1
|
Roy S, Aastha, Deo KA, Dey K, Gaharwar AK, Jaiswal A. Nanobio Interface Between Proteins and 2D Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:35753-35787. [PMID: 37487195 PMCID: PMC10866197 DOI: 10.1021/acsami.3c04582] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/22/2023] [Indexed: 07/26/2023]
Abstract
Two-dimensional (2D) nanomaterials have significantly contributed to recent advances in material sciences and nanotechnology, owing to their layered structure. Despite their potential as multifunctional theranostic agents, the biomedical translation of these materials is limited due to a lack of knowledge and control over their interaction with complex biological systems. In a biological microenvironment, the high surface energy of nanomaterials leads to diverse interactions with biological moieties such as proteins, which play a crucial role in unique physiological processes. These interactions can alter the size, surface charge, shape, and interfacial composition of the nanomaterial, ultimately affecting its biological activity and identity. This review critically discusses the possible interactions between proteins and 2D nanomaterials, along with a wide spectrum of analytical techniques that can be used to study and characterize such interplay. A better understanding of these interactions would help circumvent potential risks and provide guidance toward the safer design of 2D nanomaterials as a platform technology for various biomedical applications.
Collapse
Affiliation(s)
- Shounak Roy
- School
of Biosciences and Bioengineering, Indian
Institute of Technology, Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
- Department
of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Aastha
- School
of Biosciences and Bioengineering, Indian
Institute of Technology, Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Kaivalya A. Deo
- Department
of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kashmira Dey
- School
of Biosciences and Bioengineering, Indian
Institute of Technology, Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Akhilesh K. Gaharwar
- Department
of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
- Interdisciplinary
Graduate Program in Genetics and Genomics, Texas A&M University, College Station, Texas 77843, United States
| | - Amit Jaiswal
- School
of Biosciences and Bioengineering, Indian
Institute of Technology, Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
2
|
Lazarev S, Uzhviyuk S, Rayev M, Timganova V, Bochkova M, Khaziakhmatova O, Malashchenko V, Litvinova L, Zamorina S. Interaction of Graphene Oxide Nanoparticles with Human Mesenchymal Stem Cells Visualized in the Cell-IQ System. Molecules 2023; 28:molecules28104148. [PMID: 37241889 DOI: 10.3390/molecules28104148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Graphene oxide is a promising nanomaterial with many potential applications. However, before it can be widely used in areas such as drug delivery and medical diagnostics, its influence on various cell populations in the human body must be studied to ensure its safety. We investigated the interaction of graphene oxide (GO) nanoparticles with human mesenchymal stem cells (hMSCs) in the Cell-IQ system, evaluating cell viability, mobility, and growth rate. GO nanoparticles of different sizes coated with linear or branched polyethylene glycol (P or bP, respectively) were used at concentrations of 5 and 25 μg/mL. Designations were the following: P-GOs (Ø 184 ± 73 nm), bP-GOs (Ø 287 ± 52 nm), P-GOb (Ø 569 ± 14 nm), and bP-GOb (Ø 1376 ± 48 nm). After incubating the cells with all types of nanoparticles for 24 h, the internalization of the nanoparticles by the cells was observed. We found that all GO nanoparticles used in this study exerted a cytotoxic effect on hMSCs when used at a high concentration (25 μg/mL), whereas at a low concentration (5 μg/mL) a cytotoxic effect was observed only for bP-GOb particles. We also found that P-GOs particles decreased cell mobility at a concentration of 25 μg/mL, whereas bP-GOb particles increased it. Larger particles (P-GOb and bP-GOb) increased the rate of movement of hMSCs regardless of concentration. There were no statistically significant differences in the growth rate of cells compared with the control group.
