1
|
D'Antuono M, Kalaboukhov A, Caruso R, Wissberg S, Weitz Sobelman S, Kalisky B, Ausanio G, Salluzzo M, Stornaiuolo D. Nanopatterning of oxide 2-dimensional electron systems using low-temperature ion milling. NANOTECHNOLOGY 2021; 33:085301. [PMID: 34757952 DOI: 10.1088/1361-6528/ac385e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
We present a 'top-down' patterning technique based on ion milling performed at low-temperature, for the realization of oxide two-dimensional electron system devices with dimensions down to 160 nm. Using electrical transport and scanning Superconducting QUantum Interference Device measurements we demonstrate that the low-temperature ion milling process does not damage the 2DES properties nor creates oxygen vacancies-related conducting paths in the STO substrate. As opposed to other procedures used to realize oxide 2DES devices, the one we propose gives lateral access to the 2DES along the in-plane directions, finally opening the way to coupling with other materials, including superconductors.
Collapse
Affiliation(s)
- M D'Antuono
- University of Naples Federico II, Italy
- CNR-SPIN, Naples, Italy
| | - A Kalaboukhov
- Department of Microtechnology and Nanoscience MC2, Chalmers University of Technology, Gothenburg, Sweden
| | - R Caruso
- University of Naples Federico II, Italy
- CNR-SPIN, Naples, Italy
- Brookhaven National Laboratory, Condensed Matter Physics and Materials Science Department, Bldg. 480, PO Box 5000 Upton, NY 11973-5000, United States of America
| | - S Wissberg
- Department of Physics and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University Ramat-Gan, Israel
| | - S Weitz Sobelman
- Department of Physics and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University Ramat-Gan, Israel
| | - B Kalisky
- Department of Physics and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University Ramat-Gan, Israel
| | - G Ausanio
- University of Naples Federico II, Italy
- CNR-SPIN, Naples, Italy
| | | | - D Stornaiuolo
- University of Naples Federico II, Italy
- CNR-SPIN, Naples, Italy
| |
Collapse
|
2
|
Ansell HS, Tomlinson AA, Wilkin NK. Transitions between phyllotactic lattice states in curved geometries. Sci Rep 2020; 10:17411. [PMID: 33060641 PMCID: PMC7566608 DOI: 10.1038/s41598-020-74158-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/24/2020] [Indexed: 11/21/2022] Open
Abstract
Phyllotaxis, the regular arrangement of leaves or other lateral organs in plants including pineapples, sunflowers and some cacti, has attracted scientific interest for centuries. More recently there has been interest in phyllotaxis within physical systems, especially for cylindrical geometry. In this letter, we expand from a cylindrical geometry and investigate transitions between phyllotactic states of soft vortex matter confined to a conical frustum. We show that the ground states of this system are consistent with previous results for cylindrical confinement and discuss the resulting defect structures at the transitions. We then eliminate these defects from the system by introducing a density gradient to create a configuration in a single state. The nature of the density gradient limits this approach to a small parameter range on the conical system. We therefore seek a new surface, the horn, for which a defect-free state can be maintained for a larger range of parameters.
Collapse
Affiliation(s)
- H S Ansell
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - A A Tomlinson
- School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK
| | - N K Wilkin
- School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
3
|
Córdoba R, Orús P, Jelić ŽL, Sesé J, Ibarra MR, Guillamón I, Vieira S, Palacios JJ, Suderow H, Milosević MV, De Teresa JM. Long-range vortex transfer in superconducting nanowires. Sci Rep 2019; 9:12386. [PMID: 31455848 PMCID: PMC6712003 DOI: 10.1038/s41598-019-48887-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/01/2019] [Indexed: 11/24/2022] Open
Abstract
Under high-enough values of perpendicularly-applied magnetic field and current, a type-II superconductor presents a finite resistance caused by the vortex motion driven by the Lorentz force. To recover the dissipation-free conduction state, strategies for minimizing vortex motion have been intensely studied in the last decades. However, the non-local vortex motion, arising in areas depleted of current, has been scarcely investigated despite its potential application for logic devices. Here, we propose a route to transfer vortices carried by non-local motion through long distances (up to 10 micrometers) in 50 nm-wide superconducting WC nanowires grown by Ga+ Focused Ion Beam Induced Deposition. A giant non-local electrical resistance of 36 Ω has been measured at 2 K in 3 μm-long nanowires, which is 40 times higher than signals reported for wider wires of other superconductors. This giant effect is accounted for by the existence of a strong edge confinement potential that hampers transversal vortex displacements, allowing the long-range coherent displacement of a single vortex row along the superconducting channel. Experimental results are in good agreement with numerical simulations of vortex dynamics based on the time-dependent Ginzburg-Landau equations. Our results pave the way for future developments on information technologies built upon single vortex manipulation in nano-superconductors.
