1
|
Rames M, Kenison JP, Heineck D, Civitci F, Szczepaniak M, Zheng T, Shangguan J, Zhang Y, Tao K, Esener S, Nan X. Multiplexed and Millimeter-Scale Fluorescence Nanoscopy of Cells and Tissue Sections via Prism-Illumination and Microfluidics-Enhanced DNA-PAINT. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:817-830. [PMID: 38155726 PMCID: PMC10751790 DOI: 10.1021/cbmi.3c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/24/2023] [Accepted: 08/18/2023] [Indexed: 12/30/2023]
Abstract
Fluorescence nanoscopy has become increasingly powerful for biomedical research, but it has historically afforded a small field-of-view (FOV) of around 50 μm × 50 μm at once and more recently up to ∼200 μm × 200 μm. Efforts to further increase the FOV in fluorescence nanoscopy have thus far relied on the use of fabricated waveguide substrates, adding cost and sample constraints to the applications. Here we report PRism-Illumination and Microfluidics-Enhanced DNA-PAINT (PRIME-PAINT) for multiplexed fluorescence nanoscopy across millimeter-scale FOVs. Built upon the well-established prism-type total internal reflection microscopy, PRIME-PAINT achieves robust single-molecule localization with up to ∼520 μm × 520 μm single FOVs and 25-40 nm lateral resolutions. Through stitching, nanoscopic imaging over mm2 sample areas can be completed in as little as 40 min per target. An on-stage microfluidics chamber facilitates probe exchange for multiplexing and enhances image quality, particularly for formalin-fixed paraffin-embedded (FFPE) tissue sections. We demonstrate the utility of PRIME-PAINT by analyzing ∼106 caveolae structures in ∼1,000 cells and imaging entire pancreatic cancer lesions from patient tissue biopsies. By imaging from nanometers to millimeters with multiplexity and broad sample compatibility, PRIME-PAINT will be useful for building multiscale, Google-Earth-like views of biological systems.
Collapse
Affiliation(s)
- Matthew
J. Rames
- Cancer
Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, 2720 South Moody Avenue, Portland, Oregon 97201, United States
- Program
in Quantitative and Systems Biology, Department of Biomedical Engineering, Oregon Health & Science University, 2730 South Moody Avenue, Portland, Oregon 97201, United States
| | - John P. Kenison
- Cancer
Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, 2720 South Moody Avenue, Portland, Oregon 97201, United States
| | - Daniel Heineck
- Cancer
Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, 2720 South Moody Avenue, Portland, Oregon 97201, United States
- Program
in Quantitative and Systems Biology, Department of Biomedical Engineering, Oregon Health & Science University, 2730 South Moody Avenue, Portland, Oregon 97201, United States
| | - Fehmi Civitci
- Cancer
Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, 2720 South Moody Avenue, Portland, Oregon 97201, United States
| | - Malwina Szczepaniak
- Program
in Quantitative and Systems Biology, Department of Biomedical Engineering, Oregon Health & Science University, 2730 South Moody Avenue, Portland, Oregon 97201, United States
| | - Ting Zheng
- Cancer
Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, 2720 South Moody Avenue, Portland, Oregon 97201, United States
| | - Julia Shangguan
- Program
in Quantitative and Systems Biology, Department of Biomedical Engineering, Oregon Health & Science University, 2730 South Moody Avenue, Portland, Oregon 97201, United States
| | - Yujia Zhang
- Cancer
Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, 2720 South Moody Avenue, Portland, Oregon 97201, United States
- Program
in Quantitative and Systems Biology, Department of Biomedical Engineering, Oregon Health & Science University, 2730 South Moody Avenue, Portland, Oregon 97201, United States
| | - Kai Tao
- Program
in Quantitative and Systems Biology, Department of Biomedical Engineering, Oregon Health & Science University, 2730 South Moody Avenue, Portland, Oregon 97201, United States
| | - Sadik Esener
- Cancer
Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, 2720 South Moody Avenue, Portland, Oregon 97201, United States
- Program
in Quantitative and Systems Biology, Department of Biomedical Engineering, Oregon Health & Science University, 2730 South Moody Avenue, Portland, Oregon 97201, United States
| | - Xiaolin Nan
- Cancer
Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, 2720 South Moody Avenue, Portland, Oregon 97201, United States
- Program
in Quantitative and Systems Biology, Department of Biomedical Engineering, Oregon Health & Science University, 2730 South Moody Avenue, Portland, Oregon 97201, United States
| |
Collapse
|
2
|
Liu DA, Tao K, Wu B, Yu Z, Szczepaniak M, Rames M, Yang C, Svitkina T, Zhu Y, Xu F, Nan X, Guo W. A phosphoinositide switch mediates exocyst recruitment to multivesicular endosomes for exosome secretion. Nat Commun 2023; 14:6883. [PMID: 37898620 PMCID: PMC10613218 DOI: 10.1038/s41467-023-42661-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
Exosomes are secreted to the extracellular milieu when multivesicular endosomes (MVEs) dock and fuse with the plasma membrane. However, MVEs are also known to fuse with lysosomes for degradation. How MVEs are directed to the plasma membrane for exosome secretion rather than to lysosomes is unclear. Here we report that a conversion of phosphatidylinositol-3-phosphate (PI(3)P) to phosphatidylinositol-4-phosphate (PI(4)P) catalyzed sequentially by Myotubularin 1 (MTM1) and phosphatidylinositol 4-kinase type IIα (PI4KIIα) on the surface of MVEs mediates the recruitment of the exocyst complex. The exocyst then targets the MVEs to the plasma membrane for exosome secretion. We further demonstrate that disrupting PI(4)P generation or exocyst function blocked exosomal secretion of Programmed death-ligand 1 (PD-L1), a key immune checkpoint protein in tumor cells, and led to its accumulation in lysosomes. Together, our study suggests that the PI(3)P to PI(4)P conversion on MVEs and the recruitment of the exocyst direct the exocytic trafficking of MVEs for exosome secretion.
Collapse
Affiliation(s)
- Di-Ao Liu
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kai Tao
- Program in Quantitative and Systems Biology, Department of Biomedical Engineering, Oregon Health and Science University, 2730 S. Moody Ave, Portland, OR, 97201, USA
| | - Bin Wu
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ziyan Yu
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Malwina Szczepaniak
- Program in Quantitative and Systems Biology, Department of Biomedical Engineering, Oregon Health and Science University, 2730 S. Moody Ave, Portland, OR, 97201, USA
| | - Matthew Rames
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, 2720 S. Moody Ave., Portland, OR, 97201, USA
| | - Changsong Yang
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tatyana Svitkina
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yueyao Zhu
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, 19104, USA
| | - Fengyuan Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xiaolin Nan
- Program in Quantitative and Systems Biology, Department of Biomedical Engineering, Oregon Health and Science University, 2730 S. Moody Ave, Portland, OR, 97201, USA
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, 2720 S. Moody Ave., Portland, OR, 97201, USA
| | - Wei Guo
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Hoboth P, Sztacho M, Quaas A, Akgül B, Hozák P. Quantitative super-resolution microscopy reveals the differences in the nanoscale distribution of nuclear phosphatidylinositol 4,5-bisphosphate in human healthy skin and skin warts. Front Cell Dev Biol 2023; 11:1217637. [PMID: 37484912 PMCID: PMC10361526 DOI: 10.3389/fcell.2023.1217637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction: Imaging of human clinical formalin-fixed paraffin-embedded (FFPE) tissue sections provides insights into healthy and diseased states and therefore represents a valuable resource for basic research, as well as for diagnostic and clinical purposes. However, conventional light microscopy does not allow to observe the molecular details of tissue and cell architecture due to the diffraction limit of light. Super-resolution microscopy overcomes this limitation and provides access to the nanoscale details of tissue and cell organization. Methods: Here, we used quantitative multicolor stimulated emission depletion (STED) nanoscopy to study the nanoscale distribution of the nuclear phosphatidylinositol 4,5-bisphosphate (nPI(4,5)P2) with respect to the nuclear speckles (NS) marker SON. Results: Increased nPI(4,5)P2 signals were previously linked to human papillomavirus (HPV)-mediated carcinogenesis, while NS-associated PI(4,5)P2 represents the largest pool of nPI(4,5)P2 visualized by staining and microscopy. The implementation of multicolor STED nanoscopy in human clinical FFPE skin and wart sections allowed us to provide here the quantitative evidence for higher levels of NS-associated PI(4,5)P2 in HPV-induced warts compared to control skin. Discussion: These data expand the previous reports of HPV-induced increase of nPI(4,5)P2 levels and reveal for the first time the functional, tissue-specific localization of nPI(4,5)P2 within NS in clinically relevant samples. Moreover, our approach is widely applicable to other human clinical FFPE tissues as an informative addition to the classical histochemistry.