Collapse
Affiliation(s)
- Sergey Lazarev
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences-Branch of Perm Federal Research Center, 614081 Perm, Russia
- Department of Microbiology and Immunology, Faculty of Biology, Perm State University, 614990 Perm, Russia
| | - Sofya Uzhviyuk
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences-Branch of Perm Federal Research Center, 614081 Perm, Russia
| | - Mikhail Rayev
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences-Branch of Perm Federal Research Center, 614081 Perm, Russia
- Department of Microbiology and Immunology, Faculty of Biology, Perm State University, 614990 Perm, Russia
| | - Valeria Timganova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences-Branch of Perm Federal Research Center, 614081 Perm, Russia
| | - Maria Bochkova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences-Branch of Perm Federal Research Center, 614081 Perm, Russia
- Department of Microbiology and Immunology, Faculty of Biology, Perm State University, 614990 Perm, Russia
| | - Olga Khaziakhmatova
- Department of Microbiology and Immunology, Faculty of Biology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Vladimir Malashchenko
- Department of Microbiology and Immunology, Faculty of Biology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Larisa Litvinova
- Department of Microbiology and Immunology, Faculty of Biology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Svetlana Zamorina
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences-Branch of Perm Federal Research Center, 614081 Perm, Russia
- Department of Microbiology and Immunology, Faculty of Biology, Perm State University, 614990 Perm, Russia
| |
Collapse
|
3
|
Kakkar S, Gupta P, Kumar N, Kant K. Progress in Fluorescence Biosensing and Food Safety towards Point-of-Detection (PoD) System. BIOSENSORS 2023; 13:249. [PMID: 36832016 PMCID: PMC9953818 DOI: 10.3390/bios13020249] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The detection of pathogens in food substances is of crucial concern for public health and for the safety of the natural environment. Nanomaterials, with their high sensitivity and selectivity have an edge over conventional organic dyes in fluorescent-based detection methods. Advances in microfluidic technology in biosensors have taken place to meet the user criteria of sensitive, inexpensive, user-friendly, and quick detection. In this review, we have summarized the use of fluorescence-based nanomaterials and the latest research approaches towards integrated biosensors, including microsystems containing fluorescence-based detection, various model systems with nano materials, DNA probes, and antibodies. Paper-based lateral-flow test strips and microchips as well as the most-used trapping components are also reviewed, and the possibility of their performance in portable devices evaluated. We also present a current market-available portable system which was developed for food screening and highlight the future direction for the development of fluorescence-based systems for on-site detection and stratification of common foodborne pathogens.
Collapse
Affiliation(s)
- Saloni Kakkar
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh 160036, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, India
| | - Payal Gupta
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, India
| | - Navin Kumar
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, India
| | - Krishna Kant
- Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain
| |
Collapse
|
4
|
Wang K, Yan Z, Fu L, Li D, Gong L, Wang Y, Xiong Y. Gemini ionic liquid modified nacre-like reduced graphene oxide click membranes for ReO4−/TcO4− removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Dahal D, Gumbs G, Iurov A, Ting CS. Plasmon Damping Rates in Coulomb-Coupled 2D Layers in a Heterostructure. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7964. [PMID: 36431452 PMCID: PMC9695106 DOI: 10.3390/ma15227964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The Coulomb excitations of charge density oscillation are calculated for a double-layer heterostructure. Specifically, we consider two-dimensional (2D) layers of silicene and graphene on a substrate. From the obtained surface response function, we calculated the plasmon dispersion relations, which demonstrate how the Coulomb interaction renormalizes the plasmon frequencies. Most importantly, we have conducted a thorough investigation of how the decay rates of the plasmons in these heterostructures are affected by the Coulomb coupling between different types of two-dimensional materials whose separations could be varied. A novel effect of nullification of the silicene band gap is noticed when graphene is introduced into the system. To utilize these effects for experimental and industrial purposes, graphical results for the different parameters are presented.
Collapse
Affiliation(s)
- Dipendra Dahal
- Texas Center for Superconductivity and Department of Physics, University of Houston, Houston, TX 77204, USA
| | - Godfrey Gumbs
- Department of Physics and Astronomy, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065, USA
| | - Andrii Iurov
- Department of Physics and Computer Science, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA
| | - Chin-Sen Ting
- Texas Center for Superconductivity and Department of Physics, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
6
|
Metal-Induced Fluorescence Quenching of Photoconvertible Fluorescent Protein DendFP. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092922. [PMID: 35566273 PMCID: PMC9104182 DOI: 10.3390/molecules27092922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 12/29/2022]
Abstract
Sensitive and accurate detection of specific metal ions is important for sensor development and can advance analytical science and support environmental and human medical examinations. Fluorescent proteins (FPs) can be quenched by specific metal ions and spectroscopically show a unique fluorescence-quenching sensitivity, suggesting their potential application as FP-based metal biosensors. Since the characteristics of the fluorescence quenching are difficult to predict, spectroscopic analysis of new FPs is important for the development of FP-based biosensors. Here we reported the spectroscopic and structural analysis of metal-induced fluorescence quenching of the photoconvertible fluorescent protein DendFP. The spectroscopic analysis showed that Fe2+, Fe3+, and Cu2+ significantly reduced the fluorescence emission of DendFP. The metal titration experiments showed that the dissociation constants (Kd) of Fe2+, Fe3+, and Cu2+ for DendFP were 24.59, 41.66, and 137.18 μM, respectively. The tetrameric interface of DendFP, which the metal ions cannot bind to, was analyzed. Structural comparison of the metal-binding sites of DendFP with those of iq-mEmerald and Dronpa suggested that quenchable DendFP has a unique metal-binding site on the β-barrel that does not utilize the histidine pair for metal binding.
