vasculature and later in extravascular locations, plays a critical role in DR and vision loss. Strategies for DR prevention and treatment should consider the ECM a potential therapeutic target.
Collapse
Affiliation(s)
- Henry A Resnikoff
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Charles G Miller
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean E Schwarzbauer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA,Jean E Schwarzbauer.
| |
Collapse
|
8
|
Alternative Splicing in Cardiovascular Disease-A Survey of Recent Findings. Genes (Basel) 2021; 12:genes12091457. [PMID: 34573439 PMCID: PMC8469243 DOI: 10.3390/genes12091457] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
Alternative splicing, a driver of posttranscriptional variance, differs from canonical splicing by arranging the introns and exons of an immature pre-mRNA transcript in a multitude of different ways. Although alternative splicing was discovered almost half a century ago, estimates of the proportion of genes that undergo alternative splicing have risen drastically over the last two decades. Deep sequencing methods and novel bioinformatic algorithms have led to new insights into the prevalence of spliced variants, tissue-specific splicing patterns and the significance of alternative splicing in development and disease. Thus far, the role of alternative splicing has been uncovered in areas ranging from heart development, the response to myocardial infarction to cardiac structural disease. Circular RNAs, a product of alternative back-splicing, were initially discovered in 1976, but landmark publications have only recently identified their regulatory role, tissue-specific expression, and transcriptomic abundance, spurring a renewed interest in the topic. The aim of this review is to provide a brief insight into some of the available findings on the role of alternative splicing in cardiovascular disease, with a focus on atherosclerosis, myocardial infarction, heart failure, dilated cardiomyopathy and circular RNAs in myocardial infarction.
Collapse
|
9
|
Cornelius VA, Fulton JR, Margariti A. Alternative Splicing: A Key Mediator of Diabetic Vasculopathy. Genes (Basel) 2021; 12:1332. [PMID: 34573314 PMCID: PMC8469645 DOI: 10.3390/genes12091332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular disease is the leading cause of death amongst diabetic individuals. Atherosclerosis is the prominent driver of diabetic vascular complications, which is triggered by the detrimental effects of hyperglycemia and oxidative stress on the vasculature. Research has extensively shown diabetes to result in the malfunction of the endothelium, the main component of blood vessels, causing severe vascular complications. The pathogenic mechanism in which diabetes induces vascular dysfunction, however, remains largely unclear. Alternative splicing of protein coding pre-mRNAs is an essential regulatory mechanism of gene expression and is accepted to be intertwined with cellular physiology. Recently, a role for alternative splicing has arisen within vascular health, with aberrant mis-splicing having a critical role in disease development, including in atherosclerosis. This review focuses on the current knowledge of alternative splicing and the roles of alternatively spliced isoforms within the vasculature, with a particular focus on disease states. Furthermore, we explore the recent elucidation of the alternatively spliced QKI gene within vascular cell physiology and the onset of diabetic vasculopathy. Potential therapeutic strategies to restore aberrant splicing are also discussed.
Collapse
Affiliation(s)
| | | | - Andriana Margariti
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast BT9 7BL, UK; (V.A.C.); (J.R.F.)
| |
Collapse
|
10
|
Di Matteo A, Belloni E, Pradella D, Cappelletto A, Volf N, Zacchigna S, Ghigna C. Alternative splicing in endothelial cells: novel therapeutic opportunities in cancer angiogenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:275. [PMID: 33287867 PMCID: PMC7720527 DOI: 10.1186/s13046-020-01753-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Alternative splicing (AS) is a pervasive molecular process generating multiple protein isoforms, from a single gene. It plays fundamental roles during development, differentiation and maintenance of tissue homeostasis, while aberrant AS is considered a hallmark of multiple diseases, including cancer. Cancer-restricted AS isoforms represent either predictive biomarkers for diagnosis/prognosis or targets for anti-cancer therapies. Here, we discuss the contribution of AS regulation in cancer angiogenesis, a complex process supporting disease development and progression. We consider AS programs acting in a specific and non-redundant manner to influence morphological and functional changes involved in cancer angiogenesis. In particular, we describe relevant AS variants or splicing regulators controlling either secreted or membrane-bound angiogenic factors, which may represent attractive targets for therapeutic interventions in human cancer.