Collapse
Affiliation(s)
- Peter Hoboth
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Sztacho
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Alexander Quaas
- Institute of Pathology, Medical Faculty and University Hospital Cologne, Cologne, Germany
| | - Baki Akgül
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
| | - Pavel Hozák
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
- Microscopy Centre, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
4
|
Comerci CJ, McCarthy DG, Nosrati M, Kim KB, Kashani-Sabet M, Moerner WE, Leong SP. Nanometer-scale distribution of PD-1 in the melanoma tumor microenvironment. JOURNAL OF RADIOLOGY AND ONCOLOGY 2023; 7:20-25. [PMID: 37539093 PMCID: PMC10399701 DOI: 10.29328/journal.jro.1001048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The nanometer-scale spatial organization of immune receptors plays a role in cell activation and suppression. While the connection between this spatial organization and cell signaling events is emerging from cell culture experiments, how these results translate to more physiologically relevant settings like the tumor microenvironment remains poorly understood due to the challenges of high-resolution imaging in vivo. Here we perform super-resolution immunofluorescence microscopy of human melanoma tissue sections to examine the spatial organization of the immune checkpoint inhibitor programmed cell death 1 (PD-1). We show that PD-1 exhibits a variety of organizations ranging from nanometer-scale clusters to more uniform membrane labeling. Our results demonstrate the capability of super-resolution imaging to examine the spatial organization of immune checkpoint markers in the tumor microenvironment, suggesting a future direction for both clinical and immunology research.
Collapse
Affiliation(s)
- Colin J Comerci
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
- Biophysics Program, Stanford University, Stanford, CA, 94305, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dannielle G McCarthy
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
- Chan-Zuckerberg Initiative, 801 Jefferson Ave, Redwood City, CA, 94063, USA
| | - Mehdi Nosrati
- Center for Melanoma Research and Treatment, California Pacific Medical Center, Research Institute, San Francisco, CA, 94107, USA
| | - Kevin B Kim
- Center for Melanoma Research and Treatment, California Pacific Medical Center, Research Institute, San Francisco, CA, 94107, USA
| | - Mohammed Kashani-Sabet
- Center for Melanoma Research and Treatment, California Pacific Medical Center, Research Institute, San Francisco, CA, 94107, USA
| | - WE Moerner
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Stanley P Leong
- Center for Melanoma Research and Treatment, California Pacific Medical Center, Research Institute, San Francisco, CA, 94107, USA
| |
Collapse
|
5
|
Sandlin CW, Gu S, Xu J, Deshpande C, Feldman MD, Good MC. Epithelial cell size dysregulation in human lung adenocarcinoma. PLoS One 2022; 17:e0274091. [PMID: 36201559 PMCID: PMC9536599 DOI: 10.1371/journal.pone.0274091] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Human cells tightly control their dimensions, but in some cancers, normal cell size control is lost. In this study we measure cell volumes of epithelial cells from human lung adenocarcinoma progression in situ. By leveraging artificial intelligence (AI), we reconstruct tumor cell shapes in three dimensions (3D) and find airway type 2 cells display up to 10-fold increases in volume. Surprisingly, cell size increase is not caused by altered ploidy, and up to 80% of near-euploid tumor cells show abnormal sizes. Size dysregulation is not explained by cell swelling or senescence because cells maintain cytoplasmic density and proper organelle size scaling, but is correlated with changes in tissue organization and loss of a novel network of processes that appear to connect alveolar type 2 cells. To validate size dysregulation in near-euploid cells, we sorted cells from tumor single-cell suspensions on the basis of size. Our study provides data of unprecedented detail for cell volume dysregulation in a human cancer. Broadly, loss of size control may be a common feature of lung adenocarcinomas in humans and mice that is relevant to disease and identification of these cells provides a useful model for investigating cell size control and consequences of cell size dysregulation.
Collapse
Affiliation(s)
- Clifford W. Sandlin
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (CWS); (MCG)
| | - Song Gu
- Nanjing University of Information Science and Technology, Nanjing, China
| | - Jun Xu
- Nanjing University of Information Science and Technology, Nanjing, China
| | - Charuhas Deshpande
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael D. Feldman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Matthew C. Good
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (CWS); (MCG)
| |
Collapse
|
6
|
Nanoscopic Spatial Association between Ras and Phosphatidylserine on the Cell Membrane Studied with Multicolor Super Resolution Microscopy. Biomolecules 2022; 12:biom12081033. [PMID: 35892343 PMCID: PMC9332490 DOI: 10.3390/biom12081033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/02/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Recent work suggests that Ras small GTPases interact with the anionic lipid phosphatidylserine (PS) in an isoform-specific manner, with direct implications for their biological functions. Studies on PS-Ras associations in cells, however, have relied on immuno-EM imaging of membrane sheets. To study their spatial relationships in intact cells, we have combined the use of Lact-C2-GFP, a biosensor for PS, with multicolor super resolution imaging based on DNA-PAINT. At ~20 nm spatial resolution, the resulting super resolution images clearly show the nonuniform molecular distribution of PS on the cell membrane and its co-enrichment with caveolae, as well as with unidentified membrane structures. Two-color imaging followed by spatial analysis shows that KRas-G12D and HRas-G12V both co-enrich with PS in model U2OS cells, confirming previous observations, yet exhibit clear differences in their association patterns. Whereas HRas-G12V is almost always co-enriched with PS, KRas-G12D is strongly co-enriched with PS in about half of the cells, with the other half exhibiting a more moderate association. In addition, perturbations to the actin cytoskeleton differentially impact PS association with the two Ras isoforms. These results suggest that PS-Ras association is context-dependent and demonstrate the utility of multiplexed super resolution imaging in defining the complex interplay between Ras and the membrane.
Collapse
|
7
|
Abstract
Traditional histopathologic evaluation of peripheral nerve employs brightfield microscopy with diffraction limited resolution of ~ 250 nm. Though electron microscopy yields nanoscale resolution of the nervous system, sample preparation is costly and the technique is incompatible with living samples. Super-resolution microscopy (SRM) comprises a set of imaging techniques that permit nanoscale resolution of fluorescent objects using visible light. The advent of SRM has transformed biomedical science in establishing non-toxic means for investigation of nanoscale cellular structures. Herein, sciatic nerve sections from GFP-variant expressing mice, and regenerating human nerve from cross-facial autografts labelled with a myelin-specific fluorescent dye were imaged by super-resolution radial fluctuation microscopy, stimulated emission depletion microscopy, and structured illumination microscopy. Super-resolution imaging of axial cryosections of murine sciatic nerves yielded robust visualization myelinated and unmyelinated axons. Super-resolution imaging of axial cryosections of human cross-facial nerve grafts demonstrated enhanced resolution of small-caliber thinly-myelinated regenerating motor axons. Resolution and contrast enhancement afforded by super-resolution imaging techniques enables visualization of unmyelinated axons, regenerating axons, cytoskeleton ultrastructure, and neuronal appendages of mammalian peripheral nerves using light microscopes.