Collapse
|
7
|
Quenching Efficiency of Quantum Dots Conjugated to Lipid Bilayers on Graphene Oxide Evaluated by Fluorescence Single Particle Tracking. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A single particle observation of quantum dots (QDs) was performed on lipid bilayers formed on graphene oxide (GO). The long-range fluorescence quenching of GO has been applied to biosensing for various biomolecules. We demonstrated the single particle observation of a QD on supported lipid bilayers in this study, aiming to detect the quenching efficiency of lipid and protein molecules in a lipid bilayer by fluorescence single particle tacking (SPT). A single lipid bilayer or double lipid bilayers were formed on GO flakes deposited on a thermally oxidized silicon substrate by the vesicle fusion method. The QDs were conjugated on the lipid bilayers, and single particle images of the QDs were obtained under the quenching effect of GO. The quenching efficiency of a single QD was evaluated from the fluorescence intensities on the regions with and without GO. The quenching efficiency reflecting the layer numbers of the lipid bilayers was obtained.
Collapse
|
8
|
Ashrafizadeh M, Saebfar H, Gholami MH, Hushmandi K, Zabolian A, Bikarannejad P, Hashemi M, Daneshi S, Mirzaei S, Sharifi E, Kumar AP, Khan H, Heydari Sheikh Hossein H, Vosough M, Rabiee N, Thakur Kumar V, Makvandi P, Mishra YK, Tay FR, Wang Y, Zarrabi A, Orive G, Mostafavi E. Doxorubicin-loaded graphene oxide nanocomposites in cancer medicine: Stimuli-responsive carriers, co-delivery and suppressing resistance. Expert Opin Drug Deliv 2022; 19:355-382. [PMID: 35152815 DOI: 10.1080/17425247.2022.2041598] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The application of doxorubicin (DOX) in cancer therapy has been limited due to its drug resistance and poor internalization. Graphene oxide (GO) nanostructures have the capacity for DOX delivery while promoting its cytotoxicity in cancer. AREAS COVERED The favorable characteristics of GO nanocomposites, preparation method, and application in cancer therapy are described. Then, DOX resistance in cancer is discussed. The GO-mediated photothermal therapy and DOX delivery for cancer suppression are described. Preparation of stimuli-responsive GO nanocomposites, surface functionalization, hybrid nanoparticles, and theranostic applications are emphasized in DOX chemotherapy. EXPERT OPINION Graphene oxide nanoparticle-based photothermal therapy maximizes the anti-cancer activity of DOX against cancer cells. Apart from DOX delivery, GO nanomaterials are capable of loading anti-cancer agents and genetic tools to minimize drug resistance and enhance the cytolytic impact of DOX in cancer eradication. To enhance DOX accumulation in cancer cells, stimuli-responsive (redox-, light-, enzyme- and pH-sensitive) GO nanoparticles have been developed for DOX delivery. Further development of targeted delivery of DOX-loaded GO nanomaterials against cancer cells may be achieved by surface modification of polymers such as polyethylene glycol, hyaluronic acid, and chitosan. Doxorubicin-loaded GO nanoparticles have demonstrated theranostic potential for simultaneous diagnosis and therapy. Hybridization of GO with other nanocarriers such as silica and gold nanoparticles further broadens their potential anti-cancer therapy applications.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Hamidreza Saebfar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hossein Gholami
- DVM. Graduated, Faculty of Veterinary Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Pooria Bikarannejad
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, 6517838736 Hamadan, Iran
| | - Alan Prem Kumar
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.,Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | | | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran.,School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Vijay Thakur Kumar
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.,School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interface, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, 6400 Sønderborg, Denmark
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, USA
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer 34396, Istanbul, Turkey
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain.,University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHUFundación Eduardo Anitua). Vitoria-Gasteiz, Spain.,Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.,Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
9
|
Graphene oxide and fluorescent aptamer based novel biosensor for detection of 25-hydroxyvitamin D 3. Sci Rep 2021; 11:23456. [PMID: 34873222 PMCID: PMC8649066 DOI: 10.1038/s41598-021-02837-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023] Open
Abstract