Collapse
Affiliation(s)
- Anna Di Matteo
- Istituto di Genetica Molecolare, "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100, Pavia, Italy
| | - Elisa Belloni
- Istituto di Genetica Molecolare, "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100, Pavia, Italy
| | - Davide Pradella
- Istituto di Genetica Molecolare, "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100, Pavia, Italy
| | - Ambra Cappelletto
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy
| | - Nina Volf
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy. .,Department of Medical, Surgical and Health Sciences, University of Trieste, 34149, Trieste, Italy.
| | - Claudia Ghigna
- Istituto di Genetica Molecolare, "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100, Pavia, Italy.
| |
Collapse
|
11
|
Preserved Skeletal Muscle Mitochondrial Function, Redox State, Inflammation and Mass in Obese Mice with Chronic Heart Failure. Nutrients 2020; 12:nu12113393. [PMID: 33158222 PMCID: PMC7694273 DOI: 10.3390/nu12113393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Skeletal muscle (SM) mitochondrial dysfunction, oxidative stress, inflammation and muscle mass loss may worsen prognosis in chronic heart failure (CHF). Diet-induced obesity may also cause SM mitochondrial dysfunction as well as oxidative stress and inflammation, but obesity per se may be paradoxically associated with high SM mass and mitochondrial adenosine triphosphate (ATP) production, as well as with enhanced survival in CHF. Methods: We investigated interactions between myocardial infarction(MI)-induced CHF and diet-induced obesity (12-wk 60% vs. standard 10% fat) in modulating gastrocnemius muscle (GM) mitochondrial ATP and tissue superoxide generation, oxidized glutathione (GSSG), cytokines and insulin signalling activation in 10-wk-old mice in the following groups: lean sham-operated, lean CHF (LCHF), obese CHF (ObCHF; all n = 8). The metabolic impact of obesity per se was investigated by pair-feeding ObCHF to standard diet with stabilized excess body weight until sacrifice at wk 8 post-MI. Results: Compared to sham, LCHF had low GM mass, paralleled by low mitochondrial ATP production and high mitochondrial reative oxygen species (ROS) production, pro-oxidative redox state, pro-inflammatory cytokine changes and low insulin signaling (p < 0.05). In contrast, excess body weight in pair-fed ObCHF was associated with high GM mass, preserved mitochondrial ATP and mitochondrial ROS production, unaltered redox state, tissue cytokines and insulin signaling (p = non significant vs. Sham, p < 0.05 vs. LCHF) despite higher superoxide generation from non-mitochondrial sources. Conclusions: CHF disrupts skeletal muscle mitochondrial function in lean rodents with low ATP and high mitochondrial ROS production, associated with tissue pro-inflammatory cytokine profile, low insulin signaling and muscle mass loss. Following CHF onset, obesity per se is associated with high skeletal muscle mass and preserved tissue ATP production, mitochondrial ROS production, redox state, cytokines and insulin signaling. These paradoxical and potentially favorable obesity-associated metabolic patterns could contribute to reported obesity-induced survival advantage in CHF.
