1
|
Frazier AN, Ferree L, Belk AD, Al-Lakhen K, Cramer MC, Metcalf JL. Stochasticity Highlights the Development of Both the Gastrointestinal and Upper-Respiratory-Tract Microbiomes of Neonatal Dairy Calves in Early Life. Animals (Basel) 2025; 15:361. [PMID: 39943131 PMCID: PMC11816138 DOI: 10.3390/ani15030361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
The microbiome of dairy calves undergoes extensive change due to various forces during the first weeks of life. Importantly, diseases such as bovine respiratory disease (BRD) and calf diarrhea can have profound impacts on the early-life microbiome. Therefore, a longitudinal, repeated-measures pilot study was designed to characterize the establishment of nasal and fecal microbiomes of dairy calves, assess the governing forces of microbial assembly, and evaluate how disease states impact these microbial ecologies. Dairy calves (n = 19) were clinically evaluated for gastrointestinal and respiratory disease across three weeks beginning at age ≤ seven days old. Fecal (n = 57) and nasal (n = 57) microbial samples were taken for paired-end 16S rRNA gene amplicon sequencing. Taxonomy and diversity analyses were used to characterize early-life nasal and fecal microbiomes. Stochasticity and determinism were measured using normalized stochasticity testing (NST) and Dirichlet multinomial model (DMM). All analyses were tested for statistical significance. Clinical diarrhea was observed in 11 of the 19 calves. Clinical BRD was not independently observed among the cohort; however, two calves presented clinical signs of both BRD and diarrhea. Taxonomic analysis revealed that fecal samples were highlighted by Bacteroidaceae (40%; relative abundance), Ruminococcaceae (13%), and Lachnospiraceae (10%), with changes in diversity (Kruskal-Wallis; p < 0.05) and composition (PERMANOVA; p < 0.05). Clinical diarrhea reduced diversity in the fecal microbiome but did not impact composition. Nasal samples featured Moraxellaceae (49%), Mycoplasmataceae (16%), and Pasteurellaceae (3%). While no diversity changes were seen in nasal samples, compositional changes were observed (p < 0.05). NST metrics (Kruskal-Wallis; p > 0.01) and DMM (PERMANOVA; p < 0.01) revealed that stochastic, neutral theory-based assembly dynamics govern early-life microbial composition and that distinct microbial populations drive community composition in healthy and diarrheic calves.
Collapse
Affiliation(s)
- A. Nathan Frazier
- United States Department of Agriculture—Agricultural Research Service (USDA-ARS), Bushland, TX 79012, USA
| | - Logan Ferree
- Department of Animal Science, Colorado State University, Fort Collins, CO 80523, USA
| | - Aeriel D. Belk
- Department of Animal Science, Auburn University, Auburn, AL 36849, USA
| | - Khalid Al-Lakhen
- Department of Animal Science, Colorado State University, Fort Collins, CO 80523, USA
| | - M. Caitlin Cramer
- Department of Animal Science, Colorado State University, Fort Collins, CO 80523, USA
| | - Jessica L. Metcalf
- Department of Animal Science, Colorado State University, Fort Collins, CO 80523, USA
- Canadian Institute for Advanced Research (CIFAR) Azrieli Global Scholars Program, CIFAR, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
2
|
Hares MF, Griffiths BE, Barningham L, Vamos EE, Gregory R, Duncan JS, Oikonomou G, Stewart CJ, Coombes JL. Progression of the faecal microbiome in preweaning dairy calves that develop cryptosporidiosis. Anim Microbiome 2025; 7:3. [PMID: 39762941 PMCID: PMC11706078 DOI: 10.1186/s42523-024-00352-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Cryptosporidiosis is a diarrheal disease that commonly affects calves under 6 weeks old. The causative agent, Cryptosporidium parvum, has been associated with the abundance of specific taxa in the faecal microbiome during active infection. However, the long-term impact of these microbiome shifts, and potential effects on calf growth and health have not yet been explored in depth. METHODS Three hundred and forty-six (346) calves from three dairy farms had one faecal swab collected during the first week of life (W1). Thereafter, sampled calves were monitored for diarrhoeal disease and those that suffered a diarrhoea event were tested for C. parvum by lateral flow testing (LFT). Calves that experienced diarrhoea and tested positive for C. parvum by LFT were assigned to the Cryptosporidium-positive (Cp+) group (n = 32). Matched healthy (H) controls with no history of diarrhoea were selected from the remaining cohort (n = 33). The selected subset of calves (n = 65) was observed until weaning, collecting a faecal swab, at approximately Week 5 (W5) and Week 10 (W10) after birth, resulting in a total of 191 samples (W1; n = 65, W5; n = 64, W10; n = 62). 16S rRNA gene amplicon sequencing was performed on all extracted samples. RESULTS Analysis of the longitudinal microbiome showed significant changes in the microbial diversity and composition across all three time-points. Whilst Firmicutes were elevated in the Cp+ group at W5 compared to the H group, no other significant differences were detected between H and Cp+ groups. Whilst the core microbiota showed some taxa were exclusive to each group, the role of these taxa in health and disease has yet to be determined. Antibiotics were also found to have an impact on the relative abundance of some taxa. Though healthy calves received a significantly higher body condition score than Cp+ calves at W5, the difference did not reach significance at W10, suggesting that Cp+ calves may catch up to their healthy counterparts once the infection has resolved. CONCLUSIONS The findings of this study illustrated the changes in the microbial diversity and composition during the preweaning period in dairy calves. The results also indicated that the faecal microbiome is not predictive of cryptosporidiosis and implied that cryptosporidiosis doesn't cause long-term gut dysbiosis. This study furthered our understanding of the parasite-microbiome relationship and its impact on the bovine host.