For maintaining the healthy metabolic status, vitamin D is a beneficial metabolite stored majorly in its pre-activated form, 25-hydroxyvitamin D3 (25(OH)D3). Due to its important role in bone strengthening, the study was planned to quantify 25(OH)D3 levels in our blood. Quantification techniques for 25(OH)D3 are costly thus requiring a need for a low cost, and sensitive detection methods. In this work, an economic, and sensitive sensor for the detection of 25(OH)D3 was developed using aptamer and graphene oxide (GO). Aptamer is an oligonucleotide, sensitive towards its target, whereas, GO with 2D nanosheets provides excellent quenching surface. Aptamer labeled with fluorescein (5’, 6-FAM) is adsorbed by π–π interaction on the GO sheets leading to quenching of the fluorescence due to Förster resonance energy transfer (FRET). However, in the presence of 25(OH)D3, a major portion of aptamer fluorescence remains unaltered, due to its association with 25(OH)D3. However, in the absence, aptamer fluorescence gets fully quenched. Fluorescence intensity quenching was monitored using fluorescence spectrophotometer and agarose gel based system. The limit of detection of 25(OH)D3 by this method was found to be 0.15 µg/mL whereas when GO-COOH was used, limit of detection was improved to 0.075 µg/mL. Therefore, this method could come up as a new sensing method in the field of vitamin D detection.
Collapse
|
10
|
Kim CH, Han Y, Choi Y, Kwon M, Son H, Luo Z, Kim TH. Extremely Uniform Graphene Oxide Thin Film as a Universal Platform for One-Step Biomaterial Patterning. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103596. [PMID: 34510750 DOI: 10.1002/smll.202103596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Indexed: 05/19/2023]
Abstract
Graphene oxide (GO) has proven to be a highly promising material across various biomedical research avenues, including cancer therapy and stem cell-based regenerative medicine. However, creating a uniform GO coating as a thin layer on desired substrates has been considered challenging owing to the intrinsic variability of the size and shape of GO. Herein, a new method is introduced that enables highly uniform GO thin film (UGTF) fabrication on various biocompatible substrates. By optimizing the composition of the GO suspension and preheating process to the substrates, the "coffee-ring effect" is significantly suppressed. After applying a special postsmoothing process referred to as the low-oxygen concentration and low electrical energy plasma (LOLP) treatment, GO is converted to small fragments with a film thickness of up to several nanometers (≈5.1 nm) and a height variation of only 0.6 nm, based on atomic force microscopy images. The uniform GO thin film can also be generated as periodic micropatterns on glass and polymer substrates, which are effective in one-step micropatterning of both antibodies and mouse melanoma cells (B16-F10). Therefore, it can be concluded that the developed UGTF is useful for various graphene-based biological applications.
Collapse
Affiliation(s)
- Cheol-Hwi Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yoojoong Han
- R&D division, Nanobase, Inc., Seoul, 08502, Republic of Korea
| | - Yoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minkyeong Kwon
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyungbin Son
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, P. R. China
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
- Integrative Research Center for Two-Dimensional Functional Materials, Institute of Interdisciplinary Convergence Research, Chung-Ang University, Seoul, 06974, Republic of Korea
| |
Collapse
|
11
|
Ha DT, Nguyen VT, Kim MS. Graphene Oxide-Based Simple and Rapid Detection of Antibiotic Resistance Gene via Quantum Dot-Labeled Zinc Finger Proteins. Anal Chem 2021; 93:8459-8466. [PMID: 34097379 DOI: 10.1021/acs.analchem.1c00560] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With the increasing rise of antibiotic-resistant pathogens, a simple and rapid detection of antibiotic resistance gene (ARG) is crucial to mitigate the spreading of antibiotic resistance. DNA-binding zinc finger proteins (ZFPs) can be engineered to recognize specific double-stranded (ds) DNA sequences in ARG. Here, we designed a simple and rapid method to detect ARG in bacteria utilizing engineered ZFPs and 2D nanosheet graphene oxide (GO) as a sensing platform. Our approach relies on the on and off effect of fluorescence signal in the presence and absence of target ARG, respectively. By taking advantage of the unique quenching capability of GO due to its electronic property, quantum dot (QD)-labeled ZFPs are adsorbed onto the GO sheets, and their fluorescence signal is quenched by proximal GO sheets through fluorescence resonance energy transfer (FRET). In the presence of target DNA, ZFP binding to the target DNA induces dissociation from GO, thereby restoring the fluorescence signal. Our system detects target DNA through restoration of QD emission as the restored signal increases directly with target DNA concentrations. Engineered ZFPs were able to detect specific dsDNA of the tetracycline resistance gene tetM with high specificity after only 10 min incubation on our GO-based sensing system. Our sensing system employed one-step FRET-based ZFP and GO combined technology to enable rapid and quantitative detection of ARG, providing a limit of detection as low as 1 nM. This study demonstrated the application of GO in conjunction with engineered DNA-binding domains for the direct detection of dsDNA with great potential as a rapid and reliable screening and detecton method against the growing threat of antibiotic resistant bacteria.