Collapse
|
8
|
Maddox AL, Brehove MS, Eliato KR, Saftics A, Romano E, Press MF, Mortimer J, Jones V, Schmolze D, Seewaldt VL, Jovanovic-Talisman T. Molecular Assessment of HER2 to Identify Signatures Associated with Therapy Response in HER2-Positive Breast Cancer. Cancers (Basel) 2022; 14:2795. [PMID: 35681773 PMCID: PMC9179327 DOI: 10.3390/cancers14112795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Trastuzumab, the prototype HER2-directed therapy, has markedly improved survival for women with HER2-positive breast cancers. However, only 40-60% of women with HER2-positive breast cancers achieve a complete pathological response to chemotherapy combined with HER2-directed therapy. The current diagnostic assays have poor positive-predictive accuracy in identifying therapy-responsive breast cancers. Here, we deployed quantitative single molecule localization microscopy to assess the molecular features of HER2 in a therapy-responsive setting. Using fluorescently labeled trastuzumab as a probe, we first compared the molecular features of HER2 in trastuzumab-sensitive (BT-474 and SK-BR-3) and trastuzumab-resistant (BT-474R and JIMT-1) cultured cell lines. Trastuzumab-sensitive cells had significantly higher detected HER2 densities and clustering. We then evaluated HER2 in pre-treatment core biopsies from women with breast cancer undergoing neoadjuvant therapy. A complete pathological response was associated with a high detected HER2 density and significant HER2 clustering. These results established the nano-organization of HER2 as a potential signature of therapy-responsive disease.
Collapse
Affiliation(s)
- Adam L. Maddox
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (A.L.M.); (M.S.B.); (K.R.E.); (A.S.); (E.R.)
| | - Matthew S. Brehove
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (A.L.M.); (M.S.B.); (K.R.E.); (A.S.); (E.R.)
| | - Kiarash R. Eliato
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (A.L.M.); (M.S.B.); (K.R.E.); (A.S.); (E.R.)
| | - Andras Saftics
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (A.L.M.); (M.S.B.); (K.R.E.); (A.S.); (E.R.)
| | - Eugenia Romano
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (A.L.M.); (M.S.B.); (K.R.E.); (A.S.); (E.R.)
| | - Michael F. Press
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA;
| | - Joanne Mortimer
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Veronica Jones
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Daniel Schmolze
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Victoria L. Seewaldt
- Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Tijana Jovanovic-Talisman
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (A.L.M.); (M.S.B.); (K.R.E.); (A.S.); (E.R.)
| |
Collapse
|
9
|
van Ineveld RL, van Vliet EJ, Wehrens EJ, Alieva M, Rios AC. 3D imaging for driving cancer discovery. EMBO J 2022; 41:e109675. [PMID: 35403737 PMCID: PMC9108604 DOI: 10.15252/embj.2021109675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 11/09/2022] Open
Abstract
Our understanding of the cellular composition and architecture of cancer has primarily advanced using 2D models and thin slice samples. This has granted spatial information on fundamental cancer biology and treatment response. However, tissues contain a variety of interconnected cells with different functional states and shapes, and this complex organization is impossible to capture in a single plane. Furthermore, tumours have been shown to be highly heterogenous, requiring large-scale spatial analysis to reliably profile their cellular and structural composition. Volumetric imaging permits the visualization of intact biological samples, thereby revealing the spatio-phenotypic and dynamic traits of cancer. This review focuses on new insights into cancer biology uniquely brought to light by 3D imaging and concomitant progress in cancer modelling and quantitative analysis. 3D imaging has the potential to generate broad knowledge advance from major mechanisms of tumour progression to new strategies for cancer treatment and patient diagnosis. We discuss the expected future contributions of the newest imaging trends towards these goals and the challenges faced for reaching their full application in cancer research.
Collapse
Affiliation(s)
- Ravian L van Ineveld
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Esmée J van Vliet
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Ellen J Wehrens
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Maria Alieva
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Anne C Rios
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| |
Collapse
|
10
|
Villegas-Hernández LE, Dubey V, Nystad M, Tinguely JC, Coucheron DA, Dullo FT, Priyadarshi A, Acuña S, Ahmad A, Mateos JM, Barmettler G, Ziegler U, Birgisdottir ÅB, Hovd AMK, Fenton KA, Acharya G, Agarwal K, Ahluwalia BS. Chip-based multimodal super-resolution microscopy for histological investigations of cryopreserved tissue sections. LIGHT, SCIENCE & APPLICATIONS 2022; 11:43. [PMID: 35210400 PMCID: PMC8873254 DOI: 10.1038/s41377-022-00731-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Histology involves the observation of structural features in tissues using a microscope. While diffraction-limited optical microscopes are commonly used in histological investigations, their resolving capabilities are insufficient to visualize details at subcellular level. Although a novel set of super-resolution optical microscopy techniques can fulfill the resolution demands in such cases, the system complexity, high operating cost, lack of multi-modality, and low-throughput imaging of these methods limit their wide adoption for histological analysis. In this study, we introduce the photonic chip as a feasible high-throughput microscopy platform for super-resolution imaging of histological samples. Using cryopreserved ultrathin tissue sections of human placenta, mouse kidney, pig heart, and zebrafish eye retina prepared by the Tokuyasu method, we demonstrate diverse imaging capabilities of the photonic chip including total internal reflection fluorescence microscopy, intensity fluctuation-based optical nanoscopy, single-molecule localization microscopy, and correlative light-electron microscopy. Our results validate the photonic chip as a feasible imaging platform for tissue sections and pave the way for the adoption of super-resolution high-throughput multimodal analysis of cryopreserved tissue samples both in research and clinical settings.
Collapse
Affiliation(s)
- Luis E Villegas-Hernández
- Department of Physics and Technology, UiT The Arctic University of Norway, Klokkargårdsbakken N-9019, Tromsø, Norway
| | - Vishesh Dubey
- Department of Physics and Technology, UiT The Arctic University of Norway, Klokkargårdsbakken N-9019, Tromsø, Norway
| | - Mona Nystad
- Department of Clinical Medicine, Women's Health and Perinatology Research Group, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Obstetrics and Gynecology, University Hospital of North Norway, Tromsø, Norway
| | - Jean-Claude Tinguely
- Department of Physics and Technology, UiT The Arctic University of Norway, Klokkargårdsbakken N-9019, Tromsø, Norway
| | - David A Coucheron
- Department of Physics and Technology, UiT The Arctic University of Norway, Klokkargårdsbakken N-9019, Tromsø, Norway
| | - Firehun T Dullo
- Department of Physics and Technology, UiT The Arctic University of Norway, Klokkargårdsbakken N-9019, Tromsø, Norway
| | - Anish Priyadarshi
- Department of Physics and Technology, UiT The Arctic University of Norway, Klokkargårdsbakken N-9019, Tromsø, Norway
| | - Sebastian Acuña
- Department of Physics and Technology, UiT The Arctic University of Norway, Klokkargårdsbakken N-9019, Tromsø, Norway
| | - Azeem Ahmad
- Department of Physics and Technology, UiT The Arctic University of Norway, Klokkargårdsbakken N-9019, Tromsø, Norway
| | - José M Mateos
- Center for Microscopy and Image Analysis, University of Zurich, Zürich, Switzerland
| | - Gery Barmettler
- Center for Microscopy and Image Analysis, University of Zurich, Zürich, Switzerland
| | - Urs Ziegler
- Center for Microscopy and Image Analysis, University of Zurich, Zürich, Switzerland
| | - Åsa Birna Birgisdottir
- Division of Cardiothoracic and Respiratory Medicine, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Medicine, Clinical Cardiovascular Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Aud-Malin Karlsson Hovd
- Department of Medical Biology, RNA and Molecular Pathology Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Kristin Andreassen Fenton
- Department of Medical Biology, RNA and Molecular Pathology Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ganesh Acharya
- Department of Clinical Medicine, Women's Health and Perinatology Research Group, UiT The Arctic University of Norway, Tromsø, Norway
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Krishna Agarwal
- Department of Physics and Technology, UiT The Arctic University of Norway, Klokkargårdsbakken N-9019, Tromsø, Norway
| | - Balpreet Singh Ahluwalia
- Department of Physics and Technology, UiT The Arctic University of Norway, Klokkargårdsbakken N-9019, Tromsø, Norway.
