1
|
Vieira APGC, de Souza AN, Lima WG, Brito JCM, Simião DC, Gonçalves LVR, Cordeiro LPB, de Oliveira Scoaris D, Fernandes SOA, Resende JM, Bechinger B, Verly RM, de Lima ME. The Synthetic Peptide LyeTx I mn∆K, Derived from Lycosa erythrognatha Spider Toxin, Is Active against Methicillin-Resistant Staphylococcus aureus (MRSA) In Vitro and In Vivo. Antibiotics (Basel) 2024; 13:248. [PMID: 38534683 PMCID: PMC10967519 DOI: 10.3390/antibiotics13030248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
The urgent global health challenge posed by methicillin-resistant Staphylococcus aureus (MRSA) infections demands effective solutions. Antimicrobial peptides (AMPs) represent promising tools of research of new antibacterial agents and LyeTx I mn∆K, a short synthetic peptide based on the Lycosa erythrognatha spider venom, is a good representative. This study focused on analyzing the antimicrobial activities of LyeTx I mn∆K, including minimum inhibitory and bactericidal concentrations, synergy and resensitization assays, lysis activity, the effect on biofilm, and the bacterial death curve in MRSA. Additionally, its characterization was conducted through isothermal titration calorimetry, dynamic light scattering, calcein release, and finally, efficacy in a mice wound model. The peptide demonstrates remarkable efficacy against planktonic cells (MIC 8-16 µM) and biofilms (>30% of inhibition) of MRSA, and outperforms vancomycin in terms of rapid bactericidal action and anti-biofilm effects. The mechanism involves significant membrane damage. Interactions with bacterial model membranes, including those with lysylphosphatidylglycerol (LysylPOPG) modifications, highlight the versatility and selectivity of this compound. Also, the peptide has the ability to sensitize resistant bacteria to conventional antibiotics, showing potential for combinatory therapy. Furthermore, using an in vivo model, this study showed that a formulated gel containing the peptide proved superior to vancomycin in treating MRSA-induced wounds in mice. Together, the results highlight LyeTx I mnΔK as a promising prototype for the development of effective therapeutic strategies against superficial MRSA infections.
Collapse
Affiliation(s)
- Ana Paula Gonçalves Coelho Vieira
- Faculdade de Saúde Santa Casa de Belo Horizonte, Programa de Pós-Graduação Stricto Sensu em Medicina e Biomedicina, Belo Horizonte 30150-240, Brazil; (A.P.G.C.V.); (W.G.L.); (L.V.R.G.)
| | - Amanda Neves de Souza
- Departamento de Química, FACET, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)—Campus JK, Diamantina 39100-000, Brazil;
- Institut de Chimie, Centre National de la Recherche Scientifique, UMR7177, Université de Strasbourg, 67070 Strasbourg, France;
| | - William Gustavo Lima
- Faculdade de Saúde Santa Casa de Belo Horizonte, Programa de Pós-Graduação Stricto Sensu em Medicina e Biomedicina, Belo Horizonte 30150-240, Brazil; (A.P.G.C.V.); (W.G.L.); (L.V.R.G.)
| | | | - Daniela Carolina Simião
- Laboratório de Radioisótopos, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia—Campus Pampulha, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (D.C.S.); (S.O.A.F.)
| | - Lucas Vinícius Ribeiro Gonçalves
- Faculdade de Saúde Santa Casa de Belo Horizonte, Programa de Pós-Graduação Stricto Sensu em Medicina e Biomedicina, Belo Horizonte 30150-240, Brazil; (A.P.G.C.V.); (W.G.L.); (L.V.R.G.)
| | - Lídia Pereira Barbosa Cordeiro
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.P.B.C.); (J.M.R.)
| | | | - Simone Odília Antunes Fernandes
- Laboratório de Radioisótopos, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia—Campus Pampulha, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (D.C.S.); (S.O.A.F.)
| | - Jarbas Magalhães Resende
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.P.B.C.); (J.M.R.)
| | - Burkhard Bechinger
- Institut de Chimie, Centre National de la Recherche Scientifique, UMR7177, Université de Strasbourg, 67070 Strasbourg, France;
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Rodrigo Moreira Verly
- Departamento de Química, FACET, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)—Campus JK, Diamantina 39100-000, Brazil;
| | - Maria Elena de Lima
- Faculdade de Saúde Santa Casa de Belo Horizonte, Programa de Pós-Graduação Stricto Sensu em Medicina e Biomedicina, Belo Horizonte 30150-240, Brazil; (A.P.G.C.V.); (W.G.L.); (L.V.R.G.)
| |
Collapse
|
2
|
Guimarães CFRC, Félix AS, Brandão TAS, Bemquerer MP, Piló-Veloso D, Verly RM, Resende JM. Optimizing the synthesis of dimeric peptides: influence of the reaction medium and effects that modulate kinetics and reaction yield. Amino Acids 2023; 55:1201-1212. [PMID: 37543997 DOI: 10.1007/s00726-023-03309-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023]
Abstract
Peptides are remarkably interesting alternatives to several applications. In particular, antimicrobial sequences have raised major interest of the scientific community due to the resistance acquired by commonly used antibiotics. Amongst these, some dimeric peptides have shown very promising characteristics as strong biological activities and resistance against degradation by peptidases. However, despite such promising characteristics, a relatively small number of studies address dimeric peptides, mainly due to the synthesis-related obstacles in their production, whereas the well-implemented routines of solid phase peptide synthesis-which includes the possibility of automation-makes life significantly easier. Here, we present kinetic investigations of the dimerization of a cysteine-containing sequence to obtain the homodimeric antimicrobial peptide homotarsinin. Based on the structural and membrane interaction data already available for the dimer and its monomeric chain, we have proposed distinct dimerization protocols in selected environments, namely, aqueous buffer, TFE:H2O and micellar solutions. The experimental results were adjusted by a theoretical model. Both the kinetic profiles and the reaction yields are dependent on the reaction medium, clearly indicating that aggregation, peptide structure, and peptide-membrane interactions play major roles in the formation of the disulfide bond. Finally, the rationalization of the different aspects addressed here is expected to contribute to research and applications that demand the obtainment of dimeric peptides.