Collapse
|
12
|
Plasma and Cellular Forms of Fibronectin as Prognostic Markers in Sepsis. Mediators Inflamm 2020; 2020:8364247. [PMID: 32801997 PMCID: PMC7416265 DOI: 10.1155/2020/8364247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/22/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022] Open
Abstract
Background There is a pressing need for specific prognostic markers that could be used to monitor the severity of sepsis. The aims of our study were to investigate changes in the expression of different molecular forms of fibronectin in sepsis and to assess their relationship to the clinical severity and mortality of patients. Material and Methods. Forms of fibronectin: plasma (pFN), cellular (EDA-FN), FN-fibrin complexes, and fibronectin fragments were analyzed in 71 sepsis patients (survivors and nonsurvivors) and in the control by ELISA and immunoblotting. Results The baseline pFN concentration of patients with sepsis was significantly lower than in the control (133.0 mg/L vs. 231.2 mg/L) (P < 0.001), and in nonsurvivors, it was lower than in survivors (106.0 mg/L vs. 152.8 mg/L) (P = 0.004). The baseline EDA-FN was significantly elevated in both sepsis groups (survivors: 6.7 mg/L; nonsurvivors: 9.4 mg/L) compared to the control (1.4 mg/L) (P < 0.001). It should be noted that among patients with more severe sepsis, the EDA-FN level was higher in nonsurvivors than in survivors. Furthermore, molecular FN-fibrin complexes as well as FN fragments occurred much more frequently in nonsurvivors than in survivors. Conclusion The study showed that in sepsis, changes in plasmatic and cellular form of fibronectin were associated with the severity of sepsis and may be useful predictors of outcome.
Collapse
|
13
|
Efthymiou G, Saint A, Ruff M, Rekad Z, Ciais D, Van Obberghen-Schilling E. Shaping Up the Tumor Microenvironment With Cellular Fibronectin. Front Oncol 2020; 10:641. [PMID: 32426283 PMCID: PMC7203475 DOI: 10.3389/fonc.2020.00641] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/06/2020] [Indexed: 12/25/2022] Open
Abstract
Normal tissue homeostasis and architecture restrain tumor growth. Thus, for a tumor to develop and spread, malignant cells must overcome growth-repressive inputs from surrounding tissue and escape immune surveillance mechanisms that curb cancer progression. This is achieved by promoting the conversion of a physiological microenvironment to a pro-tumoral state and it requires a constant dialog between malignant cells and ostensibly normal cells of adjacent tissue. Pro-tumoral reprogramming of the stroma is accompanied by an upregulation of certain extracellular matrix (ECM) proteins and their cognate receptors. Fibronectin (FN) is one such component of the tumor matrisome. This large multidomain glycoprotein dimer expressed over a wide range of human cancers is assembled by cell-driven forces into a fibrillar array that provides an obligate scaffold for the deposition of other matrix proteins and binding sites for functionalization by soluble factors in the tumor microenvironment. Encoded by a single gene, FN regulates the proliferation, motile behavior and fate of multiple cell types, largely through mechanisms that involve integrin-mediated signaling. These processes are coordinated by distinct isoforms of FN, collectively known as cellular FN (as opposed to circulating plasma FN) that arise through alternative splicing of the FN1 gene. Cellular FN isoforms differ in their solubility, receptor binding ability and spatiotemporal expression, and functions that have yet to be fully defined. FN induction at tumor sites constitutes an important step in the acquisition of biological capabilities required for several cancer hallmarks such as sustaining proliferative signaling, promoting angiogenesis, facilitating invasion and metastasis, modulating growth suppressor activity and regulating anti-tumoral immunity. In this review, we will first provide an overview of ECM reprogramming through tumor-stroma crosstalk, then focus on the role of cellular FN in tumor progression with respect to these hallmarks. Last, we will discuss the impact of dysregulated ECM on clinical efficacy of classical (radio-/chemo-) therapies and emerging treatments that target immune checkpoints and explore how our expanding knowledge of the tumor ECM and the central role of FN can be leveraged for therapeutic benefit.