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
11
|
Johnson BE, Creason AL, Stommel JM, Keck JM, Parmar S, Betts CB, Blucher A, Boniface C, Bucher E, Burlingame E, Camp T, Chin K, Eng J, Estabrook J, Feiler HS, Heskett MB, Hu Z, Kolodzie A, Kong BL, Labrie M, Lee J, Leyshock P, Mitri S, Patterson J, Riesterer JL, Sivagnanam S, Somers J, Sudar D, Thibault G, Weeder BR, Zheng C, Nan X, Thompson RF, Heiser LM, Spellman PT, Thomas G, Demir E, Chang YH, Coussens LM, Guimaraes AR, Corless C, Goecks J, Bergan R, Mitri Z, Mills GB, Gray JW. An omic and multidimensional spatial atlas from serial biopsies of an evolving metastatic breast cancer. Cell Rep Med 2022; 3:100525. [PMID: 35243422 PMCID: PMC8861971 DOI: 10.1016/j.xcrm.2022.100525] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/15/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022]
Abstract
Mechanisms of therapeutic resistance and vulnerability evolve in metastatic cancers as tumor cells and extrinsic microenvironmental influences change during treatment. To support the development of methods for identifying these mechanisms in individual people, here we present an omic and multidimensional spatial (OMS) atlas generated from four serial biopsies of an individual with metastatic breast cancer during 3.5 years of therapy. This resource links detailed, longitudinal clinical metadata that includes treatment times and doses, anatomic imaging, and blood-based response measurements to clinical and exploratory analyses, which includes comprehensive DNA, RNA, and protein profiles; images of multiplexed immunostaining; and 2- and 3-dimensional scanning electron micrographs. These data report aspects of heterogeneity and evolution of the cancer genome, signaling pathways, immune microenvironment, cellular composition and organization, and ultrastructure. We present illustrative examples of how integrative analyses of these data reveal potential mechanisms of response and resistance and suggest novel therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Brett E. Johnson
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Allison L. Creason
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jayne M. Stommel
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jamie M. Keck
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Swapnil Parmar
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Courtney B. Betts
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Aurora Blucher
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Christopher Boniface
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elmar Bucher
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Erik Burlingame
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Todd Camp
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Koei Chin
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jennifer Eng
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Joseph Estabrook
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Heidi S. Feiler
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Michael B. Heskett
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Zhi Hu
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Annette Kolodzie
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ben L. Kong
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Pharmacy Services, Oregon Health & Science University, Portland, OR 97239, USA
| | - Marilyne Labrie
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jinho Lee
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Patrick Leyshock
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Souraya Mitri
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Janice Patterson
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Diagnostic Laboratories, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jessica L. Riesterer
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
- Multiscale Microscopy Core, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shamilene Sivagnanam
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Julia Somers
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Damir Sudar
- Quantitative Imaging Systems LLC, Portland, OR 97239, USA
| | - Guillaume Thibault
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Benjamin R. Weeder
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Christina Zheng
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Xiaolin Nan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Reid F. Thompson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Hospital and Specialty Medicine, VA Portland Healthcare System, Portland, OR 97239, USA
| | - Laura M. Heiser
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Paul T. Spellman
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - George Thomas
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Pathology & Laboratory Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Emek Demir
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Young Hwan Chang
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lisa M. Coussens
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alexander R. Guimaraes
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Christopher Corless
- Department of Pharmacy Services, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Pathology & Laboratory Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jeremy Goecks
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Raymond Bergan
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zahi Mitri
- Division of Hematology & Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Medicine, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Gordon B. Mills
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Joe W. Gray
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
12
|
Wakefield DL, Tobin SJ, Schmolze D, Jovanovic-Talisman T. Molecular Imaging of HER2 in Patient Tissues with Touch Prep-Quantitative Single Molecule Localization Microscopy. Methods Mol Biol 2022; 2394:231-248. [PMID: 35094332 PMCID: PMC9121336 DOI: 10.1007/978-1-0716-1811-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Biomolecules can be investigated at the nanoscale with quantitative single molecule localization microscopy (qSMLM). This technique, which achieves single molecule sensitivity, can probe how membrane receptors are organized under both normal and pathological conditions. While a number of receptors have been extensively studied in cultured cells, technical challenges have largely impeded their robust quantification in tissue samples. To rigorously interrogate tissue samples, methodological advancements are needed in three areas: analytical preparation of the sample, proper characterization of fluorescent reporters, and rapid/unbiased data analysis. Towards these ends, we have combined qSMLM with a touch preparation technique (touch prep-qSMLM). In this new method, touch prep is first used to obtain monolayers of patient cells. Then, highly selective, fluorescently labeled probes are used to detect the receptors of interest on the plasma membranes of cells. Finally, quantitative algorithms are used to analyze the imaging data. Using this touch prep-qSMLM methodology, we interrogated the density and nano-organization of human epidermal growth factor receptor 2 (HER2) in fresh breast cancer tissues. Touch prep-qSMLM agreed well with current clinical methods. Importantly, touch prep-qSMLM can be easily extended to other pathological conditions and ultimately used in precision medicine.
Collapse
Affiliation(s)
- Devin L Wakefield
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Amgen, South San Francisco, CA, USA
| | - Steven J Tobin
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Daniel Schmolze
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Tijana Jovanovic-Talisman
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
13
|
Haddad TS, Friedl P, Farahani N, Treanor D, Zlobec I, Nagtegaal I. Tutorial: methods for three-dimensional visualization of archival tissue material. Nat Protoc 2021; 16:4945-4962. [PMID: 34716449 DOI: 10.1038/s41596-021-00611-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
Analysis of three-dimensional patient specimens is gaining increasing relevance for understanding the principles of tissue structure as well as the biology and mechanisms underlying disease. New technologies are improving our ability to visualize large volume of tissues with subcellular resolution. One resource often overlooked is archival tissue maintained for decades in hospitals and research archives around the world. Accessing the wealth of information stored within these samples requires the use of appropriate methods. This tutorial introduces the range of sample preparation and microscopy approaches available for three-dimensional visualization of archival tissue. We summarize key aspects of the relevant techniques and common issues encountered when using archival tissue, including registration and antibody penetration. We also discuss analysis pipelines required to process, visualize and analyze the data and criteria to guide decision-making. The methods outlined in this tutorial provide an important and sustainable avenue for validating three-dimensional tissue organization and mechanisms of disease.
Collapse
Affiliation(s)
- Tariq Sami Haddad
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Peter Friedl
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- David H. Koch Center for Applied Research of Genitourinary Cancers, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer GenomiCs.nl (CGC.nl), http://cancergenomics.nl, Utrecht, the Netherlands
| | | | - Darren Treanor
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
- University of Leeds, Leeds, UK
- Department of Clinical Pathology, and Department of Clinical and Experimental Medicine, Linkoping University, Linköping, Sweden
- Center for Medical Imaging Science and Visualization (CMIV), Linköping, Sweden
| | - Inti Zlobec
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Iris Nagtegaal
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
14
|
Du Y, Wang C, Zhang C, Guo L, Chen Y, Yan M, Feng Q, Shang M, Kuang W, Wang Z, Huang ZL. Computational framework for generating large panoramic super-resolution images from localization microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:4759-4778. [PMID: 34513223 PMCID: PMC8407827 DOI: 10.1364/boe.433489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Combining super-resolution localization microscopy with pathology creates new opportunities for biomedical researches. This combination requires a suitable image mosaic method for generating a panoramic image from many overlapping super-resolution images. However, current image mosaic methods are not suitable for this purpose. Here we proposed a computational framework and developed an image mosaic method called NanoStitcher. We generated ground truth datasets and defined criteria to evaluate this computational framework. We used both simulated and experimental datasets to prove that NanoStitcher exhibits better performance than two representative image mosaic methods. This study is helpful for the mature of super-resolution digital pathology.