Collapse
Affiliation(s)
- Carlos F R C Guimarães
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, P.O. Box 486, Belo Horizonte, MG, 31270-901, Brazil
- Present Address: Universidade Nilton Lins, Avenida Professor Nilton Lins, Manaus, AM, 69058-030, Brazil
| | - Amanda S Félix
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000, Brazil
| | - Tiago A S Brandão
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, P.O. Box 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Marcelo P Bemquerer
- Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Embrapa Gado de Leite, Juiz de Fora, MG, 36038-330, Brazil
| | - Dorila Piló-Veloso
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, P.O. Box 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Rodrigo M Verly
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000, Brazil.
| | - Jarbas M Resende
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, P.O. Box 486, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
3
|
Seshadri R, Roux S, Huber KJ, Wu D, Yu S, Udwary D, Call L, Nayfach S, Hahnke RL, Pukall R, White JR, Varghese NJ, Webb C, Palaniappan K, Reimer LC, Sardà J, Bertsch J, Mukherjee S, Reddy T, Hajek PP, Huntemann M, Chen IMA, Spunde A, Clum A, Shapiro N, Wu ZY, Zhao Z, Zhou Y, Evtushenko L, Thijs S, Stevens V, Eloe-Fadrosh EA, Mouncey NJ, Yoshikuni Y, Whitman WB, Klenk HP, Woyke T, Göker M, Kyrpides NC, Ivanova NN. Expanding the genomic encyclopedia of Actinobacteria with 824 isolate reference genomes. CELL GENOMICS 2022; 2:100213. [PMID: 36778052 PMCID: PMC9903846 DOI: 10.1016/j.xgen.2022.100213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/19/2022] [Accepted: 10/16/2022] [Indexed: 11/13/2022]
Abstract
The phylum Actinobacteria includes important human pathogens like Mycobacterium tuberculosis and Corynebacterium diphtheriae and renowned producers of secondary metabolites of commercial interest, yet only a small part of its diversity is represented by sequenced genomes. Here, we present 824 actinobacterial isolate genomes in the context of a phylum-wide analysis of 6,700 genomes including public isolates and metagenome-assembled genomes (MAGs). We estimate that only 30%-50% of projected actinobacterial phylogenetic diversity possesses genomic representation via isolates and MAGs. A comparison of gene functions reveals novel determinants of host-microbe interaction as well as environment-specific adaptations such as potential antimicrobial peptides. We identify plasmids and prophages across isolates and uncover extensive prophage diversity structured mainly by host taxonomy. Analysis of >80,000 biosynthetic gene clusters reveals that horizontal gene transfer and gene loss shape secondary metabolite repertoire across taxa. Our observations illustrate the essential role of and need for high-quality isolate genome sequences.
Collapse
Affiliation(s)
- Rekha Seshadri
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Corresponding author
| | - Simon Roux
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Katharina J. Huber
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dongying Wu
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Sora Yu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Dan Udwary
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lee Call
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Stephen Nayfach
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Richard L. Hahnke
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Rüdiger Pukall
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | | - Neha J. Varghese
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Cody Webb
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | | | - Lorenz C. Reimer
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Joaquim Sardà
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jonathon Bertsch
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | | | - T.B.K. Reddy
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Patrick P. Hajek
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Marcel Huntemann
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - I-Min A. Chen
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Alex Spunde
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Alicia Clum
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Nicole Shapiro
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Zong-Yen Wu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zhiying Zhao
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Yuguang Zhou
- China General Microbiological Culture Collection Center, Beijing, China
| | - Lyudmila Evtushenko
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, All-Russian Collection of Microorganisms (VKM), Pushchino, Russia
| | - Sofie Thijs
- Center for Environmental Sciences, Environmental Biology, Hasselt University, Diepenbeek, Belgium
| | - Vincent Stevens
- Center for Environmental Sciences, Environmental Biology, Hasselt University, Diepenbeek, Belgium
| | - Emiley A. Eloe-Fadrosh
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nigel J. Mouncey
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yasuo Yoshikuni
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA,Center for Advanced Bioenergy and Bioproducts Innovation, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA,Global Institution for Collaborative Research and Education, Hokkaido University, Hokkaido 060-8589, Japan
| | | | - Hans-Peter Klenk
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| | - Tanja Woyke
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany,Corresponding author
| | - Nikos C. Kyrpides
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Natalia N. Ivanova
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA,Corresponding author
| |
Collapse
|
4
|
Antiangiogenic potential of small polypeptide sequences: In vivo assays, cytotoxicity, synthetic approaches and influence of C-terminal carboxyamidation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Epimers l- and d-Phenylseptin: How the relative stereochemistry affects the peptide-membrane interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183708. [PMID: 34310911 DOI: 10.1016/j.bbamem.2021.183708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022]
Abstract
In recent decades, several epimers of peptides containing d-amino acids have been identified in antimicrobial sequences, a feature which has been associated with post-translational modification. Generally, d-isomers present similar or inferior antimicrobial activity, only surpassing their epimers in resistance to peptidases. The naturally occurring l-Phenylseptin (l-Phes) and d-Phenylseptin (d-Phes) peptides (FFFDTLKNLAGKVIGALT-nh2) were reported with d-epimer showing higher activity against Staphylococcus aureus and Xanthomonas axonopodis in comparison with the l-epimer. In this study, we combine structural (CD, solution NMR), orientational (solid-state NMR) and biophysical (ITC, DSC and DLS) studies to understand the role of the d-phenylalanine in the increase of the antimicrobial activity. Although both peptides are structurally similar in the helical region ranging from D4 to the C-terminus, significant structural differences were observed near the peptides' N-termini (which encompasses the FFF motif). Specific aromatic interactions involving the phenylalanine side chains of d-Phes is responsible to maintaining the F1-F3 residues on the hydrophobic face of the peptide, increasing its amphipathicity when compared to the l-epimer. The higher capability of d-Phes to exert an efficient anchoring in the hydrophobic core of the phospholipid bilayer indicates a pivotal role of the N-terminus in enhancing the interaction between the d-peptide and the membrane interface in relation to its epimer.