Collapse
Affiliation(s)
- M F Hares
- Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, iC2 Liverpool Science Park, Liverpool, L3 5RF, UK.
| | - B E Griffiths
- Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, Wirral, CH64 7TE, UK
| | - L Barningham
- Centre for Genomic Research, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - E E Vamos
- Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, iC2 Liverpool Science Park, Liverpool, L3 5RF, UK
| | - R Gregory
- Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, iC2 Liverpool Science Park, Liverpool, L3 5RF, UK
| | - J S Duncan
- Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, iC2 Liverpool Science Park, Liverpool, L3 5RF, UK
| | - G Oikonomou
- Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, Wirral, CH64 7TE, UK
| | - C J Stewart
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE2 4HH, UK
| | - J L Coombes
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen, AB10 7GJ, UK.
| |
Collapse
|
3
|
Carroll A, Bell MJ, Bleach ECL, Turner D, Williams LK. Impact of dairy calf management practices on the intestinal tract microbiome pre-weaning. J Med Microbiol 2025; 74. [PMID: 39879083 DOI: 10.1099/jmm.0.001957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Introduction. Microbiota in the gastrointestinal tract (GIT) consisting of the rumen and hindgut (the small intestine, cecum and colon) in dairy calves play a vital role in their growth and development. This review discusses the development of dairy calf intestinal microbiomes with an emphasis on the impact that husbandry and rearing management have on microbiome development, health and growth of pre-weaned dairy calves.Discussion. The diversity and composition of the microbes that colonize the lower GIT (small and large intestine) can have a significant impact on the growth and development of the calf, through influence on nutrient metabolism, immune modulation, resistance or susceptibility to infection, production outputs and behaviour modification in adult life. The colonization of the calf intestinal microbiome dynamically changes from birth, increasing microbial richness and diversity until weaning, where further dynamic and drastic microbiome change occurs. In dairy calves, neonatal microbiome development prior to weaning is influenced by direct and indirect factors, some of which could be considered stressors, such as maternal interaction, environment, diet, husbandry and weaning practices. The specific impact of these can dictate intestinal microbial colonization, with potential lifelong consequences.Conclusion. Evidence suggests the potential detrimental effect that sudden changes and stress may have on calf health and growth due to management and husbandry practices, and the importance of establishing a stable yet diverse intestinal microbiome population at an early age is essential for calf success. The possibility of improving the health of calves through intestinal microbiome modulation and using alternative strategies including probiotic use, faecal microbiota transplantation and novel approaches of microbiome tracking should be considered to support animal health and sustainability of dairy production systems.
Collapse
Affiliation(s)
- Aisling Carroll
- Animal and Agriculture Department, Hartpury University, Gloucester, GL19 3BE, UK
| | - Matt J Bell
- Animal and Agriculture Department, Hartpury University, Gloucester, GL19 3BE, UK
| | - Emma C L Bleach
- Animal Science Research Centre, Harper Adams University, Edgmond, Newport, TF10 8NB, Shropshire, UK
| | - Dann Turner
- University of the West of England, Bristol, Coldharbour Lane, BS16 1QY, UK
| | - Lisa K Williams
- Animal and Agriculture Department, Hartpury University, Gloucester, GL19 3BE, UK
| |
Collapse
|
4
|
Huang Q, Ma F, Jin Y, Gao D, Chang M, Sun P. The dynamic distribution of the rectal microbiota in Holstein dairy calves provides a framework for understanding early-life gut health. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:301-312. [PMID: 39640550 PMCID: PMC11617247 DOI: 10.1016/j.aninu.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 12/07/2024]
Abstract
The posterior intestinal microbiota plays a vital role in the growth and health of Holstein dairy calves. However, its establishment and dynamic changes during early development remain unclear. The aim of this study was to investigate microbial colonization and development in the rectum of calves within the first 70 d after birth. Here, 96 rectal content samples were collected from 8 Holstein dairy calves at 12 time points and analyzed using 16S rRNA gene sequencing. The microbial alpha diversity increased with age. The bacterial community displayed a distinct dynamic distribution. The phylum Proteobacteria was replaced by Firmicutes and Bacteroidetes after d 3. The colonization process of bacterial genera in the rectum of neonatal calves can be divided into 2 periods: the colonization period (stage 1: d 1 and stage 2: d 3) and the stable period (stage 3: d 7-14, stage 4: d 21-42, and stage 5: d 49-70). The fermentation pattern and metabolic function changed from propionate fermentation dominated by Shigella to lactic acid fermentation dominated by Lactobacillus, Blautia, and Oscillospira. The stable period was more comprehensive and complete than the colonization period. This study revealed the dynamic changes in the posterior intestinal microbiota of Holstein dairy calves during early development. The transition period (d 7-14) was identified as a key stage for early nutritional intervention, as the abundance of Lactobacillus increased and the abundance of harmful bacteria (such as Proteobacteria and Shigella) decreased. This study provides a framework for understanding early-life gut health and offers theoretical guidance for future research on host-microbe interactions and early nutritional interventions. It is suggested that nutritional interventions based on microbial characteristics at different stages be implemented to improve calf growth performance and immune function, which may contribute to the reduction of diarrhea and other gastrointestinal disorders during dairy production.
Collapse
Affiliation(s)
- Qi Huang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengtao Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuhang Jin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Duo Gao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Meinan Chang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Peng Sun
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
5
|
Hu QY, Man JJ, Luo J, Cheng F, Yang M, Lin G, Wang P. Early-life supplementation with mannan-rich fraction to regulate rumen microbiota, gut health, immunity, and growth performance in dairy goat kids. J Dairy Sci 2024; 107:9322-9333. [PMID: 39004122 DOI: 10.3168/jds.2024-24903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024]
Abstract
Enhancing gastrointestinal health, immunity, and digestion are key factors to support dairy goat kid performance. Several additives have been studied in relation to these actions. This study investigated the impact of mannan-rich fraction (MRF) inclusion in goat milk on the growth performance, gut health, rumen fermentation, and microbial profiles of Xinong Saanen dairy goat kids. A total of 80 kids aged 14 d and 4.72 ± 0.33 kg BW were randomly assigned into 2 groups: control and MRF (1 g/d MRF mixed into milk). Each group consisted of 40 kids with 10 kids per pen. All kids were given milk individually and fed a starter diet by pen, with the trial lasting 10 wk. Body weight and blood samples were collected on the seventh day at 2, 6, 10 and 12 wk of age, and feed intake was determined daily. From the first to seventh day at 12 wk of age, fecal samples were collected from 4 kids in each group to analyze nutrient digestibility. On the seventh day of 12 wk of age, 4 kids from each group were slaughtered for evaluation of rumen fermentation, rumen microbiota, and gut morphology. The results indicated that MRF supplementation led to greater overall BW, overall starter DMI, and overall ADG, along with a lower overall diarrhea rate. However, no difference in overall feed efficiency and apparent digestibility of nutrients was observed. Furthermore, MRF supplementation resulted in increased ileal villus height; higher RNA expression of claudin-1 and occludin in the duodenum; higher expression of ZO-1, JAM-2, and occludin in the jejunum; and higher expression of claudin-1, JAM-2, and occludin in the ileum. Additionally, the concentrations of overall IgA, overall IgM, and overall IgG were higher in the MRF group. The concentrations of ruminal acetate and total volatile fatty acid were higher with MRF supplementation (P < 0.05). Meanwhile, supplementation with MRF resulted in higher abundance of Bacteroidetes and Succinivibrio and lower abundance of Firmicutes and Succiniclasticum in the rumen. Overall, the growth performance, gut health, immunity, and ruminal microbial structure of dairy goat kids benefited from MRF supplementation.