Collapse
Affiliation(s)
- Rosa Córdoba
- Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, E-50009, Zaragoza, Spain. .,Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009, Zaragoza, Spain. .,Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain.
| | - Pablo Orús
- Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, E-50009, Zaragoza, Spain.,Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009, Zaragoza, Spain
| | - Željko L Jelić
- University of Antwerp, Department Physics, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Javier Sesé
- Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, E-50009, Zaragoza, Spain.,Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009, Zaragoza, Spain.,Laboratorio de Microscopías Avanzadas (LMA)-Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, E-50018, Zaragoza, Spain
| | - Manuel Ricardo Ibarra
- Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, E-50009, Zaragoza, Spain.,Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009, Zaragoza, Spain.,Laboratorio de Microscopías Avanzadas (LMA)-Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, E-50018, Zaragoza, Spain
| | - Isabel Guillamón
- Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Sebastián Vieira
- Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Juan José Palacios
- Departamento de Física de la Materia Condensada, Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Hermann Suderow
- Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Milorad V Milosević
- University of Antwerp, Department Physics, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - José María De Teresa
- Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, E-50009, Zaragoza, Spain. .,Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009, Zaragoza, Spain. .,Laboratorio de Microscopías Avanzadas (LMA)-Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, E-50018, Zaragoza, Spain.
| |
Collapse
|
4
|
Rouco V, Navau C, Del-Valle N, Massarotti D, Papari GP, Stornaiuolo D, Obradors X, Puig T, Tafuri F, Sanchez A, Palau A. Depairing Current at High Magnetic Fields in Vortex-Free High-Temperature Superconducting Nanowires. NANO LETTERS 2019; 19:4174-4179. [PMID: 31185574 DOI: 10.1021/acs.nanolett.9b01693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Superconductors are essential in many present and future technologies, from large-scale devices for medical imaging, accelerators, or fusion experiments to ultra-low-power superconducting electronics. However, their potential applicability, and particularly that of high-temperature superconductors (HTS), is severely affected by limited performances at large magnetic fields and high temperatures, where their use is most needed. One of the main reasons for these limitations is the presence of quantized vortices, whose movements result in losses, internal noise, and reduced performances. The conventional strategy to overcome the flow of vortices is to pin them along artificial defects. Here, we theoretically and experimentally demonstrate that critical-current density in high-temperature superconductors can reach unprecedented high values at high fields and temperatures by preventing vortex entry. By tailoring the geometry, that is, reducing the width, W, of nanowire-patterned HTS films, the range of the Meissner state, for which no vortices are present, is extended up to very large applied field values, on the order of ∼1 T. Current densities on the order of the depairing current can be sustained under high fields for a wide range of temperatures. Results may be relevant both for devising new conductors carrying depairing-current values at high temperatures and large magnetic fields and for reducing flux noise in sensors and quantum systems.