Collapse
Affiliation(s)
- Yue Du
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chenze Wang
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
| | - Chen Zhang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lingyun Guo
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
| | - Yanzhu Chen
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
| | - Meng Yan
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
| | - Qianghui Feng
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
| | - Mingtao Shang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
| | - Weibing Kuang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhengxia Wang
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
| | - Zhen-Li Huang
- School of Biomedical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
15
|
Cai Z, Zhang Y, Zhang Z, Song KH, Beckmann L, Djalilian A, Sun C, Zhang HF. Super-resolution imaging of flat-mounted whole mouse cornea. Exp Eye Res 2021; 205:108499. [PMID: 33610603 PMCID: PMC8043998 DOI: 10.1016/j.exer.2021.108499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/24/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
Super-resolution microscopy revolutionized biomedical research with significantly improved imaging resolution down to the molecular scale. To date, only limited studies reported multi-color super-resolution imaging of thin tissue slices mainly because of unavailable staining protocols and incompatible imaging techniques. Here, we show the first super-resolution imaging of flat-mounted whole mouse cornea using single-molecule localization microscopy (SMLM). We optimized immunofluorescence staining protocols for β-Tubulin, Vimentin, Peroxisome marker (PMP70), and Histone-H4 in whole mouse corneas. Using the optimized staining protocols, we imaged these four intracellular protein structures in the epithelium and endothelium layers of flat-mounted mouse corneas. We also achieved simultaneous two-color spectroscopic SMLM (sSMLM) imaging of β-Tubulin and Histone-H4 in corneal endothelial cells. The spatial localization precision of sSMLM in these studies was around 20-nm. This work sets the stage for investigating multiple intracellular alterations in corneal diseases at a nanoscopic resolution using whole corneal flat-mount beyond cell cultures.
Collapse
Affiliation(s)
- Zhen Cai
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yang Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Zheyuan Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ki-Hee Song
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Lisa Beckmann
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ali Djalilian
- Department of Ophthalmology, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
16
|
Iizuka S, Leon RP, Gribbin KP, Zhang Y, Navarro J, Smith R, Devlin K, Wang LG, Gibbs SL, Korkola J, Nan X, Courtneidge SA. Crosstalk between invadopodia and the extracellular matrix. Eur J Cell Biol 2020; 99:151122. [PMID: 33070041 DOI: 10.1016/j.ejcb.2020.151122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/24/2020] [Accepted: 08/12/2020] [Indexed: 12/27/2022] Open
Abstract
The scaffold protein Tks5α is required for invadopodia-mediated cancer invasion both in vitro and in vivo. We have previously also revealed a role for Tks5 in tumor cell growth using three-dimensional (3D) culture model systems and mouse transplantation experiments. Here we use both 3D and high-density fibrillar collagen (HDFC) culture to demonstrate that native collagen-I, but not a form lacking the telopeptides, stimulated Tks5-dependent growth, which was dependent on the DDR collagen receptors. We used microenvironmental microarray (MEMA) technology to determine that laminin, fibronectin and tropoelastin also stimulated invadopodia formation. A Tks5α-specific monoclonal antibody revealed its expression both on microtubules and at invadopodia. High- and super-resolution microscopy of cells in and on collagen was then used to place Tks5α at the base of invadopodia, separated from much of the actin and cortactin, but coincident with both matrix metalloprotease and cathepsin proteolytic activity. Inhibition of the Src family kinases, cathepsins or metalloproteases all reduced invadopodia length but each had distinct effects on Tks5α localization. These studies highlight the crosstalk between invadopodia and extracellular matrix components, and reveal the invadopodium to be a spatially complex structure.
Collapse
Affiliation(s)
- Shinji Iizuka
- Departments of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA.
| | - Ronald P Leon
- Departments of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA
| | - Kyle P Gribbin
- Departments of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA
| | - Ying Zhang
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
| | - Jose Navarro
- Departments of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA
| | - Rebecca Smith
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
| | - Kaylyn Devlin
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Lei G Wang
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
| | - Summer L Gibbs
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - James Korkola
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Xiaolin Nan
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Sara A Courtneidge
- Departments of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA; Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA.
| |
Collapse
|
17
|
Cardoen B, Yedder HB, Sharma A, Chou KC, Nabi IR, Hamarneh G. ERGO: Efficient Recurrent Graph Optimized Emitter Density Estimation in Single Molecule Localization Microscopy. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:1942-1956. [PMID: 31880546 DOI: 10.1109/tmi.2019.2962361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Single molecule localization microscopy (SMLM) allows unprecedented insight into the three-dimensional organization of proteins at the nanometer scale. The combination of minimal invasive cell imaging with high resolution positions SMLM at the forefront of scientific discovery in cancer, infectious, and degenerative diseases. By stochastic temporal and spatial separation of light emissions from fluorescent labelled proteins, SMLM is capable of nanometer scale reconstruction of cellular structures. Precise localization of proteins in 3D astigmatic SMLM is dependent on parameter sensitive preprocessing steps to select regions of interest. With SMLM acquisition highly variable over time, it is non-trivial to find an optimal static parameter configuration. The high emitter density required for reconstruction of complex protein structures can compromise accuracy and introduce artifacts. To address these problems, we introduce two modular auto-tuning pre-processing methods: adaptive signal detection and learned recurrent signal density estimation that can leverage the information stored in the sequence of frames that compose the SMLM acquisition process. We show empirically that our contributions improve accuracy, precision and recall with respect to the state of the art. Both modules auto-tune their hyper-parameters to reduce the parameter space for practitioners, improve robustness and reproducibility, and are validated on a reference in silico dataset. Adaptive signal detection and density prediction can offer a practitioner, in addition to informed localization, a tool to tune acquisition parameters ensuring improved reconstruction of the underlying protein complex. We illustrate the challenges faced by practitioners in applying SMLM algorithms on real world data markedly different from the data used in development and show how ERGO can be run on new datasets without retraining while motivating the need for robust transfer learning in SMLM.
Collapse
|
18
|
Kapsokalyvas D, van Zandvoort MAMJ. Molecular Imaging in Oncology: Advanced Microscopy Techniques. Recent Results Cancer Res 2020; 216:533-561. [PMID: 32594398 DOI: 10.1007/978-3-030-42618-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Preclinical studies usually require high levels of morphological, functional, and biochemical information at subcellular resolution. This type of information cannot be obtained from clinical imaging techniques, such as MRI, PET/CT, or US. Luckily, many microscopy techniques exist that can offer this information, also for malignant tissues and therapeutic approaches. In this overview, we discuss the various advanced optical microscopy techniques and their applications in oncological research. After a short introduction in Sect. 16.1, we continue in Sect. 16.2 with a discussion on fluorescent labelling strategies, followed in Sect. 16.3 by an in-depth description of confocal, light-sheet, two-photon, and super-resolution microscopy. We end in Sect. 16.4 with a focus on the applications, specifically in oncology.
Collapse
Affiliation(s)
- Dimitrios Kapsokalyvas
- School for Oncology and Developmental Biology GROW and School for Cardiovascular Diseases CARIM, Maastricht University, Maastricht, The Netherlands
- Institut für Molekulare Kreislaufforschung, Universitätsklinikum Aachen, Aachen, Germany
| | - Marc A M J van Zandvoort
- School for Oncology and Developmental Biology GROW and School for Cardiovascular Diseases CARIM, Maastricht University, Maastricht, The Netherlands.
- Institut für Molekulare Kreislaufforschung, Universitätsklinikum Aachen, Aachen, Germany.
| |
Collapse
|
19
|
The NanoSuit method: a novel histological approach for examining paraffin sections in a nondestructive manner by correlative light and electron microscopy. J Transl Med 2020; 100:161-173. [PMID: 31467424 PMCID: PMC6917571 DOI: 10.1038/s41374-019-0309-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/30/2022] Open
Abstract
Histological examination using the light microscopy is currently the gold standard for life science research and diagnostics. However, magnified observations are limited because of the limitations intrinsic to light microscopy. Thus, a dual approach, known as correlative light and electron microscopy (CLEM), has emerged, although several technical challenges remain in terms of observing myriad stored paraffin sections. Previously, we developed the NanoSuit method, which enabled us to keep multicellular organisms alive/wet in the high vacuum of a scanning electron microscope by encasing the sample in a thin, vacuum-proof membrane. The approach uses the native extracellular substance (ECS) or an ECS-mimicking substance to polymerize a membrane by plasma or electron beam irradiation. Since the resulting NanoSuit is flexible and dense enough to prevent a living organism's bodily gas and liquids from evaporating (which we refer to as the "surface shield enhancer" (SSE) effect), it works like a miniature spacesuit with sufficient electron conductivity for an SEM observation. Here, we apply the NanoSuit method to CLEM analysis of paraffin sections. Accordingly, the NanoSuit method permits the study of paraffin sections using CLEM at low and high magnification, with the following features: (i) the integrity of the glass slide is maintained, (ii) three-dimensional microstructures of tissue and pathogens are visualized, (iii) nuclei and 3,3'-diaminobenzidine-stained areas are distinct because of gold chloride usage, (iv) immunohistochemical staining is quantitative, and (v) contained elements can be analyzed. Removal of the SSE solution after observation is a further advantage, as this allows slides to be restained and stored. Thus, the NanoSuit method represents a novel approach that will advance the field of histology.