Collapse
Affiliation(s)
- Q Y Hu
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - J J Man
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - J Luo
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China.
| | - F Cheng
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - M Yang
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - G Lin
- Key Laboratory of Agrifood Safety and Quality, Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - P Wang
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| |
Collapse
|
6
|
Aboshady HM, Gavriilidou A, Ghanem N, Radwan MA, Elnahas A, Agamy R, Fahim NH, Elsawy MH, Shaarawy AMBM, Abdel-Hafeez AM, Kantanen J, Ginja C, Makgahlela ML, Kugonza DR, Gonzalez-Prendes R, Crooijmans RPMA. Gut Microbiota Diversity of Local Egyptian Cattle Managed in Different Ecosystems. Animals (Basel) 2024; 14:2752. [PMID: 39335341 PMCID: PMC11428623 DOI: 10.3390/ani14182752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The animal gastrointestinal tract contains a complex microbiome whose composition ultimately reflects the co-evolution of microorganisms with their animal host and their host's environment. This study aimed to gain insights into the adaptation of the microbiota of local Egyptian cattle to three different ecosystems (Upper Egypt, Middle Egypt, and Lower Egypt) distributed across 11 governorates (with an average of 12 animals per governorate) using amplicon sequencing. We analyzed the microbiota from 136 fecal samples of local Egyptian cattle through a 16S rRNA gene sequencing approach to better understand the fecal microbial diversity of this breed which developed under different ecosystems. An alpha diversity analysis showed that the fecal microbiota of the Egyptian cattle was not significantly diverse across areas, seasons, sexes, or farm types. Meanwhile, microbiota data revealed significant differences in richness among age groups (p = 0.0018). The microbial community differed significantly in the distribution of its relative abundance rather than in richness across different ecosystems. The taxonomic analysis of the reads identified Firmicutes and Actinobacteriota as the dominant phyla, accounting for over 93% of the total bacterial community in Egyptian cattle. Middle Egypt exhibited a different microbial community composition compared to Upper and Lower Egypt, with a significantly higher abundance of Firmicutes and Euryarchaeota and a lower abundance of Actinobacteriota in this region than the other two ecosystems. Additionally, Middle Egypt had a significantly higher relative abundance of the Methanobacteriaceae family and the Methanobrevibacter genera than Lower and Upper Egypt. These results suggest a difference in the adaptation of the fecal microbial communities of Egyptian cattle raised in Middle Egypt. At the genus level, eleven genera were significantly different among the three ecosystems including Bacillus, DNF00809, Kandleria, Lachnospiraceae_NK3A20_group, Methanobrevibacter, Mogibacterium, Olsenella, Paeniclostridium, Romboutsia, Turicibacter, and UCG-005. These significant differences in microbiota composition may impact the animal's adaptation to varied environments.
Collapse
Affiliation(s)
- Hadeer M. Aboshady
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt (M.A.R.); (R.A.); (N.H.F.)
| | - Asimenia Gavriilidou
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | - Nasser Ghanem
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt (M.A.R.); (R.A.); (N.H.F.)
| | - Mohamed A. Radwan
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt (M.A.R.); (R.A.); (N.H.F.)
| | - Ahmed Elnahas
- Animal Production Department, Faculty of Agriculture, Sohag University, Sohag 82524, Egypt;
| | - Rania Agamy
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt (M.A.R.); (R.A.); (N.H.F.)
| | - Nadia H. Fahim
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt (M.A.R.); (R.A.); (N.H.F.)
| | - Mohamed H. Elsawy
- Department of Cattle, Animal Production Research Institute, Agriculture Research Center, Dokki, Giza 12618, Egypt; (M.H.E.); (A.-M.B.M.S.); (A.M.A.-H.)
| | - Al-Moataz Bellah M. Shaarawy
- Department of Cattle, Animal Production Research Institute, Agriculture Research Center, Dokki, Giza 12618, Egypt; (M.H.E.); (A.-M.B.M.S.); (A.M.A.-H.)
| | - Ahmed M. Abdel-Hafeez
- Department of Cattle, Animal Production Research Institute, Agriculture Research Center, Dokki, Giza 12618, Egypt; (M.H.E.); (A.-M.B.M.S.); (A.M.A.-H.)
| | - Juha Kantanen
- Natural Resources Institute Finland, 31600 Jokioinen, Finland;
| | - Catarina Ginja
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
- CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO, Associate Laboratory, BIOPOLIS Program in Genomics, Biodiversity and Land Planning, University of Porto, 4485-661 Vairão, Portugal
| | - Mahlako L. Makgahlela
- Agricultural Research Council, Animal Production, Private Bag X2, Irene 0062, South Africa;
- Department of Animal, Wildlife and Grassland Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9301, South Africa
| | - Donald R. Kugonza
- School of Agricultural Sciences, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Rayner Gonzalez-Prendes
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, The Netherlands; (R.G.-P.); (R.P.M.A.C.)
| | - Richard P. M. A. Crooijmans
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, The Netherlands; (R.G.-P.); (R.P.M.A.C.)
