1
|
Howard NS, Archer AJ, Sibley DN, Southee DJ, Wijayantha KGU. Surfactant Control of Coffee Ring Formation in Carbon Nanotube Suspensions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:929-941. [PMID: 36607610 PMCID: PMC9878724 DOI: 10.1021/acs.langmuir.2c01691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The coffee ring effect regularly occurs during the evaporation of colloidal droplets and is often undesirable. Here we show that adding a specific concentration of a surfactant can mitigate this effect. We have conducted experiments on aqueous suspensions of carbon nanotubes that were prepared with cationic surfactant dodecyltrimethylammonium bromide added at 0.2, 0.5, 1, 2, 5, and 10 times the critical micelle concentration. Colloidal droplets were deposited on candidate substrates for printed electronics with varying wetting characteristics: glass, polyethylene terephthalate, fluoroethylene propylene copolymer, and polydimethylsiloxane. Following drying, four pattern types were observed in the final deposits: dot-like, uniform, coffee ring deposits, and combined patterns (coffee ring with a dot-like central deposit). Evaporation occurred predominantly in constant contact radius mode for most pattern types, except for some cases that led to uniform deposits in which early stage receding of the contact line occurred. Image analysis and profilometry yielded deposit thicknesses, allowing us to identify a coffee ring subfeature in all uniform deposits and to infer the percentage coverage in all cases. Importantly, a critical surfactant concentration was identified for the generation of highly uniform deposits across all substrates. This concentration resulted in visually uniform deposits consisting of a coffee ring subfeature with a densely packed center, generated from two distinct evaporative phases.
Collapse
Affiliation(s)
- N. S. Howard
- Department
of Chemistry, Loughborough University, Loughborough LE11 3TU, U.K.
| | - A. J. Archer
- Department
of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, U.K.
- Interdisciplinary
Centre for Mathematical Modelling, Loughborough
University, Loughborough LE11 3TU, U.K.
| | - D. N. Sibley
- Department
of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, U.K.
- Interdisciplinary
Centre for Mathematical Modelling, Loughborough
University, Loughborough LE11 3TU, U.K.
| | - D. J. Southee
- School
of Design and Creative Arts, Loughborough
University, Loughborough LE11 3TU, U.K.
| | - K. G. U. Wijayantha
- Department
of Chemistry, Loughborough University, Loughborough LE11 3TU, U.K.
- Centre
for Renewable and Low Carbon Energy, Cranfield
University, Cranfield, Bedfordshire MK43 0AL, U.K.
| |
Collapse
|
2
|
Farzeena C, Varanakkottu SN. Patterning of Metallic Nanoparticles over Solid Surfaces from Sessile Droplets by Thermoplasmonically Controlled Liquid Flow. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2003-2013. [PMID: 35119875 DOI: 10.1021/acs.langmuir.1c02739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Optically controlled assembly of suspended particles from evaporating sessile droplets is an emerging method to realize on-demand patterning of particles over solid substrates. Most of the reported strategies rely either on additives or surface texturing to modulate particle deposition. Though dynamic control over the assembly of microparticles is possible, limited success has been achieved in nanoparticle patterning, especially in the case of metallic nanoparticles. This work demonstrates a simple light-directed patterning of gold (Au) nanoparticles based on the thermoplasmonically controlled liquid flow. Excitation at the plasmonic wavelength (532 nm) generates the required temperature gradient, resulting in the particle assembly at the irradiation zone in response to the thermocapillary flow created inside the droplet. Particle streak velocimetry experiments and analysis confirm the existence of a strong thermocapillary flow, which counteracts the naturally occurring evaporative convection flows. By modulating the illumination conditions, we could achieve patterns with various morphologies, including center deposit, off-center deposit, multi-spot deposit, and lines. We successfully applied the developed strategy for realizing closely packed hybrid particle assembly containing different particles: Au and polystyrene particles (PS). We performed optical microscopy, 3D profilometry, and SEM analysis to characterize the particle deposit. We analyzed the periodicity of Au-PS hybrid assembly using fast Fourier transform and radial distribution function analysis. PS particles formed a hexagonal close-packed arrangement at the irradiation zone, with Au NPs residing inside the voids. We believe that the presented strategy could significantly enhance the applicability of the evaporative lithography from sessile droplets for the programmable patterning of metallic nanoparticles.