Collapse
Affiliation(s)
| | - Angélique Saint
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France.,Centre Antoine Lacassagne, Nice, France
| | - Michaël Ruff
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France
| | - Zeinab Rekad
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France
| | | | | |
Collapse
|
14
|
Unacylated Ghrelin Improves Vascular Dysfunction and Attenuates Atherosclerosis during High-Fat Diet Consumption in Rodents. Int J Mol Sci 2019; 20:ijms20030499. [PMID: 30682769 PMCID: PMC6387360 DOI: 10.3390/ijms20030499] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 12/13/2022] Open
Abstract
Unacylated ghrelin (UnGhr) exerts several beneficial actions on vascular function. The aim of this study was to assess the effects of UnGhr on high-fat induced endothelial dysfunction and its underlying mechanisms. Thoracic aortas from transgenic mice, which were overexpressing UnGhr and being control fed either a standard control diet (CD) or a high-fat diet (HFD) for 16 weeks, were harvested and used for the assessment of vascular reactivity, endothelial nitric oxide synthase (eNOS) expression and activity, thiobarbituric acid reactive substances (TBARS) and glutathione levels, and aortic lipid accumulation by Oil Red O staining. Relaxations due to acetylcholine and to DEA-NONOate were reduced (p < 0.05) in the HFD control aortas compared to vessels from the CD animals. Overexpression of UnGhr prevented HFD-induced vascular dysfunction, while eNOS expression and activity were similar in all vessels. HFD-induced vascular oxidative stress was demonstrated by increased (p < 0.05) aortic TBARS and glutathione in wild type (Wt) mice; however, this was not seen in UnGhr mice. Moreover, increased (p < 0.05) HFD-induced lipid accumulation in vessels from Wt mice was prevented by UnGhr overexpression. In conclusion, chronic UnGhr overexpression results in improved vascular function and reduced plaque formation through decreased vascular oxidative stress, without affecting the eNOS pathway. This research may provide new insight into the mechanisms underlying the beneficial effects of UnGhr on the vascular dysfunction associated with obesity and the metabolic syndrome.
Collapse
|
15
|
Gahete MD, Del Rio-Moreno M, Camargo A, Alcala-Diaz JF, Alors-Perez E, Delgado-Lista J, Reyes O, Ventura S, Perez-Martínez P, Castaño JP, Lopez-Miranda J, Luque RM. Changes in Splicing Machinery Components Influence, Precede, and Early Predict the Development of Type 2 Diabetes: From the CORDIOPREV Study. EBioMedicine 2018; 37:356-365. [PMID: 30446432 PMCID: PMC6286259 DOI: 10.1016/j.ebiom.2018.10.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/18/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022] Open
Abstract
Background Type-2 diabetes mellitus (T2DM) is a major health problem with increasing incidence, which severely impacts cardiovascular disease. Because T2DM is associated with altered gene expression and aberrant splicing, we hypothesized that dysregulations in splicing machinery could precede, contribute to, and predict T2DM development. Methods A cohort of patients with cardiovascular disease (CORDIOPREV study) and without T2DM at baseline (at the inclusion of the study) was used (n = 215). We determined the expression of selected splicing machinery components in fasting and 4 h-postprandial peripheral blood mononuclear cells (PBMCs, obtained at baseline) from all the patients who developed T2DM during 5-years of follow-up (n = 107 incident-T2DM cases) and 108 randomly selected non-T2DM patients (controls). Serum from incident-T2DM and control patients was used to analyze in vitro the modulation of splicing machinery expression in control PBMCs from an independent cohort of healthy subjects. Findings Expression of key splicing machinery components (e.g. RNU2, RNU4 or RNU12) from fasting and 4 h-postprandial PBMCs of incident-T2DM patients was markedly altered compared to non-T2DM controls. Moreover, in vitro treatment of healthy individuals PBMCs with serum from incident-T2DM patients (compared to non-T2DM controls) reduced the expression of splicing machinery elements found down-regulated in incident-T2DM patients PBMCs. Finally, fasting/postprandial levels of several splicing machinery components in the PBMCs of CORDIOPREV patients were associated to higher risk of T2DM (Odds Ratio > 4) and could accurately predict (AUC > 0.85) T2DM development. Interpretation Our results reveal the existence of splicing machinery alterations that precede and predict T2DM development in patients with cardiovascular disease. Fund ISCIII, MINECO, CIBERObn.