| |
Collapse
|
7
|
Loch M, Dorbek-Sundström E, Husso A, Pessa-Morikawa T, Niine T, Kaart T, Mõtus K, Niku M, Orro T. Associations of Neonatal Dairy Calf Faecal Microbiota with Inflammatory Markers and Future Performance. Animals (Basel) 2024; 14:2533. [PMID: 39272317 PMCID: PMC11394540 DOI: 10.3390/ani14172533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
After birth, the immune system is challenged by numerous elements of the extrauterine environment, reflected in fluctuations of inflammatory markers. The concentrations of these markers in the first month of life are associated with the future performance of dairy youngstock. It is thought that bacterial genera colonizing the calf intestinal tract can cause inflammation and thus affect their host's performance via immunomodulation. This study explored how the faecal microbiota of newborn dairy calves were related to inflammatory markers during the first three weeks of life, and if the abundance of specific genera was associated with first-lactation performance. Ninety-five female Holstein calves were studied. Once a week, serum and faecal samples were collected, serum concentrations of serum amyloid A, haptoglobin, tumour necrosis factor-α, and interleukin-6 were measured, and faecal microbiota composition was examined by 16S rRNA gene amplicon sequencing. Faecal Gallibacterium abundance in the first week of age and Collinsella abundance in the second week were negatively associated with inflammatory response as well as with calving-conception interval. Peptostreptococcus abundance in the second week of life was positively associated with inflammatory response and calving-conception interval, and negatively with average daily weight gain. In the third week, Dorea abundance was positively, Bilophila abundance was negatively associated with inflammatory response, and both genera were negatively associated with age at first calving. These bacterial genera may be able to influence the inflammatory response and through this, possibly the future performance of the dairy heifer. Deciphering such microbiota-host interactions can help improve calf management to benefit production and welfare.
Collapse
Affiliation(s)
- Marina Loch
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, F. R. Kreutzwaldi 62, 51006 Tartu, Estonia
| | - Elisabeth Dorbek-Sundström
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, F. R. Kreutzwaldi 62, 51006 Tartu, Estonia
| | - Aleksi Husso
- Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, P.O. Box 66 Helsinki, Finland
| | - Tiina Pessa-Morikawa
- Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, P.O. Box 66 Helsinki, Finland
| | - Tarmo Niine
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, F. R. Kreutzwaldi 62, 51006 Tartu, Estonia
| | - Tanel Kaart
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, F. R. Kreutzwaldi 62, 51006 Tartu, Estonia
| | - Kerli Mõtus
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, F. R. Kreutzwaldi 62, 51006 Tartu, Estonia
| | - Mikael Niku
- Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, P.O. Box 66 Helsinki, Finland
| | - Toomas Orro
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, F. R. Kreutzwaldi 62, 51006 Tartu, Estonia
| |
Collapse
|
8
|
Bessegatto JA, Lisbôa JAN, Martins FDC, Freire RL, Facury Filho EJ, Alfieri AA, Costa MC. Development of the Intestinal Microbiota of Dairy Calves and Changes Associated with Cryptosporidium spp. Infection in Brazil. Microorganisms 2024; 12:1744. [PMID: 39338419 PMCID: PMC11434485 DOI: 10.3390/microorganisms12091744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/30/2024] Open
Abstract
Cryptosporidium spp. is one of the most important pathogens infecting nursing calves worldwide. This study aimed to investigate the intestinal microbiota of dairy calves during the first month of life and the impact of diarrhea caused by Cryptosporidium on a Brazilian farm. Fecal samples from 30 calves were collected during the first month of life, and fecal scores were recorded. Samples from the second, third, and fourth days of life were analyzed by DNA sequencing of the 16S rRNA gene. In addition, samples of sixteen calves positive for Cryptosporidium spp. were retrospectively chosen according to the development of diarrhea: four and two days before diarrhea, at the onset of diarrhea, after four days of diarrhea, at the end of diarrhea, and after six days of diarrhea resolution. Diarrhea was observed in all calves (100%), starting at day 5 of life, and all calves tested positive for Cryptosporidium in at least one sample. The microbiota richness increased with age but was retarded by diarrhea. Compositional changes associated with Cryptosporidium infection included increases in Fusobacterium, Prevotella, and Peptostreptococcus, as well as decreases in Collinsella and Lachnospiraceae. In conclusion, Cryptosporidium infection has the potential to decrease richness and change the composition of the intestinal microbiota of dairy calves.
Collapse
Affiliation(s)
- José Antônio Bessegatto
- Department of Clinical Sciences and Preventive Veterinary Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid (PR 445) Km 380, Londrina 86057-970, PR, Brazil
| | - Júlio Augusto Naylor Lisbôa
- Department of Clinical Sciences and Preventive Veterinary Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid (PR 445) Km 380, Londrina 86057-970, PR, Brazil
| | - Felippe Danyel Cardoso Martins
- Department of Clinical Sciences and Preventive Veterinary Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid (PR 445) Km 380, Londrina 86057-970, PR, Brazil
| | - Roberta Lemos Freire
- Department of Clinical Sciences and Preventive Veterinary Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid (PR 445) Km 380, Londrina 86057-970, PR, Brazil
| | - Elias Jorge Facury Filho
- Department of Veterinary Medicine and Surgery, Universidade Federal de Minas Gerais-UFMG, Av. Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Amauri Alcindo Alfieri
- Department of Clinical Sciences and Preventive Veterinary Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid (PR 445) Km 380, Londrina 86057-970, PR, Brazil
| | - Marcio C Costa
- Department of Veterinary Biomedical Sciences, Université de Montréal, 3200 Sicotte, St-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
9
|
Gao Y, Zhang W, Zhang T, Yu Y, Mao S, Liu J. Fructo-oligosaccharide supplementation enhances the growth of nursing dairy calves while stimulating the persistence of Bifidobacterium and hindgut microbiome's maturation. J Dairy Sci 2024; 107:5626-5638. [PMID: 38522831 DOI: 10.3168/jds.2024-24468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024]
Abstract
The colonization and development of the gut microbiome in dairy calves play a crucial role in their overall health and future productivity. Despite the widely proposed benefits of inulin-related products on the host, there is insufficient information about how supplementing fructo-oligosaccharides (FOS) affects the colonization and development of the gut microbiome in calves. In a randomized intervention trial involving newborn male Holstein dairy calves, we investigated the effect of FOS on the calf hindgut microbiome, short-chain fatty acids (SCFA), growth performance, and the incidence of diarrhea. The daily administration of FOS exhibited a time-dependent increase in the ADG and the concentration of SCFA. Concurrently, FOS delayed the natural decline of Bifidobacterium, promoting the maturation and stabilization of the hindgut microbiome. These findings not only contribute to a theoretical understanding of the judicious application of prebiotics but also hold significant practical implications for the design of early life dietary interventions in the rearing of dairy calves.