Collapse
Affiliation(s)
- Chalikkara Farzeena
- School of Materials Science and Engineering, National Institute of Technology Calicut, Kozhikode 673601 Kerala, India
| | | |
Collapse
|
3
|
Heaton I, Platt M. DNAzyme Sensor for the Detection of Ca 2+ Using Resistive Pulse Sensing. SENSORS 2020; 20:s20205877. [PMID: 33080851 PMCID: PMC7589696 DOI: 10.3390/s20205877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 12/26/2022]
Abstract
DNAzymes are DNA oligonucleotides that can undergo a specific chemical reaction in the presence of a cofactor. Ribonucleases are a specific form of DNAzymes where a tertiary structure undergoes cleavage at a single ribonuclease site. The cleavage is highly specificity to co-factors, which makes them excellent sensor recognition elements. Monitoring the change in structure upon cleavage has given rise to many sensing strategies; here we present a simple and rapid method of following the reaction using resistive pulse sensors, RPS. To demonstrate this methodology, we present a sensor for Ca2+ ions in solution. A nanoparticle was functionalised with a Ca2+ DNAzyme, and it was possible to follow the cleavage and rearrangement of the DNA as the particles translocate the RPS. The binding of Ca2+ caused a conformation change in the DNAzyme, which was monitored as a change in translocation speed. A 30 min assay produced a linear response for Ca2+ between 1–9 μm, and extending the incubation time to 60 min allowed for a concentration as low as 0.3 μm. We demonstrate that the signal is specific to Ca2+ in the presence of other metal ions, and we can quantify Ca2+ in tap and pond water samples.
Collapse
|
4
|
Pang S. A novel colorimetric assay for calcium ion and calmodulin detection based on gold nanoparticles. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1802753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Shu Pang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, China
| |
Collapse
|
5
|
Huang W, Wu T, Shallan A, Kostecki R, Rayner CK, Priest C, Ebendorff-Heidepriem H, Zhao J. A Multiplexed Microfluidic Platform toward Interrogating Endocrine Function: Simultaneous Sensing of Extracellular Ca 2+ and Hormone. ACS Sens 2020; 5:490-499. [PMID: 31939298 DOI: 10.1021/acssensors.9b02308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Extracellular Ca2+ ([Ca2+]ex) is an important regulator of various physiological and pathological functions, including intercellular communication for synchronized cellular activities (e.g., coordinated hormone secretion from endocrine tissues). Yet it is rarely possible to concurrently quantify the dynamic changes of [Ca2+]ex and related bioactive molecules with high accuracy and temporal resolution. This work aims to develop a multiplexed microfluidic platform to enable monitoring oscillatory [Ca2+]ex and hormone(s) in a biomimetic environment. To this end, a low-affinity fluorescent indicator, Rhod-5N, is identified as a suitable sensor for a range of [Ca2+]ex based on its demonstrated high sensitivity and selectivity to Ca2+ in biomedical samples, including human serum and cell culture medium. A microfluidic chip is devised to allow for the immobilization of microscale subjects (analogous to biological tissues), precise control of the perfusion gradient at sites of interest, and integration of modalities for fluorescence measurement and enzyme-linked immunosorbent assay. As this analytical system is demonstrated to be viable to quantify the dynamic changes of Ca2+ (0.2-2 mM) and insulin (15-150 mU L-1) concurrently, with high temporal resolution, it has the potential to provide key insights into the essential roles of [Ca2+]ex in the secretory function of endocrine tissues and to identify novel therapeutic targets for human diseases.
Collapse
Affiliation(s)
- Weikun Huang
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
- The ARC Centre of Excellence for Nanoscale BioPhotonics, Adelaide, South Australia 5005, Australia
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Tongzhi Wu
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Institute of Diabetes, School of Medicine, Southeast University, Nanjing 210009, China
| | - Aliaa Shallan
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
- Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Roman Kostecki
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
- The ARC Centre of Excellence for Nanoscale BioPhotonics, Adelaide, South Australia 5005, Australia
| | - Christopher K. Rayner
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Craig Priest
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
- School of Engineering, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Heike Ebendorff-Heidepriem
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
- The ARC Centre of Excellence for Nanoscale BioPhotonics, Adelaide, South Australia 5005, Australia
| | - Jiangbo Zhao
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
- The ARC Centre of Excellence for Nanoscale BioPhotonics, Adelaide, South Australia 5005, Australia
- Leibniz Institute of Photonic Technology, Jena 07745, Germany
| |
Collapse
|
6
|
Randriantsilefisoa R, Cuellar-Camacho JL, Chowdhury MS, Dey P, Schedler U, Haag R. Highly sensitive detection of antibodies in a soft bioactive three-dimensional bioorthogonal hydrogel. J Mater Chem B 2019. [DOI: 10.1039/c9tb00234k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This three-dimensional detection method of antibodies offers a high sensitivity and good biomolecule stability for new biosensing devices.