Collapse
Affiliation(s)
- Dat Thinh Ha
- Department of Chemistry, Western Kentucky University, Bowling Green, Kentucky 42101, United States
| | - Van-Thuan Nguyen
- Department of Chemistry, Western Kentucky University, Bowling Green, Kentucky 42101, United States
| | - Moon-Soo Kim
- Department of Chemistry, Western Kentucky University, Bowling Green, Kentucky 42101, United States
| |
Collapse
|
12
|
Liu W, Liu J, Huang A, Shi S, Yao T. An artificial intelligence process of immunoassay for multiple biomarkers based on logic gates. Analyst 2021; 146:889-895. [PMID: 33237051 DOI: 10.1039/d0an01844a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We present a universal platform to synchronously analyze the possible existing state of two protein biomarkers. This platform is based on the integration of three logic gates: NAND, OR and NOT. These logic gates were constructed by the principle of immune recognition and fluorescence quenching between fluorescein labelled antibodies/antigens and antibody-conjugated graphene oxide (GO). An artificial intelligence (AI) protein analysis process was designed by us and accordingly a small program was written in JAVA. This protein analysis process with its JAVA code may be applied to give logic judgments on the possible existing state of two protein components. We expect that our fundamental research on multiple biomarker analysis can provide potential application in AI-assisted medical diagnosis with the interface for remote medical treatment.
Collapse
Affiliation(s)
- Wenjie Liu
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd, Shanghai, 200092, PR China.
| | | | | | | | | |
Collapse
|
13
|
Piñeiro-García A, Vega-Díaz SM, Tristán F, Meneses-Rodríguez D, Labrada-Delgado GJ, Semetey V. Photochemical Functionalization of Graphene Oxide by Thiol–Ene Click Chemistry. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexis Piñeiro-García
- Departamento de Ingeniería Química, Tecnológico Nacional de México/Instituto Tecnológico de Celaya, Avenida Tecnológico esq., A. Garcia Cubas S/N, Celaya CP 38010, Guanajuato, Mexico
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 11 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Sofia M. Vega-Díaz
- Departamento de Ingeniería Química, Tecnológico Nacional de México/Instituto Tecnológico de Celaya, Avenida Tecnológico esq., A. Garcia Cubas S/N, Celaya CP 38010, Guanajuato, Mexico
| | - Ferdinando Tristán
- Departamento de Ingeniería Química, Tecnológico Nacional de México/Instituto Tecnológico de Celaya, Avenida Tecnológico esq., A. Garcia Cubas S/N, Celaya CP 38010, Guanajuato, Mexico
| | - David Meneses-Rodríguez
- Cátedras-CONACYT CINVESTAV, Mérida Km 6, Carretera Antigua a Progreso, Cordemex, Mérida CP 97310, Yucatán, Mexico
| | | | - Vincent Semetey
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 11 Rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
14
|
P K S, Bathula C, K N C, Das M. Usage of Graphene Oxide in Fluorescence Quenching-Linked Immunosorbent Assay for the Detection of Cry2Ab Protein Present in Transgenic Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3656-3662. [PMID: 32073854 DOI: 10.1021/acs.jafc.9b06650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphene oxide-based sensor technologies in various detection platforms have been adopted in multiple dimensions. Most of the applications in combination with other materials such as gold, silver, enzymes, and so forth are read as electrical, electrochemical, impedance, and fluorescence signals. We report the development of a novel and simple fluorescence quenching-based immunoassay platform that provides quantitative binding sites for the Cry2Ab protein content present in the transgenic cotton (Gossypium hirsutum) plant. In this assay, the graphene oxide-conjugated anti-Cry2Ab antibody serves as the binding site for the analyte Cry2Ab protein, which forms a complex with a second anti-Cry2Ab fluorescein isothiocyanate (FITC)-conjugated antibody. This complex acts as the reaction center of this platform where the graphene oxide quenches the fluorescence signal of the FITC molecule. This microtiter plate-based method currently works at a sensitivity of 0.78 ng /ml, which can further be improved.