Collapse
Affiliation(s)
- Yunlong Gao
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanqiu Zhang
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Zhang
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yueying Yu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinxin Liu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Zened A, Julien C, Cauquil L, Pascal G, Canlet C, Tremblay-Franco M, Ali-Haimoud-Lekhal D, Enjalbert F, Bayourthe C, Combes S. Milk replacer feeding once or twice a day did not change the ruminal metabolomic profile and the microbial diversity of dairy calves from birth to weaning. J Dairy Sci 2024; 107:5574-5586. [PMID: 38460877 DOI: 10.3168/jds.2023-24327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/05/2024] [Indexed: 03/11/2024]
Abstract
In commercial dairy production systems, feeding calves once daily could be an alternative to reduce labor expenses. Several studies comparing once-a-day (OAD) versus twice-a-day (TAD) milk feeding systems have not evidenced differences in calf growth, rumen development, blood parameters or health scores, but effect on ruminal microbiota remains to be investigated. The objective of this study was to determine the effects of OAD or TAD on the establishment of the ruminal microbiota and its metabolic activity. Sixteen male calves (45.9 ± 5.7 kg at birth) were involved in the trial from birth to weaning (63 d). After the colostrum phase, 2 feeding programs based on a milk replacer were tested and calves were allocated to these programs on d 5. To study the establishment of the bacterial community, ruminal fluid was obtained from each calf 1 h after the morning meal at 7, 35, and 63 d of age. The ruminal metabolome was evaluated at a 7-d interval from d 1 to d 63. Ruminal microbiota and metabolite profiles were characterized by 16 S rRNA gene sequencing- and by 1H nuclear magnetic resonance spectroscopy, respectively. Our results showed that feeding milk replacer once or TAD did not change the ruminal microbiota and metabolites of dairy calves from birth to weaning. Microbial data showed that diversity and richness increased with age, suggesting a shift from a heterogeneous and less diverse community after birth (d 7) to a more diverse but homogeneous community at 35 and 63 d. These findings suggest that feeding milk OAD can be successfully applied to a calf feeding system without compromising microbial establishment and functions.
Collapse
Affiliation(s)
- A Zened
- INP-PURPAN, 31076, Toulouse, France; GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France.
| | - C Julien
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France
| | - L Cauquil
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France
| | - G Pascal
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France
| | - C Canlet
- Toxalim, Université de Toulouse, INRAE, ENVT, INP-Purpan,UPS, 31027, Toulouse, France
| | - M Tremblay-Franco
- Toxalim, Université de Toulouse, INRAE, ENVT, INP-Purpan,UPS, 31027, Toulouse, France
| | - D Ali-Haimoud-Lekhal
- INP-PURPAN, 31076, Toulouse, France; GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France
| | - F Enjalbert
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France
| | - C Bayourthe
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France
| | - S Combes
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France
| |
Collapse
|
11
|
Uddin MS, Ortiz Guluarte J, Waldner M, Alexander TW. The respiratory and fecal microbiota of beef calves from birth to weaning. mSystems 2024; 9:e0023824. [PMID: 38899874 PMCID: PMC11264934 DOI: 10.1128/msystems.00238-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
The development and growth of animals coincide with the establishment and maturation of their microbiotas. To evaluate the respiratory and fecal microbiotas of beef calves from birth to weaning, a total of 30 pregnant cows, and their calves at birth, were enrolled in this study. Deep nasal swabs and feces were collected from calves longitudinally, starting on the day of birth and ending on the day of weaning. Nasopharyngeal, vaginal, and fecal samples were also collected from cows, and the microbiotas of all samples were analyzed. The fecal microbiota of calves was enriched with Lactobacillus during the first 8 weeks of life, before being displaced by genera associated with fiber digestion, and then increasing in diversity across time. In contrast, the diversity of calf respiratory microbiota generally decreased with age. At birth, the calf and cow nasal microbiotas were highly similar, indicating colonization from dam contact. This was supported by microbial source-tracking analysis. The structure of the calf nasal microbiota remained similar to that of the cows, until weaning, when it diverged. The changes were driven by a decrease in Lactobacillus and an increase in genera typically associated with bovine respiratory disease, including Mannheimia, Pasteurella, and Mycoplasma. These three genera colonized calves early in life, though Mannheimia was initially transferred from the cow reproductive tract. Path analysis was used to model the interrelationships of calf respiratory and fecal microbiotas. It was observed that respiratory Lactobacillus and fecal Oscillospiraceae UCG-005 negatively affected the abundance of Mannheimia or Pasteurella.IMPORTANCEIn beef cattle production, bovine respiratory disease (BRD) accounts for most of the feedlot morbidities and mortalities. Metaphylaxis is a common management tool to mitigate BRD, however its use has led to increased antimicrobial resistance. Novel methods to mitigate BRD are needed, including microbiota-based strategies. However, information on the respiratory bacteria of beef calves prior to weaning was limited. In this study, it was shown that the microbiota of cows influenced the initial composition of both respiratory and fecal microbiotas in calves. While colonization of the respiratory tract of calves by BRD-associated genera occurred early in life, their relative abundances increased at weaning, and were negatively correlated with respiratory and gut bacteria. Thus, microbiotas of both the respiratory and gastrointestinal tracts have important roles in antagonism of respiratory pathogens and are potential targets for enhancing calf respiratory health. Modulation may be most beneficial, if done prior to weaning, before opportunistic pathogens establish colonization.