Collapse
|
20
|
Lee Y, Phelps C, Huang T, Mostofian B, Wu L, Zhang Y, Tao K, Chang YH, Stork PJ, Gray JW, Zuckerman DM, Nan X. High-throughput, single-particle tracking reveals nested membrane domains that dictate KRas G12D diffusion and trafficking. eLife 2019; 8:46393. [PMID: 31674905 PMCID: PMC7060040 DOI: 10.7554/elife.46393] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Membrane nanodomains have been implicated in Ras signaling, but what these domains are and how they interact with Ras remain obscure. Here, using single particle tracking with photoactivated localization microscopy (spt-PALM) and detailed trajectory analysis, we show that distinct membrane domains dictate KRasG12D (an active KRas mutant) diffusion and trafficking in U2OS cells. KRasG12D exhibits an immobile state in ~70 nm domains, each embedded in a larger domain (~200 nm) that confers intermediate mobility, while the rest of the membrane supports fast diffusion. Moreover, KRasG12D is continuously removed from the membrane via the immobile state and replenished to the fast state, reminiscent of Ras internalization and recycling. Importantly, both the diffusion and trafficking properties of KRasG12D remain invariant over a broad range of protein expression levels. Our results reveal how membrane organization dictates membrane diffusion and trafficking of Ras and offer new insight into the spatial regulation of Ras signaling. The Ras family of proteins play an important role in relaying signals from the outside to the inside of the cell. Ras proteins are attached by a fatty tail to the inner surface of the cell membrane. When activated they transmit a burst of signal that controls critical behaviors like growth, survival and movement. It has been suggested that to prevent these signals from being accidently activated, Ras molecules must group together at specialized sites within the membrane before passing on their message. However, visualizing how Ras molecules cluster together at these domains has thus far been challenging. As a result, little is known about where these sites are located and how Ras molecules come to a stop at these domains. Now, Lee et al. have combined two microscopy techniques called ‘single-particle tracking’ and ‘photoactivated localization microscopy' to track how individual molecules of activated Ras move in human cells grown in the lab. This revealed that Ras molecules quickly diffuse along the inside of the membrane until they arrive at certain locations that cause them to halt. However, computer models consisting of just the ‘fast’ and ‘immobile’ state could not correctly re-capture the way Ras molecules moved along the membrane. Lee et al. found that for these models to mimic the movement of Ras, a third ‘intermediate’ state of Ras mobility needed to be included. To investigate this further, Lee et al. created a fluorescent map that overlaid all the individual paths taken by each Ras molecule. The map showed regions in the membrane where the Ras molecules had stopped and possibly clustered together. Each of these ‘immobilization domains’ were then surrounded by an ‘intermediate domain’ where Ras molecules had begun to slow down their movement. Although the intermediate domains did not last long, they seemed to guide Ras molecules into the immobilization domains where they could cluster together with other molecules. From there, the cell constantly removed Ras molecules from these membrane domains and returned them back to their ‘fast’ diffusing state. Mutations in Ras proteins occur in around a third of all cancers, so a better understanding of their dynamics could help with future drug discovery. The methods used here could also be used to investigate the movement of other signaling molecules.
Collapse
Affiliation(s)
- Yerim Lee
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, United States.,OHSU Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, United States
| | - Carey Phelps
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, United States.,OHSU Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, United States
| | - Tao Huang
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, United States.,OHSU Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, United States
| | - Barmak Mostofian
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, United States.,OHSU Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, United States
| | - Lei Wu
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, United States.,OHSU Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, United States.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ying Zhang
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, United States.,OHSU Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, United States
| | - Kai Tao
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, United States.,OHSU Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, United States
| | - Young Hwan Chang
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, United States.,OHSU Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, United States
| | - Philip Js Stork
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Joe W Gray
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, United States.,OHSU Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, United States
| | - Daniel M Zuckerman
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, United States.,OHSU Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, United States
| | - Xiaolin Nan
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, United States.,OHSU Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, United States.,Knight Cancer Early Detection Advanced Research (CEDAR) Center, Oregon Health and Science University, Portland, United States
| |
Collapse
|
21
|
Liu Y, Xu J. High-resolution microscopy for imaging cancer pathobiology. CURRENT PATHOBIOLOGY REPORTS 2019; 7:85-96. [PMID: 32953251 PMCID: PMC7500261 DOI: 10.1007/s40139-019-00201-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Light microscopy plays an essential role in clinical diagnosis and understanding the pathogenesis of cancer. Conventional bright-field microscope is used to visualize abnormality in tissue architecture and nuclear morphology, but often suffers from many limitations. This review focuses on the potential of new imaging techniques to improve basic and clinical research in pathobiology. RECENT FINDINGS Light microscopy has significantly expanded its ability in resolution, imaging volume, speed and contrast. It now allows 3D high-resolution volumetric imaging of tissue architecture from large tissue and molecular structures at nanometer resolution. SUMMARY Pathologists and researchers now have access to various imaging tools to study cancer pathobiology in both breadth and depth. Although clinical adoption of a new technique is slow, the new imaging tools will provide significant new insights and open new avenues for improving early cancer detection, personalized risk assessment and identifying the best treatment strategies.
Collapse
Affiliation(s)
- Yang Liu
- Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jianquan Xu
- Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
22
|
Pullman JM. New Views of the Glomerulus: Advanced Microscopy for Advanced Diagnosis. Front Med (Lausanne) 2019; 6:37. [PMID: 30899761 PMCID: PMC6416220 DOI: 10.3389/fmed.2019.00037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/08/2019] [Indexed: 12/11/2022] Open
Abstract
New technologies are ready to revolutionize glomerular imaging and significantly improve or replace immunofluorescence and electron microscopy, which have driven research and diagnosis of glomerular diseases for over 50 years. Advanced forms of transmission and scanning electron microscopy have revealed the detailed spatial relationships of the glomerular basement membrane, podocytes, and endothelial cells. These may be overshadowed by super resolution microscopy (SRM), which combines the advantages of immunofluorescence and electron microscopy, offers high resolution identification of specific molecules, and images large, physiologically relevant volumes of the glomerulus. Rapidity, ease of use and low cost with some types of SRM make them potentially suitable for routine diagnosis. SRM visualizes structures below the classical diffraction limit of conventional light microscopy by adding a time variable to either the illumination of the specimen, or to the fluorescence signal emitted by it. Ensemble techniques vary illumination and include Structured Illumination Microscopy (SIM) and Stimulation Emission Depletion Microscopy (STED). Single molecule localization techniques vary the light emission by fluorescence labels in the specimen, and include Photoactivated Localization Microscopy (PALM) and Stochastic Optical Reconstruction Microscopy (STORM). Technologies such as expansion microscopy and genetic labeling can also create effective super resolution imaging by non-optical, specialized preparation techniques. All technologies require dark field fluorescence and some require computer image analysis and reconstruction. Replicating successful application in other areas of biology, SIM, STED, and STORM have visualized normal and nephrotic disease podocytes, and have confirmed their appearances to be similar to those seen by electron microscopy, but with added new information on cell configuration and protein localization. STORM has also localized podocyte cytoskeleton and adhesion proteins, and glomerular basement membrane proteins at a resolution never before possible. These pioneering efforts show the promise of super resolution microscopy, and lay the groundwork for future study and new diagnostic tools for glomerular diseases.