Collapse
Affiliation(s)
- Smitha P K
- Department of Biotechnology, Research and Development Centre, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
- Beyond Antibody, S-005 Krishna Greens, Krishna Temple Road, Dodda Bommasandra, Bangalore 560 097, Karnataka, India
| | - Christopher Bathula
- Tumor Immunology Program, DSRG1, MSCTR, MSMF, 8th floor, Mazumdar Shaw Medical Centre, Narayana Health City, Bommasandra, Bangalore 560 099, Karnataka, India
| | - Chandrashekara K N
- Division of Plant Physiology and Biotechnology, UPASI Tea Research Foundation, Tea Research Institute, Nirar Dam, Valparai, Coimbatore 642 127, Tamil Nadu, India
| | - Manjula Das
- Tumor Immunology Program, DSRG1, MSCTR, MSMF, 8th floor, Mazumdar Shaw Medical Centre, Narayana Health City, Bommasandra, Bangalore 560 099, Karnataka, India
| |
Collapse
|
15
|
Gonzalez-Rodriguez R, Campbell E, Naumov A. Multifunctional graphene oxide/iron oxide nanoparticles for magnetic targeted drug delivery dual magnetic resonance/fluorescence imaging and cancer sensing. PLoS One 2019; 14:e0217072. [PMID: 31170197 PMCID: PMC6553710 DOI: 10.1371/journal.pone.0217072] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/03/2019] [Indexed: 11/19/2022] Open
Abstract
Graphene Oxide (GO) has recently attracted substantial attention in biomedical field as an effective platform for biological sensing, tissue scaffolds and in vitro fluorescence imaging. However, the targeting modality and the capability of its in vivo detection have not been explored. To enhance the functionality of GO, we combine it with superparamagnetic iron oxide nanoparticles (Fe3O4 NPs) serving as a biocompatible magnetic drug delivery addends and magnetic resonance contrast agent for MRI. Synthesized GO-Fe3O4 conjugates have an average size of 260 nm and show low cytotoxicity comparable to that of GO. Fe3O4 nanoparticles provide superparamagnetic properties for magnetic targeted drug delivery allowing simple manipulation by the magnetic field and magnetic resonance imaging with high r2/r1 relaxivity ratios of ~10.7. GO-Fe3O4 retains pH-sensing capabilities of GO used in this work to detect cancer versus healthy environments in vitro and exhibits fluorescence in the visible for bioimaging. As a drug delivery platform GO-Fe3O4 shows successful fluorescence-tracked transport of hydrophobic doxorubicin non-covalently conjugated to GO with substantial loading and 2.5-fold improved efficacy. As a result, we propose GO-Fe3O4 nanoparticles as a novel multifunctional magnetic targeted platform for high efficacy drug delivery traced in vitro by GO fluorescence and in vivo via MRI capable of optical cancer detection.
Collapse
Affiliation(s)
| | - Elizabeth Campbell
- Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX, United States of America
| | - Anton Naumov
- Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX, United States of America
| |
Collapse
|
16
|
Noroozi AA, Abdi Y. A graphene/Si Schottky diode for the highly sensitive detection of protein. RSC Adv 2019; 9:19613-19619. [PMID: 35519385 PMCID: PMC9065274 DOI: 10.1039/c9ra03765a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 06/11/2019] [Indexed: 11/21/2022] Open
Abstract
Herein, a graphene/Si-based device was introduced for bovine serum albumin (BSA) sensing.