Collapse
|
6
|
Muñoz-López J, Oliveira JCL, Michel DAGR, Ferreira CS, Neto FG, Salnikov ES, Verly RM, Bechinger B, Resende JM. Membrane interactions of Ocellatins. Where do antimicrobial gaps stem from? Amino Acids 2021; 53:1241-1256. [PMID: 34251525 DOI: 10.1007/s00726-021-03029-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
The antimicrobial peptides Ocellatin-LB1, -LB2 and -F1, isolated from frogs, are identical from residue 1 to 22, which correspond to the -LB1 sequence, whereas -LB2 carries an extra N and -F1 additional NKL residues at their C-termini. Despite the similar sequences, previous investigations showed different spectra of activities and biophysical investigations indicated a direct correlation between both membrane-disruptive properties and activities, i.e., ocellatin-F1 > ocellatin-LB1 > ocellatin-LB2. This study presents experimental evidence as well as results from theoretical studies that contribute to a deeper understanding on how these peptides exert their antimicrobial activities and how small differences in the amino acid composition and their secondary structure can be correlated to these activity gaps. Solid-state NMR experiments allied to the simulation of anisotropic NMR parameters allowed the determination of the membrane topologies of these ocellatins. Interestingly, the extra Asn residue at the Ocellatin-LB2 C-terminus results in increased topological flexibility, which is mainly related to wobbling of the helix main axis as noticed by molecular dynamics simulations. Binding kinetics and thermodynamics of the interactions have also been assessed by Surface Plasmon Resonance and Isothermal Titration Calorimetry. Therefore, these investigations allowed to understand in atomic detail the relationships between peptide structure and membrane topology, which are in tune within the series -F1 > > -LB1 ≥ -LB2, as well as how peptide dynamics can affect membrane topology, insertion and binding.
Collapse
Affiliation(s)
- José Muñoz-López
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, P.O. Box 486, Belo Horizonte, MG, 31270-901, Brazil.,UMR7177, Institut de Chimie, Université de Strasbourg/CNRS, 4, rue Blaise Pascal , 67000, Strasbourg, France
| | - Jade C L Oliveira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, P.O. Box 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Daniel A G R Michel
- Departamento de Química, Universidade Federal Dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000, Brazil
| | - Carolina S Ferreira
- Departamento de Química, Universidade Federal Dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000, Brazil
| | - Francisco Gomes Neto
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-900, Brazil
| | - Evgeniy S Salnikov
- UMR7177, Institut de Chimie, Université de Strasbourg/CNRS, 4, rue Blaise Pascal , 67000, Strasbourg, France
| | - Rodrigo M Verly
- Departamento de Química, Universidade Federal Dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000, Brazil
| | - Burkhard Bechinger
- UMR7177, Institut de Chimie, Université de Strasbourg/CNRS, 4, rue Blaise Pascal , 67000, Strasbourg, France.,Institut Universitaire de France, 75005, Paris, France
| | - Jarbas M Resende
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, P.O. Box 486, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
7
|
Reis PVM, Lima VM, Souza KR, Cardoso GA, Melo-Braga MN, Santos DM, Verly RM, Pimenta AMC, Dos Santos VL, de Lima ME. Synthetic Peptides Derived From Lycosa Erythrognatha Venom: Interaction With Phospholipid Membranes and Activity Against Resistant Bacteria. Front Mol Biosci 2021; 8:680940. [PMID: 34169094 PMCID: PMC8217815 DOI: 10.3389/fmolb.2021.680940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Superbugs are a public health problem, increasing the need of new drugs and strategies to combat them. Our group has previously identified LyeTxI, an antimicrobial peptide isolated from Lycosa erythrognatha spider venom. From LyeTxI, we synthesized and characterized a derived peptide named LyeTxI-b, which has shown significant in vitro and in vivo activity. In this work, we elucidate the interaction of LyeTxI-b with artificial membranes as well as its effects on resistant strains of bacteria in planktonic conditions or biofilms. Isothermal titration calorimetry revealed that LyeTxI-b interacts more rapidly and with higher intensity with artificial vesicles, showing higher affinity to anionic vesicles, when compared to synthetic LyeTxI. In calcein experiments, LyeTxI-b caused greater levels of vesicle cleavage. Both peptides showed antibacterial activity at concentrations of μmol L−1 against 12 different clinically isolated strains, in planktonic conditions, in a concentration-dependent manner. Furthermore, both peptides elicited a dose-dependent production of reactive oxygen species in methicillin-resistant Staphylococcus aureus. In S. aureus biofilm assay, LyeTxI-b was more potent than LyeTxI. However, none of these peptides reduced Escherichia coli biofilms. Our results show LyeTxI-b as a promising drug against clinically resistant strains, being a template for developing new antibiotics.