Collapse
Affiliation(s)
- Muhammed Salah Uddin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jose Ortiz Guluarte
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Matthew Waldner
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Trevor W. Alexander
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| |
Collapse
|
12
|
Elmagzoub WA, Idris SM, Elnaiem MHE, Mukhtar ME, Eltayeb E, Bakhiet SM, Okuni JB, Ojok L, El Sanousi SM, El Wahed AA, Gameel AA, Eltom KH. Faecal microbial diversity in a cattle herd infected by Mycobacterium avium subsp. paratuberculosis: a possible effect of production status. World J Microbiol Biotechnol 2024; 40:276. [PMID: 39037634 PMCID: PMC11263420 DOI: 10.1007/s11274-024-04080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne's disease, or paratuberculosis (PTB) in ruminants, besides having zoonotic potential. It possibly changes the gut microbiome, but no conclusive data are available yet. This study aimed at investigating the influence of MAP on the faecal microbiome of cattle naturally infected with PTB. In a follow up period of 10 months, PTB status was investigated in a herd of dairy cattle with history of clinical cases. Each animal was tested for MAP infection using serum and milk ELISA for MAP anti-bodies and IS900 real-time PCR and recombinase polymerase amplification assays for MAP DNA in the faeces and milk monthly for 4 successive months, then a last one after 6 months. The faecal samples were subjected to 16S rDNA metagenomic analysis using Oxford Nanopore Sequencing Technology. The microbial content was compared between animal groups based on MAP positivity rate and production status. All animals were MAP positive by one or more tests, but two animals were consistently negative for MAP DNA in the faeces. In all animals, the phyla firmicutes and bacteroidetes were highly enriched with a small contribution of proteobacteria, and increased abundance of the families Oscillospiraceae, Planococcaceae, and Streptococcacaceae was noted. Animals with high MAP positivity rate showed comparable faecal microbial content, although MAP faecal positivity had no significant effect (p > 0.05) on the microbiome. Generally, richness and evenness indices decreased with increasing positivity rate. A significantly different microbial content was found between dry cows and heifers (p < 0.05). Particularly, Oscillospiraceae and Rikenellaceae were enriched in heifers, while Planococcaceae and Streptococcaceae were overrepresented in dry cows. Furthermore, abundance of 72 genera was significantly different between these two groups (p < 0.05). Changes in faecal microbiome composition were notably associated with increasing MAP shedding in the faeces. The present findings suggest a combined influence of the production status and MAP on the cattle faecal microbiome. This possibly correlates with the fate of the infection, the concern in disease control, again remains for further investigations.
Collapse
Affiliation(s)
- Wisal A Elmagzoub
- Department of Animal Health and Safety of Animal Products, Institute for Studies and Promotion of Animal Exports, University of Khartoum, Shambat, 13314, Khartoum North, Sudan
- Department of Biology and Biotechnology, College of Applied and Industrial Sciences, University of Bahri, Khartoum North, Sudan
| | - Sanaa M Idris
- Department of Animal Health and Safety of Animal Products, Institute for Studies and Promotion of Animal Exports, University of Khartoum, Shambat, 13314, Khartoum North, Sudan
- Department of Pathology, Faculty of Veterinary Medicine, University of Khartoum, Shambat, 13314, Khartoum North, Sudan
| | - Marwa H E Elnaiem
- Department of Botany and Agricultural Biotechnology, Faculty of Agriculture, University of Khartoum, Shambat, 13314, Khartoum North, Sudan
| | - Mohamed E Mukhtar
- Department of Agricultural Extension and Rural Development, Faculty of Agriculture, University of Khartoum, Shambat, 13314, Khartoum North, Sudan
| | - ElSagad Eltayeb
- Faculty of Medicine, Al Neelain University/Ibn Sina Specialised Hospital, Street 17-21, Alamarat, 12217, Khartoum, Sudan
| | - Sahar M Bakhiet
- Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Julius B Okuni
- College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Lonzy Ojok
- College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, P. O. Box 7062, Kampala, Uganda
- Department of Pathology, Faculty of Medicine, Gulu University, P.O.Box 166, Gulu, Uganda
| | - Sulieman M El Sanousi
- Department of Microbiology, Faculty of Veterinary Medicine, University of Khartoum, Shambat, 13314, Khartoum North, Sudan
| | - Ahmed Abd El Wahed
- Faculty of Veterinary Medicine, Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, An den Tierkliniken 1, 04103, Leipzig, Germany.
| | - Ahmed A Gameel
- Department of Pathology, Faculty of Veterinary Medicine, University of Khartoum, Shambat, 13314, Khartoum North, Sudan
| | - Kamal H Eltom
- Department of Animal Health and Safety of Animal Products, Institute for Studies and Promotion of Animal Exports, University of Khartoum, Shambat, 13314, Khartoum North, Sudan.
| |
Collapse
|
13
|
Chen X, Xiao J, Zhao W, Li Y, Zhao W, Zhang W, Xin L, Han Z, Wang L, Aschalew ND, Zhang X, Wang T, Qin G, Sun Z, Zhen Y. Mechanistic insights into rumen function promotion through yeast culture ( Saccharomyces cerevisiae) metabolites using in vitro and in vivo models. Front Microbiol 2024; 15:1407024. [PMID: 39081884 PMCID: PMC11287897 DOI: 10.3389/fmicb.2024.1407024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Yeast culture (YC) enhances ruminant performance, but its functional mechanism remains unclear because of the complex composition of YC and the uncertain substances affecting rumen fermentation. The objective of this study was to determine the composition of effective metabolites in YC by exploring its effects on rumen fermentation in vitro, growth and slaughter performance, serum index, rumen fermentation parameters, rumen microorganisms, and metabolites in lambs. Methods In Trial 1, various YCs were successfully produced, providing raw materials for identifying effective metabolites. The experiment was divided into 5 treatment groups with 5 replicates in each group: the control group (basal diet without additives) and YC groups were supplemented with 0.625‰ of four different yeast cultures, respectively (groups A, B, C, and D). Rumen fermentation parameters were determined at 3, 6, 12, and 24 h in vitro. A univariate regression model multiple factor associative effects index (MFAEI; y) was established to correlate the most influential factors on in vitro rumen fermentation with YC metabolites (x). This identified the metabolites promoting rumen fermentation and optimal YC substance levels. In Trial 2, metabolites in YC not positively correlated with MFAEI were excluded, and effective substances were combined with pure chemicals (M group). This experiment validated the effectiveness of YC metabolites in lamb production based on their impact on growth, slaughter performance, serum indices, rumen parameters, microorganisms, and metabolites. Thirty cross-generation rams (Small tail Han-yang ♀ × Australian white sheep ♂) with good body condition and similar body weight were divided into three treatment groups with 10 replicates in each group: control group, YC group, pure chemicals combination group (M group). Results Growth performance and serum index were measured on days 30 and 60, and slaughter performance, rumen fermentation parameters, microorganisms, and metabolites were measured on day 60. The M group significantly increased the dressing percentage, and significantly decreased the GR values of lambs (p < 0.05). The concentration of growth hormone (GH), Cortisol, insulin (INS), and rumen VFA in the M group significantly increased (p < 0.05). Discussion These experiments confirmed that YC or its screened effective metabolites positively impact lamb slaughter performance, rumen fermentation, and microbial metabolism.