Collapse
Affiliation(s)
- Ali Akbar Noroozi
- Nanophysics Research Laboratory
- Department of Physics
- University of Tehran
- Tehran
- Iran
| | - Yaser Abdi
- Nanophysics Research Laboratory
- Department of Physics
- University of Tehran
- Tehran
- Iran
| |
Collapse
|
17
|
Choi H, Kim S, Lee S, Kim C, Ryu JH. Array-Based Protein Sensing Using an Aggregation-Induced Emission (AIE) Light-Up Probe. ACS OMEGA 2018; 3:9276-9281. [PMID: 31459059 PMCID: PMC6644794 DOI: 10.1021/acsomega.8b01269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/02/2018] [Indexed: 06/10/2023]
Abstract
Protein detection and identification are important for the diagnosis of diseases; however, the development of facile sensing probes still remains challenging. Here, we present an array-based "turn on" protein-sensing platform capable of detecting and identifying proteins using aggregation-induced emission luminogens (AIEgens). The water-soluble AIEgens in which fluorescence was initially turned off showed strong fluorescence in the presence of nanomolar concentrations of proteins via restriction of the intramolecular rotation of the AIEgens. The binding affinities between the AIEgens and proteins were associated with various chemical functional groups on AIEgens, resulting in distinct fluorescent-signal outcomes for each protein. The combined fluorescence outputs provided sufficient information to detect and discriminate proteins of interest by linear discriminant analysis. Furthermore, the array-based sensor enabled classification of different concentrations of specific proteins. These results provide novel insight into the use of the AIEgens as a new type of sensing probe in array-based systems.
Collapse
Affiliation(s)
| | | | | | | | - Ja-Hyoung Ryu
- E-mail: . Tel: +82-52-2172548. Fax: +82-52-2172019 (J.-H.R.)
| |
Collapse
|
18
|
Giust D, Lucío MI, El-Sagheer AH, Brown T, Williams LE, Muskens OL, Kanaras AG. Graphene Oxide-Upconversion Nanoparticle Based Portable Sensors for Assessing Nutritional Deficiencies in Crops. ACS NANO 2018; 12:6273-6279. [PMID: 29873479 DOI: 10.1021/acsnano.8b03261] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The development of innovative technologies to rapidly detect biomarkers associated with nutritional deficiencies in crops is highly relevant to agriculture and thus could impact the future of food security. Zinc (Zn) is an important micronutrient in plants, and deficiency leads to poor health, quality, and yield of crops. We have developed portable sensors, based on graphene oxide and upconversion nanoparticles, which could be used in the early detection of Zn deficiency in crops, sensing mRNAs encoding members of the ZIP-transporter family in crops. ZIPs are membrane transport proteins, some of which are up-regulated at the early stages of Zn deficiency, and they are part of the biological mechanism by which crops respond to nutritional deficiency. The principle of these sensors is based on the intensity of the optical output resulting from the interaction of oligonucleotide-coated upconversion nanoparticles and graphene oxide in the absence or presence of a specific oligonucleotide target. The sensors can reliably detect mRNAs in RNA extracts from plants using a smartphone camera. Our work introduces the development of accurate and highly sensitive sensors for use in the field to determine crop nutrient status and ultimately facilitate economically important nutrient management decisions.
Collapse
Affiliation(s)
| | | | - Afaf H El-Sagheer
- Department of Chemistry , University of Oxford, Chemistry Research Laboratory , 12 Mansfield Road , Oxford , OX1 3TA , U.K
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering , Suez University , Suez 43721 , Egypt
| | - Tom Brown
- Department of Chemistry , University of Oxford, Chemistry Research Laboratory , 12 Mansfield Road , Oxford , OX1 3TA , U.K
| | | | | | | |
Collapse
|
19
|
Huang A, Zhang L, Li W, Ma Z, Shuo S, Yao T. Controlled fluorescence quenching by antibody-conjugated graphene oxide to measure tau protein. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171808. [PMID: 29765647 PMCID: PMC5936912 DOI: 10.1098/rsos.171808] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/09/2018] [Indexed: 05/31/2023]
Abstract
We report an ultrasensitive immunoassay for tau protein-a key marker of Alzheimer's disease. This sensing platform relies on graphene oxide (GO) surfaces conjugated with anti-human tau antibody to provide quantitative binding sites for the tau protein. The GO quenches standard fluorescein isothiocyanate labelled tau (tau-FITC) when tau protein and tau-FITC are both present and compete for the binding sites. This change in fluorescence signal can be used to quantitate tau protein. In contrast with traditional enzyme-linked immunosorbent assay (ELISA), our method does not require enzyme-linked secondary antibodies for protein recognition nor does it require an enzyme substrate for optical signal generation. This requires fewer reagents and has less systematic error than the antigen-antibody recognition steps in ELISA. Our method has a tau protein detection limit of 0.14 pmol ml-1 in buffer. This approach could be developed into a promising biosensor for the detection of tau protein and may be useful in the clinical diagnosis of tau-induced neurodegeneration syndromes.