Collapse
Affiliation(s)
| | | | | | - Pradip Dey
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- Takustr. 3
- Berlin
- Germany
| | - Uwe Schedler
- PolyAn GmbH
- Rudolf-Baschant-Strasse 2
- 13086 Berlin
- Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- Takustr. 3
- Berlin
- Germany
| |
Collapse
|
7
|
Huang C, Wang J, Lv X, Liu L, Liang L, Hu W, Luo C, Wang F, Yuan Q. Redefining Molecular Amphipathicity in Reversing the "Coffee-Ring Effect": Implications for Single Base Mutation Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6777-6783. [PMID: 29779375 DOI: 10.1021/acs.langmuir.8b01248] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The "coffee ring effect" is a natural phenomenon wherein sessile drops leave ring-shaped structures on the solid surfaces upon drying. It drives a nonuniform deposition of suspended compounds on the substrates, which adversely affects many processes, including surface-assisted biosensing and molecular self-assembly. In this study, we describe how the coffee ring effect can be eliminated by controlling the amphipathicity of the suspended compounds, for example, DNA modified with hydrophobic dye. Specifically, nuclease digestion of the hydrophilic DNA end converts the dye-labeled molecule into an amphipathic molecule (one with comparably weighted hydrophobic and hydrophilic ends) and reverses the coffee ring effect and results in a uniform disk-shaped feature deposition of the dye. The amphipathic product decreases the surface tension of the sessile drops and induces the Marangoni flow, which drives the uniform distribution of the amphipathic dye-labeled product in the drops. As a proof of concept, this strategy was used in a novel enzymatic amplification method for biosensing to eliminate the coffee ring effect on a nitrocellulose membrane and increase assay reliability and sensitivity. Importantly, the reported strategy for eliminating the coffee ring effect can be extended to other sessile drop systems for potentially improving assay reliability and sensitivity.
Collapse
Affiliation(s)
- Chi Huang
- Institute of Chemical Biology and Nanomedicine, Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | | | | | | | - Ling Liang
- Institute of Chemical Biology and Nanomedicine, Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | | | | | | | - Quan Yuan
- Institute of Chemical Biology and Nanomedicine, Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| |
Collapse
|
8
|
Gao M, Li Y, Chen X, Li S, Ren L, Tang BZ. Aggregation-Induced Emission Probe for Light-Up and in Situ Detection of Calcium Ions at High Concentration. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14410-14417. [PMID: 29671572 DOI: 10.1021/acsami.8b00952] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The fluorescent probe for the detection of calcium ions is an indispensable tool in the biomedical field. The millimolar order of Ca(II) ions is associated with many physiological processes and diseases, such as hypercalcemia, soft tissue calcification, and bone microcracks. However, the conventional fluorescent probes are only suitable for imaging Ca(II) ions in the nanomolar to micromolar range, which can be because of their high affinities toward Ca(II) ions and aggregation-caused quenching drawbacks. To tackle this challenge, we herein develop an aggregation-induced emission (AIE) probe SA-4CO2Na for selective and light-up detection of Ca(II) ions in the millimolar range (0.6-3.0 mM), which can efficiently distinguish between hypercalcemic (1.4-3.0 mM) and normal (1.0-1.4 mM) Ca2+ ion levels. The formation of fibrillar aggregates between SA-4CO2Na and Ca(II) ions was clearly verified by fluorescence, scanning electron microscopy, and transmission electron analysis. Moreover, this AIE-active probe can be used for wash-free and light-up imaging of a high concentration of Ca(II) ions even in the solid analytes, including calcium deposits in psammomatous meningioma slice, microcracks on bovine bone surface, and microdefects on hydroxyapatite-based scaffold. It is thus expected that this AIE-active probe would have broad biomedical applications through light-up imaging and sensing of Ca(II) ions at the millimolar level.
Collapse
Affiliation(s)
- Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction , South China University of Technology , Guangzhou 510006 , China
| | - Yunxia Li
- National Engineering Research Center for Tissue Restoration and Reconstruction , South China University of Technology , Guangzhou 510006 , China
| | - Xiaohui Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction , South China University of Technology , Guangzhou 510006 , China
| | | | - Li Ren
- National Engineering Research Center for Tissue Restoration and Reconstruction , South China University of Technology , Guangzhou 510006 , China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , The Hong Kong University of Science & Technology , Clear Water Bay, Kowloon , Hong Kong, China
| |
Collapse
|