Collapse
Affiliation(s)
- Xue Chen
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Jun Xiao
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Wanzhu Zhao
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yanan Li
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Wei Zhao
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Weigang Zhang
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Liang Xin
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Zhiyi Han
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Lanhui Wang
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Natnael Demelash Aschalew
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xuefeng Zhang
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Tao Wang
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Guixin Qin
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zhe Sun
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yuguo Zhen
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| |
Collapse
|
14
|
Claus-Walker RA, Slanzon GS, Elder LA, Hinnant HR, Mandella CM, Parrish LM, Trombetta SC, McConnel CS. Characterization of the preweaned Holstein calf fecal microbiota prior to, during, and following resolution of uncomplicated gastrointestinal disease. Front Microbiol 2024; 15:1388489. [PMID: 38855768 PMCID: PMC11157069 DOI: 10.3389/fmicb.2024.1388489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/10/2024] [Indexed: 06/11/2024] Open
Abstract
Little is known about shifts in the fecal microbiome of dairy calves preceding and following the incidence of gastrointestinal disease. The objective of this cohort study was to describe the fecal microbiome of preweaned dairy calves before, during, and after gastrointestinal disease. A total of 111 Holstein dairy calves were enrolled on 2 dairies (D1 and D2) and followed until 5 weeks old. Health assessments were performed weekly and fecal samples were collected every other week. Of the 111 calves, 12 calves from D1 and 12 calves from D2 were retrospectively defined as healthy, and 7 calves from D1 and 11 calves from D2 were defined as diarrheic. Samples from these calves were sequenced targeting the 16S rRNA gene and compared based on health status within age groups and farms: healthy (0-1 week old) vs. pre-diarrheic (0-1 week old), healthy (2-3 weeks old) vs. diarrheic (2-3 weeks old), and healthy (4-5 weeks old) vs. post-diarrheic (4-5 weeks old) calves. Healthy and diarrheic samples clustered together based on age rather than health status on both farms. Based on linear discriminant analysis, a few species were identified to be differently enriched when comparing health status within age groups and farm. Among them, Bifidobacterium sp. was differently enriched in pre-diarrheic calves at D1 (0-1 week old) whereas healthy calves of the same age group and farm showed a higher abundance of Escherichia coli. Bifidobacterium sp. was identified as a biomarker of fecal samples from healthy calves (2-3 weeks old) on D1 when compared with diarrheic calves of the same age group and farm. Feces from diarrheic calves on D2 (2-3 weeks old) were characterized by taxa from Peptostreptococcus and Anaerovibrio genera whereas fecal samples of age-matched healthy calves were characterized by Collinsella aerofaciens and Bifidobacterium longum. After resolution of uncomplicated diarrhea (4-5 weeks old), Collinsella aerofaciens was more abundant in D2 calves whereas Bacteriodes uniformis was more abundant in D1 calves. Taken together, these findings suggest that the age of the preweaned calf is the major driver of changes to fecal microbiome composition and diversity even in the face of uncomplicated gastrointestinal disease.
Collapse
|
15
|
Bessegatto JA, Lisbôa JAN, Santos BP, Curti JM, Montemor C, Alfieri AA, Mach N, Costa MC. Fecal Microbial Communities of Nellore and Crossbred Beef Calves Raised at Pasture. Animals (Basel) 2024; 14:1447. [PMID: 38791664 PMCID: PMC11117347 DOI: 10.3390/ani14101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
This study aimed to investigate the effect of age and genetics on the fecal microbiota of beef calves. Ten purebred Nellore (Bos taurus indicus) and ten crossbreed 50% Nellore-50% European breed (Bos taurus taurus) calves co-habiting on the same pasture paddock had fecal samples collected on days five (5 d), 14 d, 28 d, 60 d, 90 d, 180 d, 245 d (weaning) and 260 d after birth. All calves were kept with their mothers, and six Nellore dams were also sampled at weaning. Microbiota analysis was carried out by amplification of the V4 region of the 16S rRNA gene following high-throughput sequencing with a MiSeq Illumina platform. Results revealed that bacterial richness increased with age and became more similar to adults near weaning. Differences in microbiota membership between breeds were found at 60 d and 90 d and for structure at 60 d, 90 d, 245 d, and 260 d (p < 0.05). In addition, crossbreed calves presented less variability in their microbiota. In conclusion, the genetic composition significantly impacted the distal gut microbiota of calves co-habiting in the same environment, and further studies investigating food intake can reveal possible associations between microbiota composition and performance.
Collapse
Affiliation(s)
- José Antônio Bessegatto
- Department of Cinical Sciences, Faculdade de Medicina Veterinária, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid (PR 445) Km 380, Londrina 86057-970, Brazil; (J.A.B.)
| | - Júlio Augusto Naylor Lisbôa
- Department of Cinical Sciences, Faculdade de Medicina Veterinária, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid (PR 445) Km 380, Londrina 86057-970, Brazil; (J.A.B.)
| | - Bruna Parapinski Santos
- Department of Cinical Sciences, Faculdade de Medicina Veterinária, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid (PR 445) Km 380, Londrina 86057-970, Brazil; (J.A.B.)
| | - Juliana Massitel Curti
- Department of Cinical Sciences, Faculdade de Medicina Veterinária, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid (PR 445) Km 380, Londrina 86057-970, Brazil; (J.A.B.)
| | - Carlos Montemor
- Department of Cinical Sciences, Faculdade de Medicina Veterinária, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid (PR 445) Km 380, Londrina 86057-970, Brazil; (J.A.B.)