Collapse
Affiliation(s)
- James M Pullman
- Division of Anatomic Pathology, Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
23
|
Zhou X, Gladstein S, Almassalha LM, Li Y, Eshein A, Cherkezyan L, Viswanathan P, Subramanian H, Szleifer I, Backman V. Preservation of cellular nano-architecture by the process of chemical fixation for nanopathology. PLoS One 2019; 14:e0219006. [PMID: 31329606 PMCID: PMC6645510 DOI: 10.1371/journal.pone.0219006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/13/2019] [Indexed: 11/24/2022] Open
Abstract
Transformation in chromatin organization is one of the most universal markers of carcinogenesis. Microscale chromatin alterations have been a staple of histopathological diagnosis of neoplasia, and nanoscale alterations have emerged as a promising marker for cancer prognostication and the detection of predysplastic changes. While numerous methods have been developed to detect these alterations, most methods for sample preparation remain largely validated via conventional microscopy and have not been examined with nanoscale sensitive imaging techniques. For these nanoscale sensitive techniques to become standard of care screening tools, new histological protocols must be developed that preserve nanoscale information. Partial Wave Spectroscopic (PWS) microscopy has recently emerged as a novel imaging technique sensitive to length scales ranging between 20 and 200 nanometers. As a label-free, high-throughput, and non-invasive imaging technique, PWS microscopy is an ideal tool to quantify structural information during sample preparation. Therefore, in this work we applied PWS microscopy to systematically evaluate the effects of cytological preparation on the nanoscales changes of chromatin using two live cell models: a drug-based model of Hela cells differentially treated with daunorubicin and a cell line comparison model of two cells lines with inherently distinct chromatin organizations. Notably, we show that existing cytological preparation can be modified in order to maintain clinically relevant nanoscopic differences, paving the way for the emerging field of nanopathology.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
| | - Scott Gladstein
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
| | - Luay M. Almassalha
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
- Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Yue Li
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
| | - Adam Eshein
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
| | - Lusik Cherkezyan
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
| | - Parvathi Viswanathan
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
| | - Hariharan Subramanian
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
- * E-mail:
| |
Collapse
|
24
|
Kang YT, Kim YJ, Lee TH, Cho YH, Chang HJ, Lee HM. Cytopathological Study of the Circulating Tumor Cells filtered from the Cancer Patients' Blood using Hydrogel-based Cell Block Formation. Sci Rep 2018; 8:15218. [PMID: 30315187 PMCID: PMC6185971 DOI: 10.1038/s41598-018-33464-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022] Open
Abstract
Circulating tumor cells have emerged as biomarkers for estimating the tumor burden and metastatic potential of cancer patients. However, to date, most of studies and applications of circulating tumor cells have been conducted and applied to epithelial cancers such as breast, colorectal, and prostate tumor. The only FDA-cleared method, CellSearch, makes use of antibody against epithelial surface protein expressed on CTCs, thus obstructing wide application for various cancers with non-epithelial and semi-epithelial characteristics including renal cell carcinoma. Due to rarity and ambiguity of CTCs, designed experiment including non-biased CTC isolation and subsequent cytopathological study for finding applicable immunomarkers are urgently needed for clinical use of CTCs for less-studied cancers. Here, in order to construct the fundamental step for CTC diagnosis without limitation of its epithelial characteristics, we present the simple and novel method which incorporate both label-free CTC isolation and pathological study using hydrogel-based cell block formation. Six cell lines from lung, ovarian, kidney cancers were used to make cell block and analyzed by conventional immunocytochemical staining method to find the candidate markers for CTC. Especially for renal cancer, the physically isolated CTCs were further immunocytochemically examined with the screened candidate markers by cell block construction, and verified their clinical utility using blood samples from patients with renal cell carcinoma. This comprehensive study demonstrates that the present approach can be used to find the potential markers for any type of cancers regardless of their epithelial characteristics and isolate the specific type of CTCs in label-free manners.
Collapse
Affiliation(s)
- Yoon-Tae Kang
- Cell Bench Research Center, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- College of Engineering, University of Michigan, 2800 Plymouth Road, Ann Arbor, 48109-2800, United States.
| | - Young Jun Kim
- Cell Bench Research Center, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Nanoengineering, University of California, San Diego, La Jolla, California, 92093, United States
| | - Tae Hee Lee
- Cell Bench Research Center, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Young-Ho Cho
- Cell Bench Research Center, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Hee Jin Chang
- Research Institute and Hospital, National Cancer Center, 323323 Ilsan-ro, Ilsandong-gu, Goyang-si Gyeonggi-do, 10408, Republic of Korea.
| | - Hyun-Moo Lee
- Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| |
Collapse
|
25
|
Tobin SJ, Wakefield DL, Jones V, Liu X, Schmolze D, Jovanović-Talisman T. Single molecule localization microscopy coupled with touch preparation for the quantification of trastuzumab-bound HER2. Sci Rep 2018; 8:15154. [PMID: 30310083 PMCID: PMC6181918 DOI: 10.1038/s41598-018-33225-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022] Open
Abstract
All breast cancers are assessed for levels of human epidermal growth factor receptor 2 (HER2). Fluorescence in situ hybridization (FISH) and immunohistochemistry are currently used to determine if a patient is eligible for anti-HER2 therapy. Limitations of both tests include variability and relatively long processing times. Additionally, neither test determines whether HER2 contains the extracellular domain. While truncated in some tumors, this domain is required for binding of the therapeutic antibody trastuzumab. Here, trastuzumab was used to directly detect HER2 with quantitative single molecule localization microscopy (qSMLM). In proof of concept studies, our new method rapidly quantified both HER2 density and features of nano-organization. In cultured cells, the method was sensitive to subtle variations in HER2 expression. To assess patient samples, we combined qSMLM with tissue touch preparation (touch prep-qSMLM) and examined large areas of intact membranes. For cell lines and patient samples, HER2 copy numbers from FISH showed a significant positive correlation with detected densities from qSMLM and trended with HER2 cluster occupancy.
Collapse
Affiliation(s)
- Steven J Tobin
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Devin L Wakefield
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Veronica Jones
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Xueli Liu
- Division of Biostatistics, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Daniel Schmolze
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Tijana Jovanović-Talisman
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA.
| |
Collapse
|
26
|
Informative three-dimensional survey of cell/tissue architectures in thick paraffin sections by simple low-vacuum scanning electron microscopy. Sci Rep 2018; 8:7479. [PMID: 29748574 PMCID: PMC5945589 DOI: 10.1038/s41598-018-25840-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/30/2018] [Indexed: 01/06/2023] Open
Abstract
Recent advances in bio-medical research, such as the production of regenerative organs from stem cells, require three-dimensional analysis of cell/tissue architectures. High-resolution imaging by electron microscopy is the best way to elucidate complex cell/tissue architectures, but the conventional method requires a skillful and time-consuming preparation. The present study developed a three-dimensional survey method for assessing cell/tissue architectures in 30-µm-thick paraffin sections by taking advantage of backscattered electron imaging in a low-vacuum scanning electron microscope. As a result, in the kidney, the podocytes and their processes were clearly observed to cover the glomerulus. The 30 µm thickness facilitated an investigation on face-side (instead of sectioned) images of the epithelium and endothelium, which are rarely seen within conventional thin sections. In the testis, differentiated spermatozoa were three-dimensionally assembled in the middle of the seminiferous tubule. Further application to vascular-injury thrombus formation revealed the distinctive networks of fibrin fibres and platelets, capturing the erythrocytes into the thrombus. The four-segmented BSE detector provided topographic bird’s-eye images that allowed a three-dimensional understanding of the cell/tissue architectures at the electron-microscopic level. Here, we describe the precise procedures of this imaging method and provide representative electron micrographs of normal rat organs, experimental thrombus formation, and three-dimensionally cultured tumour cells.