Collapse
Affiliation(s)
- Victor Rouco
- Dipartimento di Fisica , Universita degli Studi di Napoli Federico II , 80126 Napoli , Italy
| | - Carles Navau
- Departament de Fisica , Universitat Autonoma de Barcelona , 08193 Bellaterra , Catalonia , Spain
| | - Nuria Del-Valle
- Departament de Fisica , Universitat Autonoma de Barcelona , 08193 Bellaterra , Catalonia , Spain
| | - Davide Massarotti
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione , Università degli Studi di Napoli Federico II , 80125 Napoli , Italy
| | - Gian Paolo Papari
- Dipartimento di Fisica , Universita degli Studi di Napoli Federico II , 80126 Napoli , Italy
| | - Daniela Stornaiuolo
- Dipartimento di Fisica , Universita degli Studi di Napoli Federico II , 80126 Napoli , Italy
| | - Xavier Obradors
- Insitut de Ciencia de Materials de Barcelona , CSIC, Campus de la UAB, 08193 Bellaterra , Catalonia , Spain
| | - Teresa Puig
- Insitut de Ciencia de Materials de Barcelona , CSIC, Campus de la UAB, 08193 Bellaterra , Catalonia , Spain
| | - Francesco Tafuri
- Dipartimento di Fisica , Universita degli Studi di Napoli Federico II , 80126 Napoli , Italy
| | - Alvaro Sanchez
- Departament de Fisica , Universitat Autonoma de Barcelona , 08193 Bellaterra , Catalonia , Spain
| | - Anna Palau
- Insitut de Ciencia de Materials de Barcelona , CSIC, Campus de la UAB, 08193 Bellaterra , Catalonia , Spain
| |
Collapse
|
5
|
Kimmel GJ, Glatz A, Vinokur VM, Sadovskyy IA. Edge effect pinning in mesoscopic superconducting strips with non-uniform distribution of defects. Sci Rep 2019; 9:211. [PMID: 30659219 PMCID: PMC6338761 DOI: 10.1038/s41598-018-36285-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/15/2018] [Indexed: 12/04/2022] Open
Abstract
Transport characteristics of nano-sized superconducting strips and bridges are determined by an intricate interplay of surface and bulk pinning. In the limiting case of a very narrow bridge, the critical current is mostly defined by its surface barrier, while in the opposite case of very wide strips it is dominated by its bulk pinning properties. Here we present a detailed study of the intermediate regime, where the critical current is determined, both, by randomly placed pinning centres and by the Bean-Livingston barrier at the edge of the superconducting strip in an external magnetic field. We use the time-dependent Ginzburg-Landau equations to describe the vortex dynamics and current distribution in the critical regime. Our studies reveal that while the bulk defects arrest vortex motion away from the edges, defects in their close vicinity promote vortex penetration, thus suppressing the critical current. We determine the spatial distribution of the defects optimizing the critical current and find that it is in general non-uniform and asymmetric: the barrier at the vortex-exit edge influence the critical current much stronger than the vortex-entrance edge. Furthermore, this optimized defect distribution has a more than 30% higher critical current density than a homogeneously disorder superconducting film.
Collapse
Affiliation(s)
- Gregory J Kimmel
- Materials Science Division, Argonne National Laboratory, 9700 S Cass Av, Lemont, IL, 60439, USA
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, 633 Clark St, Evanston, IL, 60208, USA
| | - Andreas Glatz
- Materials Science Division, Argonne National Laboratory, 9700 S Cass Av, Lemont, IL, 60439, USA.
- Department of Physics, Northern Illinois University, DeKalb, IL, 60115, USA.
| | - Valerii M Vinokur
- Materials Science Division, Argonne National Laboratory, 9700 S Cass Av, Lemont, IL, 60439, USA
| | - Ivan A Sadovskyy
- Materials Science Division, Argonne National Laboratory, 9700 S Cass Av, Lemont, IL, 60439, USA
- Computation Institute, University of Chicago, 5735 S Ellis Av, Chicago, IL, 60637, USA
| |
Collapse
|
6
|
Grimaldi G, Leo A, Nigro A, Pace S, Braccini V, Bellingeri E, Ferdeghini C. Angular dependence of vortex instability in a layered superconductor: the case study of Fe(Se,Te) material. Sci Rep 2018; 8:4150. [PMID: 29515198 PMCID: PMC5841287 DOI: 10.1038/s41598-018-22417-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/19/2018] [Indexed: 11/09/2022] Open
Abstract
Anisotropy effects on flux pinning and flux flow are strongly effective in cuprate as well as iron-based superconductors due to their intrinsically layered crystallographic structure. However Fe(Se,Te) thin films grown on CaF2 substrate result less anisotropic with respect to all the other iron based superconductors. We present the first study on the angular dependence of the flux flow instability, which occurs in the flux flow regime as a current driven transition to the normal state at the instability point (I*, V*) in the current-voltage characteristics. The voltage jumps are systematically investigated as a function of the temperature, the external magnetic field, and the angle between the field and the Fe(Se,Te) film. The scaling procedure based on the anisotropic Ginzburg-Landau approach is successfully applied to the observed angular dependence of the critical voltage V*. Anyway, we find out that Fe(Se,Te) represents the case study of a layered material characterized by a weak anisotropy of its static superconducting properties, but with an increased anisotropy in its vortex dynamics due to the predominant perpendicular component of the external applied magnetic field. Indeed, I* shows less sensitivity to angle variations, thus being promising for high field applications.