Collapse
Affiliation(s)
- Pablo V M Reis
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, Brazil.,Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vinícius M Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Kelton R Souza
- Departamento de Química, FACET, Universidade Federal dos Vales do Jequitinhonha e Mucuri - Campus JK, Diamantina, Brazil
| | - Gabriele A Cardoso
- Departamento de Química, FACET, Universidade Federal dos Vales do Jequitinhonha e Mucuri - Campus JK, Diamantina, Brazil
| | - Marcella N Melo-Braga
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Daniel M Santos
- Departamento de Bioquímica e Biologia Molecular, Campos Centro Oeste. Universidade Federal de São João Del-Rei, Diamantina, Brazil
| | - Rodrigo M Verly
- Departamento de Química, FACET, Universidade Federal dos Vales do Jequitinhonha e Mucuri - Campus JK, Diamantina, Brazil
| | - Adriano M C Pimenta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vera Lúcia Dos Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Maria Elena de Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.,Faculdade Santa Casa de Belo Horizonte, Programa de Pós-Graduação em Medicina - Biomedicina, Belo Horizonte, Brazil
| |
Collapse
|
8
|
Daniele-Silva A, Rodrigues SDCS, Dos Santos ECG, Queiroz Neto MFD, Rocha HADO, Silva-Júnior AAD, Resende JM, Araújo RM, Fernandes-Pedrosa MDF. NMR three-dimensional structure of the cationic peptide Stigmurin from Tityus stigmurus scorpion venom: In vitro antioxidant and in vivo antibacterial and healing activity. Peptides 2021; 137:170478. [PMID: 33359395 DOI: 10.1016/j.peptides.2020.170478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/05/2023]
Abstract
Infectious diseases and the rapid development of pathogens resistant to conventional drugs are a serious global public health problem, which motivates the search for new pharmacological agents. In this context, cationic peptides without disulfide bridges from different species of scorpion venom have been the target of scientific studies due to their multifunctional activities. Stigmurin is a linear peptide composed of 17 amino acid residues (Phe-Phe-Ser-Leu-Ile-Pro-Ser-Leu-Val-Gly-Gly-Leu-Ile-Ser-Ala-Phe-Lys-NH2), which is present in the venom gland of the scorpion Tityus stigmurus. Here we present investigations of the in vitro antioxidant action of Stigmurin together with the in vivo antibacterial and healing activity of this peptide in a wound infection model induced by Staphylococcus aureus. In addition, we have reports for the first time of the three-dimensional structure determined by NMR spectroscopy of a peptide without disulfide bridges present in scorpion venom from the Tityus genus. Stigmurin showed hydroxyl radical scavenging above 70 % at 10 μM and antibiotic action in the skin wound, reducing the number of viable microorganisms by 67.2 % on the 7 day after infection. Stigmurin (1 μg / μL) increased the retraction rate of the lesion, with wound area reduction of 43 % on the second day after skin injury, which indicates its ability to induce tissue repair. Stigmurin in trifluoroethanol:water exhibited a random conformation at the N-terminus region (Phe1 to Pro6), with a helical structure from Ser7 to Phe16. This structural information, allied with the multifunctional activity of Stigmurin, makes it an attractive candidate for the design of novel therapeutic agents.
Collapse
Affiliation(s)
- Alessandra Daniele-Silva
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Suedson de Carvalho Silva Rodrigues
- Laboratório de Isolamento e Síntese de Compostos Orgânicos, Instituto de Química, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | - Moacir Fernandes de Queiroz Neto
- Laboratório de Biotecnologia de Polímeros Naturais, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Hugo Alexandre de Oliveira Rocha
- Laboratório de Biotecnologia de Polímeros Naturais, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Arnóbio Antônio da Silva-Júnior
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Jarbas Magalhães Resende
- Laboratório de Síntese e Estrutura de Peptídeos, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Renata Mendonça Araújo
- Laboratório de Isolamento e Síntese de Compostos Orgânicos, Instituto de Química, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
9
|
Bechinger B, Juhl DW, Glattard E, Aisenbrey C. Revealing the Mechanisms of Synergistic Action of Two Magainin Antimicrobial Peptides. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:615494. [PMID: 35047895 PMCID: PMC8757784 DOI: 10.3389/fmedt.2020.615494] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
The study of peptide-lipid and peptide-peptide interactions as well as their topology and dynamics using biophysical and structural approaches have changed our view how antimicrobial peptides work and function. It has become obvious that both the peptides and the lipids arrange in soft supramolecular arrangements which are highly dynamic and able to change and mutually adapt their conformation, membrane penetration, and detailed morphology. This can occur on a local and a global level. This review focuses on cationic amphipathic peptides of the magainin family which were studied extensively by biophysical approaches. They are found intercalated at the membrane interface where they cause membrane thinning and ultimately lysis. Interestingly, mixtures of two of those peptides namely magainin 2 and PGLa which occur naturally as a cocktail in the frog skin exhibit synergistic enhancement of antimicrobial activities when investigated together in antimicrobial assays but also in biophysical experiments with model membranes. Detailed dose-response curves, presented here for the first time, show a cooperative behavior for the individual peptides which is much increased when PGLa and magainin are added as equimolar mixture. This has important consequences for their bacterial killing activities and resistance development. In membranes that carry unsaturations both peptides align parallel to the membrane surface where they have been shown to arrange into mesophases involving the peptides and the lipids. This supramolecular structuration comes along with much-increased membrane affinities for the peptide mixture. Because this synergism is most pronounced in membranes representing the bacterial lipid composition it can potentially be used to increase the therapeutic window of pharmaceutical formulations.