Collapse
Affiliation(s)
- Ao Huang
- Authors for correspondence: Ao Huang e-mail:
| | | | | | | | - Shi Shuo
- Authors for correspondence: Shi Shuo e-mail:
| | - Tianming Yao
- Authors for correspondence: Tianming Yao e-mail:
| |
Collapse
|
20
|
Darwish NT, Sekaran SD, Alias Y, Khor SM. Immunofluorescence–based biosensor for the determination of dengue virus NS1 in clinical samples. J Pharm Biomed Anal 2018; 149:591-602. [DOI: 10.1016/j.jpba.2017.11.064] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 02/08/2023]
|
21
|
Zheng P, Wu N. Fluorescence and Sensing Applications of Graphene Oxide and Graphene Quantum Dots: A Review. Chem Asian J 2017; 12:2343-2353. [PMID: 28742956 PMCID: PMC5915373 DOI: 10.1002/asia.201700814] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/23/2017] [Indexed: 01/01/2023]
Abstract
Graphene oxide and graphene quantum dots are attractive fluorophores that are inexpensive, nontoxic, photostable, water-soluble, biocompatible, and environmentally friendly. They find extensive applications in fluorescent biosensors and chemosensors, in which they serve as either fluorophores or quenchers. As fluorophores, they display tunable photoluminescence emission and the "giant red-edge effect". As quenchers, they exhibit a remarkable quenching efficiency through either electron transfer or Förster resonance energy transfer (FRET) process. In this review, the origin of fluorescence and the mechanism of excitation wavelength-dependent fluorescence of graphene oxide and graphene quantum dots are discussed. Sensor design strategies based on graphene oxide and graphene quantum dots are presented. The applications of these sensors in health care, the environment, agriculture, and food safety are highlighted.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Mechanical and Aerospace Engineering, West Virginia University, PO Box 6106, Morgantown, WV 26506 (USA)
| | - Nianqiang Wu
- Department of Mechanical and Aerospace Engineering, West Virginia University, PO Box 6106, Morgantown, WV 26506 (USA)
| |
Collapse
|
22
|
Wang J, Cao E, Lin W, Song P, Zhou Q, Zhang X, Sun Y, Liang W, Sun M. Fluorescence Resonance Energy Transfer of Monomer via Photoisomerization. ChemistrySelect 2017. [DOI: 10.1002/slct.201700757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiangcai Wang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science; Center for Green Innovation; School of Mathematics and Physics; University of Science and Technology Beijing; Beijing 100083 P. R. China
- Beijing National Laboratory for Condensed Matter Physics; Institute of Physics; Chinese Academy of Science; Beijing 100190 P. R. China
| | - En Cao
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science; Center for Green Innovation; School of Mathematics and Physics; University of Science and Technology Beijing; Beijing 100083 P. R. China
- Beijing National Laboratory for Condensed Matter Physics; Institute of Physics; Chinese Academy of Science; Beijing 100190 P. R. China
| | - Weihua Lin
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science; Center for Green Innovation; School of Mathematics and Physics; University of Science and Technology Beijing; Beijing 100083 P. R. China
- Beijing National Laboratory for Condensed Matter Physics; Institute of Physics; Chinese Academy of Science; Beijing 100190 P. R. China
| | - Peng Song
- Department of Physics; Liaoning University; Shenyang 110036 P. R. China
| | - Qiao Zhou
- Department of Physics; Liaoning University; Shenyang 110036 P. R. China
| | - Xiaofang Zhang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science; Center for Green Innovation; School of Mathematics and Physics; University of Science and Technology Beijing; Beijing 100083 P. R. China
| | - Yinghui Sun
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science; Center for Green Innovation; School of Mathematics and Physics; University of Science and Technology Beijing; Beijing 100083 P. R. China
| | - Wenjie Liang
- Beijing National Laboratory for Condensed Matter Physics; Institute of Physics; Chinese Academy of Science; Beijing 100190 P. R. China
| | - Mengtao Sun
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science; Center for Green Innovation; School of Mathematics and Physics; University of Science and Technology Beijing; Beijing 100083 P. R. China
- Beijing National Laboratory for Condensed Matter Physics; Institute of Physics; Chinese Academy of Science; Beijing 100190 P. R. China
| |
Collapse
|