Collapse
Affiliation(s)
- Manuel D Gahete
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.; Universidad de Córdoba, Córdoba, Spain.; Reina Sofia University Hospital, Córdoba, Spain.; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Mercedes Del Rio-Moreno
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.; Universidad de Córdoba, Córdoba, Spain.; Reina Sofia University Hospital, Córdoba, Spain.; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Antonio Camargo
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.; Universidad de Córdoba, Córdoba, Spain.; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.; Lipid and Atherosclerosis Unit, Department of Medicine, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Juan F Alcala-Diaz
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.; Universidad de Córdoba, Córdoba, Spain.; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.; Lipid and Atherosclerosis Unit, Department of Medicine, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Emilia Alors-Perez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.; Universidad de Córdoba, Córdoba, Spain.; Reina Sofia University Hospital, Córdoba, Spain.; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Javier Delgado-Lista
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.; Universidad de Córdoba, Córdoba, Spain.; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.; Lipid and Atherosclerosis Unit, Department of Medicine, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Oscar Reyes
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.; Universidad de Córdoba, Córdoba, Spain.; Reina Sofia University Hospital, Córdoba, Spain.; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.; Department of Computer Sciences, University of Cordoba, Córdoba, Spain
| | - Sebastian Ventura
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.; Universidad de Córdoba, Córdoba, Spain.; Reina Sofia University Hospital, Córdoba, Spain.; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.; Department of Computer Sciences, University of Cordoba, Córdoba, Spain
| | - Pablo Perez-Martínez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.; Universidad de Córdoba, Córdoba, Spain.; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.; Lipid and Atherosclerosis Unit, Department of Medicine, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.; Universidad de Córdoba, Córdoba, Spain.; Reina Sofia University Hospital, Córdoba, Spain.; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - José Lopez-Miranda
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.; Universidad de Córdoba, Córdoba, Spain.; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.; Lipid and Atherosclerosis Unit, Department of Medicine, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Raul M Luque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.; Universidad de Córdoba, Córdoba, Spain.; Reina Sofia University Hospital, Córdoba, Spain.; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain..
| |
Collapse
|
16
|
Pupek M, Krzyżanowska-Gołąb D, Kotschy D, Witkiewicz W, Kwiatkowska W, Kotschy M, Kątnik-Prastowska I. Time-dependent changes in extra-domain A-fibronectin concentration and relative amounts of fibronectin-fibrin complexes in plasma of patients with peripheral arterial disease after endovascular revascularisation. Int Wound J 2018. [PMID: 29536628 DOI: 10.1111/iwj.12909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Fibronectin (FN) may be involved in time- and stage-dependent and inter-related controlled processes of inflammation, coagulation, and wound healing accompanying peripheral arterial disease (PAD). In the present study, FN and FN-containing extra-domain A (EDA-FN), macromolecular FN-fibrin complexes, and FN monomer were analysed in the plasma of 142 PAD patients, including 37 patients with restenosis, for 37 months after revascularisation. FN concentration increased significantly in the plasma of PAD patients within 7 to 12 months after revascularisation, whereas the high concentration of EDA-FN was maintained up to 24 months, significantly higher in the group 7 to 12 months after revascularisation with recurrence of stenosis and lower in the PAD groups 1 to 3 months and 4 to 6 months after revascularisation with comorbid diabetes and ulceration, respectively. The relative amounts of FN-fibrin complexes up to 1600 kDa and FN monomer were significantly higher, within intervals of 4 to 24 months and 4 to 6 months after revascularisation, respectively. Moreover, the relative amounts of 750 to 1600 kDa FN-fibrin complexes within 13 to 24 months after revascularisation were higher in comparison with those in the group without restenosis. In conclusion, high levels of EDA-FN and FN-fibrin complexes could have potential diagnostic value in the management of PAD patients after revascularisation, predicting restenosis risk.