Collapse
Affiliation(s)
- Burkhard Bechinger
- University of Strasbourg/CNRS, UMR7177, Institut de Chimie de Strasbourg, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| | - Dennis Wilkens Juhl
- University of Strasbourg/CNRS, UMR7177, Institut de Chimie de Strasbourg, Strasbourg, France
| | - Elise Glattard
- University of Strasbourg/CNRS, UMR7177, Institut de Chimie de Strasbourg, Strasbourg, France
| | - Christopher Aisenbrey
- University of Strasbourg/CNRS, UMR7177, Institut de Chimie de Strasbourg, Strasbourg, France
| |
Collapse
|
10
|
Touchard A, Mendel HC, Boulogne I, Herzig V, Braga Emidio N, King GF, Triquigneaux M, Jaquillard L, Beroud R, De Waard M, Delalande O, Dejean A, Muttenthaler M, Duplais C. Heterodimeric Insecticidal Peptide Provides New Insights into the Molecular and Functional Diversity of Ant Venoms. ACS Pharmacol Transl Sci 2020; 3:1211-1224. [PMID: 33344898 DOI: 10.1021/acsptsci.0c00119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Indexed: 12/14/2022]
Abstract
Ants use venom for predation, defense, and communication; however, the molecular diversity, function, and potential applications of ant venom remains understudied compared to other venomous lineages such as arachnids, snakes and cone snails. In this work, we used a multidisciplinary approach that encompassed field work, proteomics, sequencing, chemical synthesis, structural analysis, molecular modeling, stability studies, and in vitro and in vivo bioassays to investigate the molecular diversity of the venom of the Amazonian Pseudomyrmex penetrator ants. We isolated a potent insecticidal heterodimeric peptide Δ-pseudomyrmecitoxin-Pp1a (Δ-PSDTX-Pp1a) composed of a 27-residue long A-chain and a 33-residue long B-chain cross-linked by two disulfide bonds in an antiparallel orientation. We chemically synthesized Δ-PSDTX-Pp1a, its corresponding parallel AA and BB homodimers, and its monomeric chains and demonstrated that Δ-PSDTX-Pp1a had the most potent insecticidal effects in blowfly assays (LD50 = 3 nmol/g). Molecular modeling and circular dichroism studies revealed strong α-helical features, indicating its cytotoxic effects could derive from cell membrane pore formation or disruption. The native heterodimer was substantially more stable against proteolytic degradation (t 1/2 = 13 h) than its homodimers or monomers (t 1/2 < 20 min), indicating an evolutionary advantage of the more complex structure. The proteomic analysis of Pseudomyrmex penetrator venom and in-depth characterization of Δ-PSDTX-Pp1a provide novel insights in the structural complexity of ant venom and further exemplifies how nature exploits disulfide-bond formation and dimerization to gain an evolutionary advantage via improved stability, a concept that is highly relevant for the design and development of peptide therapeutics, molecular probes, and bioinsecticides.
Collapse
Affiliation(s)
- Axel Touchard
- CNRS, UMR Ecofog, AgroParisTech, Cirad, INRAE, Université des Antilles, Université de Guyane, Kourou 97310, France
| | - Helen C Mendel
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Isabelle Boulogne
- Université de ROUEN, UFR des Sciences et Techniques, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche Normandie Végétal FED 4277, Mont-Saint-Aignan 76821, France
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia.,GeneCology Research Centre, School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Nayara Braga Emidio
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | - Lucie Jaquillard
- Smartox Biotechnology, 6 rue des Platanes, Saint Egrève 38120, France
| | - Rémy Beroud
- Smartox Biotechnology, 6 rue des Platanes, Saint Egrève 38120, France
| | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, Saint Egrève 38120, France.,Université de Nantes, CNRS, INSERM, L'institut du thorax, Nantes 44000, France.,LabEx, Ion Channels, Science & Therapeutics, Valbonne 06560, France
| | - Olivier Delalande
- Institute of Genetics and Development of Rennes (IGDR), CNRS UMR 6290, Université de Rennes Faculté de Pharmacie, 2 avenue du Professeur Léon Bernard, Rennes 35043, France
| | - Alain Dejean
- CNRS, UMR Ecofog, AgroParisTech, Cirad, INRAE, Université des Antilles, Université de Guyane, Kourou 97310, France.,Ecolab, Université de Toulouse, CNRS, INPT, UPS, Toulouse 31058, France
| | - Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia.,Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Christophe Duplais
- CNRS, UMR Ecofog, AgroParisTech, Cirad, INRAE, Université des Antilles, Université de Guyane, Kourou 97310, France
| |
Collapse
|
11
|
Hadiatullah H, Wang H, Liu YX, Fan ZC. Chlamydomonas reinhardtii-derived multimer Mytichitin-CB possesses potent antibacterial properties. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Membrane interactions of the anuran antimicrobial peptide HSP1-NH 2: Different aspects of the association to anionic and zwitterionic biomimetic systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183449. [PMID: 32828849 DOI: 10.1016/j.bbamem.2020.183449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/08/2020] [Accepted: 08/17/2020] [Indexed: 11/21/2022]
Abstract
Studies have suggested that antimicrobial peptides act by different mechanisms, such as micellisation, self-assembly of nanostructures and pore formation on the membrane surface. This work presents an extensive investigation of the membrane interactions of the 14 amino-acid antimicrobial peptide hylaseptin P1-NH2 (HSP1-NH2), derived from the tree-frog Hyla punctata, which has stronger antifungal than antibacterial potential. Biophysical and structural analyses were performed and the correlated results were used to describe in detail the interactions of HSP1-NH2 with zwitterionic and anionic detergent micelles and phospholipid vesicles. HSP1-NH2 presents similar well-defined helical conformations in both zwitterionic and anionic micelles, although NMR spectroscopy revealed important structural differences in the peptide N-terminus. 2H exchange experiments of HSP1-NH2 indicated the insertion of the most N-terminal residues (1-3) in the DPC-d38 micelles. A higher enthalpic contribution was verified for the interaction of the peptide with anionic vesicles in comparison with zwitterionic vesicles. The pore formation ability of HSP1-NH2 (examined by dye release assays) and its effect on the size and surface charge as well as on the lipid acyl chain ordering (evaluated by Fourier-transform infrared spectroscopy) of anionic phospholipid vesicles showed membrane disruption even at low peptide-to-phospholipid ratios, and the effect increases proportionately to the peptide concentration. On the other hand, these biophysical investigations showed that a critical peptide-to-phospholipid ratio around 0.6 is essential for promoting disruption of zwitterionic membranes. In conclusion, this study demonstrates that the binding process of the antimicrobial HSP1-NH2 peptide depends on the membrane composition and peptide concentration.