Collapse
|
27
|
Dlasková A, Engstová H, Špaček T, Kahancová A, Pavluch V, Smolková K, Špačková J, Bartoš M, Hlavatá LP, Ježek P. 3D super-resolution microscopy reflects mitochondrial cristae alternations and mtDNA nucleoid size and distribution. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:829-844. [PMID: 29727614 DOI: 10.1016/j.bbabio.2018.04.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/10/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022]
Abstract
3D super-resolution microscopy based on the direct stochastic optical reconstruction microscopy (dSTORM) with primary Alexa-Fluor-647-conjugated antibodies is a powerful method for accessing changes of objects that could be normally resolved only by electron microscopy. Despite the fact that mitochondrial cristae yet to become resolved, we have indicated changes in cristae width and/or morphology by dSTORM of ATP-synthase F1 subunit α (F1α). Obtained 3D images were analyzed with the help of Ripley's K-function modeling spatial patterns or transferring them into distance distribution function. Resulting histograms of distances frequency distribution provide most frequent distances (MFD) between the localized single antibody molecules. In fasting state of model pancreatic β-cells, INS-1E, MFD between F1α were ~80 nm at 0 and 3 mM glucose, whereas decreased to 61 nm and 57 nm upon glucose-stimulated insulin secretion (GSIS) at 11 mM and 20 mM glucose, respectively. Shorter F1α interdistances reflected cristae width decrease upon GSIS, since such repositioning of F1α correlated to average 20 nm and 15 nm cristae width at 0 and 3 mM glucose, and 9 nm or 8 nm after higher glucose simulating GSIS (11, 20 mM glucose, respectively). Also, submitochondrial entities such as nucleoids of mtDNA were resolved e.g. after bromo-deoxyuridine (BrDU) pretreatment using anti-BrDU dSTORM. MFD in distances distribution histograms reflected an average nucleoid diameter (<100 nm) and average distances between nucleoids (~1000 nm). Double channel PALM/dSTORM with Eos-lactamase-β plus anti-TFAM dSTORM confirmed the latter average inter-nucleoid distance. In conclusion, 3D single molecule (dSTORM) microscopy is a reasonable tool for studying mitochondrion.
Collapse
Affiliation(s)
- Andrea Dlasková
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Engstová
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Špaček
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Anežka Kahancová
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vojtěch Pavluch
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katarína Smolková
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jitka Špačková
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Bartoš
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; Alef Ltd, Prague, Czech Republic
| | - Lydie Plecitá Hlavatá
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Ježek
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
28
|
Chen YC, Chen Q, Wu X, Tan X, Wang J, Fan X. A robust tissue laser platform for analysis of formalin-fixed paraffin-embedded biopsies. LAB ON A CHIP 2018; 18:1057-1065. [PMID: 29511754 DOI: 10.1039/c8lc00084k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Laser emission-based detection and imaging technology has attracted significant interest in biomedical research due to its high sensitivity, narrow linewidth, and superior spectral and spatial resolution. Recent advances have further revealed the potential to use laser emission to investigate chromatin dynamics, as well as to diagnose cancer tissues based on nuclear biomarkers. To move the laser emission based detection technology a step further towards practical use, in this work, we developed a highly robust tissue laser platform by microfabricating an SU8 spacer with a fixed height on the top mirror of the Fabry-Pérot (FP) cavity, which allows generation of reproducible and stable lasing results regardless of tissue thickness. Then we applied this platform to achieve lasing emission from formalin-fixed, paraffin-embedded (FFPE) lung tissues, which account for an overwhelming fraction of tissues collected for research and clinical use worldwide. We further showed that the cancer and normal FFPE lung tissues can be distinguished by their respective lasing thresholds. Two different tissue thicknesses (10 μm and 5 μm) commonly used in pathological labs were explored. Finally, we tested three additional types of tissues (colon, stomach, and breast) that were prepared independently by lab technicians in a pathology lab in China and shipped to the US in order to validate the general applicability and practicality of the laser emission-based technology as well as the corresponding sample preparation protocol and the tissue laser platform. Our work will not only vastly broaden the applications of laser emission-based detection/imaging technology but also help translate it from the laboratory to an automated system for clinical practice that may eventually benefit biomedicine and biological research.
Collapse
Affiliation(s)
- Yu-Cheng Chen
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Veerasubramanian PK, Thangavel P, Kannan R, Chakraborty S, Ramachandran B, Suguna L, Muthuvijayan V. An investigation of konjac glucomannan-keratin hydrogel scaffold loaded with Avena sativa extracts for diabetic wound healing. Colloids Surf B Biointerfaces 2018; 165:92-102. [PMID: 29471220 DOI: 10.1016/j.colsurfb.2018.02.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/08/2018] [Accepted: 02/11/2018] [Indexed: 10/18/2022]
Abstract
We have developed a novel hydrogel composed of konjac glucomannan (KGM), human hair proteins (KER), and an ethanolic extract of Avena sativa (OAT) and evaluated its potential as a dressing material for diabetic wounds. KGM is an excellent biocompatible gelling agent that stimulates fibroblast proliferation and immunomodulation. Human hair proteins (KER) are biocompatible, biodegradable, and possess abundant cell adhesion sites. KER also promotes fibroblast attachment and proliferation, keratinocyte migration, and collagen expression, which can accelerate wound healing. OAT consists of oat β-glucans and several anti-inflammatory and antioxidant moieties that can reduce prolonged inflammation in chronic wounds. SEM images confirm the highly porous architecture of the scaffolds. When immersed in PBS, KGM+KER+OAT hydrogels absorb 7.5 times their dry weight. These hydrogels display a measured rate of degradation in lysozyme. KGM+KER+OAT hydrogels showed no significant cytotoxicity against NIH/3T3 fibroblasts. DAPI and SEM images obtained after 48h of cell culture illustrate the attachment and infiltration of fibroblasts. In vivo studies performed using a diabetic rat excision wound model showed that KGM+KER+OAT hydrogels significantly accelerated wound healing compared to the control and the KGM+KER hydrogels.
Collapse
Affiliation(s)
- Praveen Krishna Veerasubramanian
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ponrasu Thangavel
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ramya Kannan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India; Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sudip Chakraborty
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Balaji Ramachandran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Lonchin Suguna
- Department of Biochemistry, CSIR-Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 600020, India
| | - Vignesh Muthuvijayan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
30
|
Shashkova S, Leake MC. Single-molecule fluorescence microscopy review: shedding new light on old problems. Biosci Rep 2017; 37:BSR20170031. [PMID: 28694303 PMCID: PMC5520217 DOI: 10.1042/bsr20170031] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/08/2017] [Accepted: 07/10/2017] [Indexed: 12/19/2022] Open
Abstract
Fluorescence microscopy is an invaluable tool in the biosciences, a genuine workhorse technique offering exceptional contrast in conjunction with high specificity of labelling with relatively minimal perturbation to biological samples compared with many competing biophysical techniques. Improvements in detector and dye technologies coupled to advances in image analysis methods have fuelled recent development towards single-molecule fluorescence microscopy, which can utilize light microscopy tools to enable the faithful detection and analysis of single fluorescent molecules used as reporter tags in biological samples. For example, the discovery of GFP, initiating the so-called 'green revolution', has pushed experimental tools in the biosciences to a completely new level of functional imaging of living samples, culminating in single fluorescent protein molecule detection. Today, fluorescence microscopy is an indispensable tool in single-molecule investigations, providing a high signal-to-noise ratio for visualization while still retaining the key features in the physiological context of native biological systems. In this review, we discuss some of the recent discoveries in the life sciences which have been enabled using single-molecule fluorescence microscopy, paying particular attention to the so-called 'super-resolution' fluorescence microscopy techniques in live cells, which are at the cutting-edge of these methods. In particular, how these tools can reveal new insights into long-standing puzzles in biology: old problems, which have been impossible to tackle using other more traditional tools until the emergence of new single-molecule fluorescence microscopy techniques.
Collapse
Affiliation(s)
- Sviatlana Shashkova
- Department of Physics, Biological Physical Sciences Institute (BPSI), University of York, York YO10 5DD, U.K
- Department of Biology, Biological Physical Sciences Institute (BPSI), University of York, York YO10 5DD, U.K
| | - Mark C Leake
- Department of Physics, Biological Physical Sciences Institute (BPSI), University of York, York YO10 5DD, U.K.
- Department of Biology, Biological Physical Sciences Institute (BPSI), University of York, York YO10 5DD, U.K
| |
Collapse
|