Collapse
Affiliation(s)
- Małgorzata Pupek
- Department of Chemistry and Immunochemistry, Wrocław Medical University, Wrocław, Poland
| | | | - Daniel Kotschy
- Department of Angiology, Regional Specialist Hospital in Wrocław, Wrocław, Poland.,Regional Specialist Hospital, Research and Development Center in Wrocław, Wrocław, Poland
| | - Wojciech Witkiewicz
- Regional Specialist Hospital, Research and Development Center in Wrocław, Wrocław, Poland.,Department of Vascular Surgery, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| | - Wiesława Kwiatkowska
- Department of Angiology, Regional Specialist Hospital in Wrocław, Wrocław, Poland.,Regional Specialist Hospital, Research and Development Center in Wrocław, Wrocław, Poland
| | - Maria Kotschy
- Department of Angiology, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| | | |
Collapse
|
17
|
Malara A, Gruppi C, Celesti G, Abbonante V, Viarengo G, Laghi L, De Marco L, Muro AF, Balduini A. Alternatively spliced fibronectin extra domain A is required for hemangiogenic recovery upon bone marrow chemotherapy. Haematologica 2017; 103:e42-e45. [PMID: 29146709 DOI: 10.3324/haematol.2017.173070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Alessandro Malara
- Department of Molecular Medicine, University of Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Cristian Gruppi
- Department of Molecular Medicine, University of Pavia, Italy
| | - Giuseppe Celesti
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Vittorio Abbonante
- Department of Molecular Medicine, University of Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Gianluca Viarengo
- Immunohaematology and Transfusion Service, Apheresis and Cell Therapy Unit, IRCCS San Matteo Foundation, Pavia, Italy
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Luigi De Marco
- Department of Translational Research, National Cancer Center (IRCCS CRO), Aviano, Italy.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Andrés F Muro
- The International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Italy .,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy.,Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| |
Collapse
|
18
|
Omega 3 Polyunsaturated Fatty Acids Improve Endothelial Dysfunction in Chronic Renal Failure: Role of eNOS Activation and of Oxidative Stress. Nutrients 2017; 9:nu9080895. [PMID: 28820443 PMCID: PMC5579688 DOI: 10.3390/nu9080895] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/10/2017] [Accepted: 08/15/2017] [Indexed: 12/12/2022] Open
Abstract
Background: Endothelial dysfunction is a key vascular alteration in chronic kidney disease (CKD). Omega 3 (n-3) polyunsaturated fatty acids (PUFA) reduce vascular oxidative stress and inflammation. We investigated whether n-3 PUFA could reverse endothelial dysfunction in CKD by improving endothelial nitric oxide synthase (eNOS) function and oxidative stress. Methods: 5/6 nephrectomized male Wistar rats (CKD; n = 10) and sham operated animals (SHAM; n = 10) were treated for 6 weeks with standard diet. An additional group of CKD rats were fed an n-3 PUFA enriched diet (CKD + PUFA; n = 10). We then measured endothelium-dependent (EDD) and -independent vasodilation, markers of endothelial function and of oxidative stress in thoracic aortas. Results: Compared to SHAM, in CKD aortas EDD and eNOS expression were reduced (p < 0.05) and 3-nitrotyrosine levels were increased, while expression of NADPH oxidase subunits NOX4 and p22phox was similar. In-vitro incubation with Tiron failed to reverse endothelial dysfunction in CKD. In CKD + PUFA, EDD improved (p < 0.05) compared with CKD rats, while blockade of eNOS by L-NAME worsened EDD. These effects were accompanied by increased (p < 0.05) eNOS and reduced (p < 0.05) expression of NOX4 and 3-nitrotyrosine levels. Conclusion: Collectively, these findings indicate that n-3 PUFA improve endothelial dysfunction by restoring NO bioavailability in CKD.
Collapse
|