Collapse
|
13
|
Zhong H, Xie Z, Wei H, Zhang S, Song Y, Wang M, Zhang Y. Antibacterial and Antibiofilm Activity of Temporin-GHc and Temporin-GHd Against Cariogenic Bacteria, Streptococcus mutans. Front Microbiol 2019; 10:2854. [PMID: 31921036 PMCID: PMC6918509 DOI: 10.3389/fmicb.2019.02854] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
Temporin-GHc (GHc) and temporin-GHd (GHd) produced by the frog Hylarana guentheri had shown broad-spectrum antibacterial activities against bacteria and fungi. In this study, we investigated whether they exert antibacterial and antibiofilm activities against cariogenic bacteria, Streptococcus mutans. GHc and GHd adopt the random coil conformation in aqueous solution and convert to α-helix in membrane mimetic environments by using circular dichroism spectroscope. They are positively charged by histidine, with the polar and nonpolar amino acids on opposing faces along the helix. The amphipathicity enabled the peptides to target at bacterial membrane, leading to an increase in membrane permeation and disruption of S. mutans, which allowed the peptides to bind with genomic DNA. GHc and GHd completely impeded the initial attachment of biofilm formation and disrupted preformed S. mutans biofilms. The expression of exopolysaccharide (EPS) biosynthesis genes which synthesize glucosyltransferases in S. mutans was downregulated by exposing to GHc or GHd, contributing to the decrease of soluble and insoluble EPS. GHc and GHd exhibited selectivity toward S. mutans in the presence of human erythrocytes, and no cytotoxicity toward human oral epithelial cells was observed at a concentration of 200 μM. These results laid the foundation for the development of GHc and GHd as potential anti-caries agents.
Collapse
Affiliation(s)
- Hengren Zhong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Department of Pharmaceutics, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Zhipeng Xie
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Department of Pharmaceutics, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Hanqi Wei
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Department of Pharmaceutics, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Shuxia Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Department of Pharmaceutics, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Yanting Song
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Department of Pharmaceutics, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Manchuriga Wang
- Department of Animal Medicine, College of Animal Science, Hainan University, Haikou, China
| | - Yingxia Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Department of Pharmaceutics, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| |
Collapse
|
14
|
Antimicrobial alumina nanobiostructures of disulfide- and triazole-linked peptides: Synthesis, characterization, membrane interactions and biological activity. Colloids Surf B Biointerfaces 2019; 177:94-104. [DOI: 10.1016/j.colsurfb.2019.01.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 11/18/2022]
|
15
|
Aisenbrey C, Marquette A, Bechinger B. The Mechanisms of Action of Cationic Antimicrobial Peptides Refined by Novel Concepts from Biophysical Investigations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1117:33-64. [PMID: 30980352 DOI: 10.1007/978-981-13-3588-4_4] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Even 30 years after the discovery of magainins, biophysical and structural investigations on how these peptides interact with membranes can still bear surprises and add new interesting detail to how these peptides exert their antimicrobial action. Early on, using oriented solid-state NMR spectroscopy, it was found that the amphipathic helices formed by magainins are active when being oriented parallel to the membrane surface. More recent investigations indicate that this in-planar alignment is also found when PGLa and magainin in combination exert synergistic pore-forming activities, where studies on the mechanism of synergistic interaction are ongoing. In a related manner, the investigation of dimeric antimicrobial peptide sequences has become an interesting topic of research which bears promise to refine our views how antimicrobial action occurs. The molecular shape concept has been introduced to explain the effects of lipids and peptides on membrane morphology, locally and globally, and in particular of cationic amphipathic helices that partition into the membrane interface. This concept has been extended in this review to include more recent ideas on soft membranes that can adapt to external stimuli including membrane-disruptive molecules. In this manner, the lipids can change their shape in the presence of low peptide concentrations, thereby maintaining the bilayer properties. At higher peptide concentrations, phase transitions occur which lead to the formation of pores and membrane lytic processes. In the context of the molecular shape concept, the properties of lipopeptides, including surfactins, are shortly presented, and comparisons with the hydrophobic alamethicin sequence are made.
Collapse
Affiliation(s)
| | - Arnaud Marquette
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, Strasbourg, France
| | - Burkhard Bechinger
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, Strasbourg, France. .,Faculté de chimie, Institut le Bel, Strasbourg, France.
| |
Collapse
|
16
|
Luchini A, Nzulumike ANO, Lind TK, Nylander T, Barker R, Arleth L, Mortensen K, Cárdenas M. Towards biomimics of cell membranes: Structural effect of phosphatidylinositol triphosphate (PIP 3) on a lipid bilayer. Colloids Surf B Biointerfaces 2018; 173:202-209. [PMID: 30292933 DOI: 10.1016/j.colsurfb.2018.09.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/31/2018] [Accepted: 09/13/2018] [Indexed: 01/08/2023]
Abstract
Phosphoinositide (PIP) lipids are anionic phospholipids playing a fundamental role for the activity of several transmembrane and soluble proteins. Among all, phosphoinositol-3',4',5'-trisphosphate (PIP3) is a secondary signaling messenger that regulates the function of proteins involved in cell growth and gene transcription. The present study aims to reveal the structure of PIP-containing lipid membranes, which so far has been little explored. For this purpose, supported lipid bilayers (SLBs) containing 1,2-dioleoyl-sn-glycero-3-phospho-(1'-myo-inositol-3',4',5'-trisphosphate (DOPIP3) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were used as mimics of biomembranes. Surface sensitive techniques, i.e. Quartz Crystal Microbalance with Dissipation monitoring (QCM-D), Atomic Force Microscopy (AFM) and Neutron Reflectometry (NR), provided detailed information on the formation of the SLB and the location of DOPIP3 in the lipid membrane. Specifically, QCM-D and AFM were used to identify the best condition for lipid deposition and to estimate the total bilayer thickness. On the other hand, NR was used to collect experimental structural data on the DOPIP3 location and orientation within the lipid membrane. The two bilayer leaflets showed the same DOPIP3 concentration, thus suggesting the formation of a symmetric bilayer. The headgroup layer thicknesses of the pure POPC and the mixed POPC/DOPIP3 bilayer suggest that the DOPIP3-headgroups have a preferred orientation, which is not perpendicular to the membrane surface, but instead it is close to the surrounding lipid headgroups. These results support the proposed PIP3 tendency to interact with the other lipid headgroups as PC, so far exclusively suggested by MD simulations.