Collapse
Affiliation(s)
| | - Antonio Leo
- CNR SPIN, Salerno, Fisciano, 84084, Italy
- Physics Department, University of Salerno, Fisciano, 84084, Italy
| | - Angela Nigro
- CNR SPIN, Salerno, Fisciano, 84084, Italy
- Physics Department, University of Salerno, Fisciano, 84084, Italy
| | - Sandro Pace
- CNR SPIN, Salerno, Fisciano, 84084, Italy
- Physics Department, University of Salerno, Fisciano, 84084, Italy
| | | | | | | |
Collapse
|
7
|
Rouco V, Massarotti D, Stornaiuolo D, Papari GP, Obradors X, Puig T, Tafuri F, Palau A. Vortex Lattice Instabilities in YBa₂Cu₃O 7-x Nanowires. MATERIALS 2018; 11:ma11020211. [PMID: 29385699 PMCID: PMC5848908 DOI: 10.3390/ma11020211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 11/16/2022]
Abstract
High-resolution focused ion beam lithography has been used to fabricate YBa₂Cu₃O7-x (YBCO) wires with nanometric lateral dimensions. In the present work, we investigate Flux-flow instabilities in nanowires of different widths, showing sudden voltage switching jumps from the superconducting to the normal state. We present an extensive study on the temperature and field dependence of the switching characteristics which reveal that voltage jumps become less abrupt as the temperature increases, and disappear at the vortex-liquid state. On the contrary, the current distribution at the critical point becomes narrower at high temperatures. Sharp voltage switchings very close to the critical current density can be obtained by reducing the width of the nanowires, making them very appealing for practical applications.
Collapse
Affiliation(s)
- Víctor Rouco
- Dipartimento di Fisica, Universitá degli Studi di Napoli Federico II, 80126 Napoli, Italy.
| | - Davide Massarotti
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione, Università degli Studi di Napoli Federico II, 80125 Napoli, Italy.
- CNR-SPIN UOS Napoli, Monte Sant'Angelo, 80126 Napoli, Italy.
| | - Daniela Stornaiuolo
- Dipartimento di Fisica, Universitá degli Studi di Napoli Federico II, 80126 Napoli, Italy.
- CNR-SPIN UOS Napoli, Monte Sant'Angelo, 80126 Napoli, Italy.
| | - Gian Paolo Papari
- Dipartimento di Fisica, Universitá degli Studi di Napoli Federico II, 80126 Napoli, Italy.
| | - Xavier Obradors
- Institut de Ciència de Materials de Barcelona, CSIC, Campus de la UAB, 08193 Bellaterra, Spain.
| | - Teresa Puig
- Institut de Ciència de Materials de Barcelona, CSIC, Campus de la UAB, 08193 Bellaterra, Spain.
| | - Francesco Tafuri
- Dipartimento di Fisica, Universitá degli Studi di Napoli Federico II, 80126 Napoli, Italy.
- CNR-SPIN UOS Napoli, Monte Sant'Angelo, 80126 Napoli, Italy.
| | - Anna Palau
- Institut de Ciència de Materials de Barcelona, CSIC, Campus de la UAB, 08193 Bellaterra, Spain.
| |
Collapse
|