Collapse
Affiliation(s)
- Alessandra Luchini
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Achebe N O Nzulumike
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Tania K Lind
- Nano-Science Center and Institute of Chemistry, Copenhagen University, Universitetsparken 5, 2100, Copenhagen, Denmark; Biofilms Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, Per Albin Hanssons Väg 35, 214 32, Malmö, Sweden
| | - Tommy Nylander
- Physical Chemistry 1, Lund University, PO Box 124, 221 00, Lund, Sweden
| | - Robert Barker
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Lise Arleth
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Kell Mortensen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Marité Cárdenas
- Biofilms Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, Per Albin Hanssons Väg 35, 214 32, Malmö, Sweden.
| |
Collapse
|
17
|
Identification, Recombinant Expression, and Characterization of LHG2, a Novel Antimicrobial Peptide of Lactobacillus casei HZ1. Molecules 2018; 23:molecules23092246. [PMID: 30177656 PMCID: PMC6225214 DOI: 10.3390/molecules23092246] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023] Open
Abstract
L. casei HZ1 was identified from Chinese traditional fermented milk, and angiotensin converting enzyme inhibitory peptide was separated from its culture in our previous work. Here, LGH2 was a novel AMP, identified from the genome of L. casei HZ1. Altogether, roughly 52.76% of LGH2 was α-helical, with the remainder in β-strand and random coil in 50% TFE solution tested by CD. The peptide was also an amphipathic and cationic molecule, which was composed of 20 amino acid residues. The similarity of the amino acid sequence between LGH2 and Temporin-RN3 was highest. Then, the peptide successfully expressed in E. coli Rossetta (DE3) pLysS using the SUMO fusion expression system and purified by chromatography technologies. The molecular weight of the peptide was 2448 Da determined by MALDI-TOF MS. Antimicrobial tests showed that the peptide has strong activities against G+ bacteria, special for S. aureus (MIC = 4 μM). The toxicity assay showed that the peptide exhibits a low hemolytic activity against sheep red blood cells. The antimicrobial mechanisms of LGH2 against pathogens were further investigated by dye leakage, CLSM, SEM, and FCM assays. We found that LGH2 can bind to the cell membrane, and destroy its integrity. These significant results indicate that LGH2 has great potential to treat the infections caused by pathogenic bacteria such as S. aureus, and it provides a new template to improve antimicrobial peptides targeting antibiotic-resistant pathogenic bacteria.
Collapse
|
18
|
Leber R, Pachler M, Kabelka I, Svoboda I, Enkoller D, Vácha R, Lohner K, Pabst G. Synergism of Antimicrobial Frog Peptides Couples to Membrane Intrinsic Curvature Strain. Biophys J 2018; 114:1945-1954. [PMID: 29694871 PMCID: PMC5937145 DOI: 10.1016/j.bpj.2018.03.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 01/11/2023] Open
Abstract
Mixtures of the frog peptides magainin 2 and PGLa are well-known for their pronounced synergistic killing of Gram-negative bacteria. We aimed to gain insight into the underlying biophysical mechanism by interrogating the permeabilizing efficacies of the peptides as a function of stored membrane curvature strain. For Gram-negative bacterial-inner-membrane mimics, synergism was only observed when the anionic bilayers exhibited significant negative intrinsic curvatures imposed by monounsaturated phosphatidylethanolamine. In contrast, the peptides and their mixtures did not exhibit significant activities in charge-neutral mammalian mimics, including those with negative curvature, which is consistent with the requirement of charge-mediated peptide binding to the membrane. Our experimental findings are supported by computer simulations showing a significant decrease of the peptide-insertion free energy in membranes upon shifting intrinsic curvatures toward more positive values. The physiological relevance of our model studies is corroborated by a remarkable agreement with the peptide's synergistic activity in Escherichia coli. We propose that synergism is related to a lowering of a membrane-curvature-strain-mediated free-energy barrier by PGLa that assists membrane insertion of magainin 2, and not by strict pairwise interactions of the two peptides as suggested previously.
Collapse
Affiliation(s)
- Regina Leber
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Michael Pachler
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Ivo Kabelka
- Central European Institute of Technology, Brno, Czech Republic; Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Irene Svoboda
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | | | - Robert Vácha
- Central European Institute of Technology, Brno, Czech Republic; Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karl Lohner
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Georg Pabst
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Graz, Austria; BioTechMed Graz, Graz, Austria.
| |
Collapse
|
19
|
Marquette A, Bechinger B. Biophysical Investigations Elucidating the Mechanisms of Action of Antimicrobial Peptides and Their Synergism. Biomolecules 2018; 8:E18. [PMID: 29670065 PMCID: PMC6023007 DOI: 10.3390/biom8020018] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 01/30/2023] Open
Abstract
Biophysical and structural investigations are presented with a focus on the membrane lipid interactions of cationic linear antibiotic peptides such as magainin, PGLa, LL37, and melittin. Observations made with these peptides are distinct as seen from data obtained with the hydrophobic peptide alamethicin. The cationic amphipathic peptides predominantly adopt membrane alignments parallel to the bilayer surface; thus the distribution of polar and non-polar side chains of the amphipathic helices mirror the environmental changes at the membrane interface. Such a membrane partitioning of an amphipathic helix has been shown to cause considerable disruptions in the lipid packing arrangements, transient openings at low peptide concentration, and membrane disintegration at higher peptide-to-lipid ratios. The manifold supramolecular arrangements adopted by lipids and peptides are represented by the 'soft membranes adapt and respond, also transiently' (SMART) model. Whereas molecular dynamics simulations provide atomistic views on lipid membranes in the presence of antimicrobial peptides, the biophysical investigations reveal interesting details on a molecular and supramolecular level, and recent microscopic imaging experiments delineate interesting sequences of events when bacterial cells are exposed to such peptides. Finally, biophysical studies that aim to reveal the mechanisms of synergistic interactions of magainin 2 and PGLa are presented, including unpublished isothermal titration calorimetry (ITC), circular dichroism (CD) and dynamic light scattering (DLS) measurements that suggest that the peptides are involved in liposome agglutination by mediating intermembrane interactions. A number of structural events are presented in schematic models that relate to the antimicrobial and synergistic mechanism of amphipathic peptides when they are aligned parallel to the membrane surface.
Collapse
Affiliation(s)
- Arnaud Marquette
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4, rue Blaise Pascal, 67070 Strasbourg, France.
| | - Burkhard Bechinger
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4, rue Blaise Pascal, 67070 Strasbourg, France.
| |
Collapse
|
20
|
Reis PVM, Boff D, Verly RM, Melo-Braga MN, Cortés ME, Santos DM, Pimenta AMDC, Amaral FA, Resende JM, de Lima ME. LyeTxI-b, a Synthetic Peptide Derived From Lycosa erythrognatha Spider Venom, Shows Potent Antibiotic Activity in Vitro and in Vivo. Front Microbiol 2018; 9:667. [PMID: 29681894 PMCID: PMC5897548 DOI: 10.3389/fmicb.2018.00667] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/21/2018] [Indexed: 01/07/2023] Open
Abstract
The antimicrobial peptide LyeTxI isolated from the venom of the spider Lycosa erythrognatha is a potential model to develop new antibiotics against bacteria and fungi. In this work, we studied a peptide derived from LyeTxI, named LyeTxI-b, and characterized its structural profile and its in vitro and in vivo antimicrobial activities. Compared to LyeTxI, LyeTxI-b has an acetylated N-terminal and a deletion of a His residue, as structural modifications. The secondary structure of LyeTxI-b is a well-defined helical segment, from the second amino acid to the amidated C-terminal, with no clear partition between hydrophobic and hydrophilic faces. Moreover, LyeTxI-b shows a potent antimicrobial activity against Gram-positive and Gram-negative planktonic bacteria, being 10-fold more active than the native peptide against Escherichia coli. LyeTxI-b was also active in an in vivo model of septic arthritis, reducing the number of bacteria load, the migration of immune cells, the level of IL-1β cytokine and CXCL1 chemokine, as well as preventing cartilage damage. Our results show that LyeTxI-b is a potential therapeutic model for the development of new antibiotics against Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Pablo V M Reis
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daiane Boff
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo M Verly
- Departamento de Química, Faculdade de Ciências Exatas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Marcella N Melo-Braga
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - María E Cortés
- Departamento de Odontologia Restauradora, Faculdade de Odontologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel M Santos
- Serviço de Proteômica e Aracnídeos - Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | - Adriano M de C Pimenta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávio A Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jarbas M Resende
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria E de Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
21
|
Nanobiostructure of fibrous-like alumina functionalized with an analog of the BP100 peptide: Synthesis, characterization and biological applications. Colloids Surf B Biointerfaces 2018; 163:275-283. [DOI: 10.1016/j.colsurfb.2018.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/11/2017] [Accepted: 01/02/2018] [Indexed: 12/17/2022]
|
22
|
Vermeer LS, Hamon L, Schirer A, Schoup M, Cosette J, Majdoul S, Pastré D, Stockholm D, Holic N, Hellwig P, Galy A, Fenard D, Bechinger B. Vectofusin-1, a potent peptidic enhancer of viral gene transfer forms pH-dependent α-helical nanofibrils, concentrating viral particles. Acta Biomater 2017; 64:259-268. [PMID: 29017974 DOI: 10.1016/j.actbio.2017.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 01/13/2023]
Abstract
Gene transfer using lentiviral vectors has therapeutic applications spanning from monogenic and infectious diseases to cancer. Such gene therapy has to be improved by enhancing the levels of viral infection of target cells and/or reducing the amount of lentivirus for greater safety and reduced costs. Vectofusin-1, a recently developed cationic amphipathic peptide with a pronounced capacity to enhance such viral transduction, strongly promotes the entry of several retroviral pseudotypes into target cells when added to the culture medium. To clarify the molecular basis of its action the peptide was investigated on a molecular and a supramolecular level by a variety of biophysical approaches. We show that in culture medium vectofusin-1 rapidly forms complexes in the 10 nm range that further assemble into annular and extended nanofibrils. These associate with viral particles allowing them to be easily pelleted for optimal virus-cell interaction. Thioflavin T fluorescence, circular dichroism and infrared spectroscopies indicate that these fibrils have a unique α-helical structure whereas most other viral transduction enhancers form β-amyloid fibrils. A vectofusin-1 derivative (LAH2-A4) is inefficient in biological assays and does not form nanofibrils, suggesting that supramolecular assembly is essential for transduction enhancement. Our observations define vectofusin-1 as a member of a new class of α-helical enhancers of lentiviral infection. Its fibril formation is reversible which bears considerable advantages in handling the peptide in conditions well-adapted to Good Manufacturing Practices and scalable gene therapy protocols.
Collapse
Affiliation(s)
- Louic S Vermeer
- CNRS, Univ. of Strasbourg, Institut de Chimie UMR_7177, Strasbourg, France
| | - Loic Hamon
- INSERM, Univ. of Evry, UMR_S1204, Evry, France
| | | | - Michel Schoup
- CNRS, Univ. of Strasbourg, Institut de Chimie UMR_7177, Strasbourg, France
| | | | - Saliha Majdoul
- Genethon, INSERM, Univ. of Evry, EPHE-PSL Research University, Research Unit Integrare UMR_S951, Evry, France
| | | | - Daniel Stockholm
- Genethon, INSERM, Univ. of Evry, EPHE-PSL Research University, Research Unit Integrare UMR_S951, Evry, France
| | - Nathalie Holic
- Genethon, INSERM, Univ. of Evry, EPHE-PSL Research University, Research Unit Integrare UMR_S951, Evry, France
| | - Petra Hellwig
- CNRS, Univ. of Strasbourg, UMR 7140, Strasbourg, France
| | - Anne Galy
- Genethon, INSERM, Univ. of Evry, EPHE-PSL Research University, Research Unit Integrare UMR_S951, Evry, France
| | | | - Burkhard Bechinger
- CNRS, Univ. of Strasbourg, Institut de Chimie UMR_7177, Strasbourg, France.
| |
Collapse
|