| | - Amauri Alcindo Alfieri
- Department of Cinical Sciences, Faculdade de Medicina Veterinária, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid (PR 445) Km 380, Londrina 86057-970, Brazil; (J.A.B.)
| | - Núria Mach
- Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), École Nationale Vétérinaire de Toulouse, 31076 Toulouse, France
| | - Marcio Carvalho Costa
- Department of Biomedical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
16
|
Huuki H, Vilkki J, Vanhatalo A, Tapio I. Fecal microbiota colonization dynamics in dairy heifers associated with early-life rumen microbiota modulation and gut health. Front Microbiol 2024; 15:1353874. [PMID: 38505558 PMCID: PMC10949896 DOI: 10.3389/fmicb.2024.1353874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/07/2024] [Indexed: 03/21/2024] Open
Abstract
Early-life modulation of rumen microbiota holds promise for enhancing calf growth, health, and long-term production in ruminants. However, limited attention has been given to the impact of rumen microbiota modulation on the establishment of hindgut microbiota. In this study, fecal microbiota development was examined in identical twin calves for 12 months. The treatment group (T-group) received adult cow fresh rumen liquid inoculum during the pre-weaning period, while the control group did not (C-group). The effects of inoculum were assessed on calf gut health and as microbial seeding route into the hindgut. The early rumen modulation had no effect on age-related fecal microbiota development. The fecal bacterial community evolved gradually following dietary changes and categorized into pre-weaning and post-weaning communities. Bacterial richness increased with age and stabilized at month 9, while between-sample variation reduced in post-weaning samples. Archaeal load in fecal samples increased after month 4, while archaeal richness increased and stabilized in both groups by month 9. Between-sample similarity was higher during the pre-weaning period, with increased dissimilarity from month 4 onward. Anaerobic fungi were detected in feces at month 4, with richness peaking at month 7. Before month 6, fungal community composition distinctly differed from mature communities. When colostrum, calf rumen, and donor inoculum were evaluated as seeding sources for hindgut colonization, the calf's own rumen was identified as the primary seeding source for fecal bacteria and fungi. Colostrum was a source for several bacteria detected in feces, but these were of temporary importance until weaning. The donor inoculum had limited impact on gut health as diarrhea rates were similar between the T-group and C-group. In conclusion, early-life microbiota modulation shows potential in ruminant development. However, a more targeted approach with bacteria adapted to the hindgut environment may be necessary to modulate hindgut effectively. This research contributes to our understanding of the complex relationship between gut microbiota and calf health and growth.
Collapse
Affiliation(s)
- Hanna Huuki
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Production Systems, Genomics and Breeding, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Johanna Vilkki
- Production Systems, Genomics and Breeding, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Aila Vanhatalo
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Ilma Tapio
- Production Systems, Genomics and Breeding, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| |
Collapse
|
17
|
Keum GB, Pandey S, Kim ES, Doo H, Kwak J, Ryu S, Choi Y, Kang J, Kim S, Kim HB. Understanding the Diversity and Roles of the Ruminal Microbiome. J Microbiol 2024; 62:217-230. [PMID: 38662310 DOI: 10.1007/s12275-024-00121-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 04/26/2024]
Abstract
The importance of ruminal microbiota in ruminants is emphasized, not only as a special symbiotic relationship with ruminants but also as an interactive and dynamic ecosystem established by the metabolites of various rumen microorganisms. Rumen microbial community is essential for life maintenance and production as they help decompose and utilize fiber that is difficult to digest, supplying about 70% of the energy needed by the host and 60-85% of the amino acids that reach the small intestine. Bacteria are the most abundant in the rumen, but protozoa, which are relatively large, account for 40-50% of the total microorganisms. However, the composition of these ruminal microbiota is not conserved or constant throughout life and is greatly influenced by the host. It is known that the initial colonization of calves immediately after birth is mainly influenced by the mother, and later changes depending on various factors such as diet, age, gender and breed. The initial rumen microbial community contains aerobic and facultative anaerobic bacteria due to the presence of oxygen, but as age increases, a hypoxic environment is created inside the rumen, and anaerobic bacteria become dominant in the rumen microbial community. As calves grow, taxonomic diversity increases, especially as they begin to consume solid food. Understanding the factors affecting the rumen microbial community and their effects and changes can lead to the early development and stabilization of the microbial community through the control of rumen microorganisms, and is expected to ultimately help improve host productivity and efficiency.
Collapse
Affiliation(s)
- Gi Beom Keum
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sriniwas Pandey
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Eun Sol Kim
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hyunok Doo
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jinok Kwak
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sumin Ryu
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Yejin Choi
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Juyoun Kang
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sheena Kim
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Hyeun Bum Kim
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
18
|
Alawneh JI, Ramay H, Olchowy T, Allavena R, Soust M, Jassim RA. Effect of a Lactobacilli-Based Direct-Fed Microbial Product on Gut Microbiota and Gastrointestinal Morphological Changes. Animals (Basel) 2024; 14:693. [PMID: 38473078 DOI: 10.3390/ani14050693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
The calf's gastrointestinal tract (GIT) microbiome undergoes rapid shifts during early post-natal life, which can directly affect calf performance. The objectives of this study were to characterise and compare differences in the establishment and succession of GIT microbiota, GIT morphological changes, and the growth of dairy calves from birth until weaned. Forty-four newborn Holstein-Friesian calves were randomly selected and assigned to Treatment (TRT) and Control (CON) groups. The TRT group calves received a once-daily dose of a direct-fed microbial (DFM) liquid product containing Lacticaseibacillus paracasei, Lentilactobacillus buchneri, and Lacticaseibacillus casei, all formerly known as Lactobacillus. Fresh faecal samples were manually taken from the rectum of all calves, and gross necropsy was performed on the forestomachs and gastrointestinal tracts. Bacterial DNA was extracted from frozen faecal samples for 16S rRNA gene amplicon sequencing. Calves in the TRT group had greater live weights (p = 0.02) at weaning compared with calves in the CON group (mean = 69.18 kg, SD = 13.37 kg). The average daily live weight gain (ADG) and total feed intake were similar between the two groups. Calves in the TRT group had greater duodenum, abomasum, and reticulum weights (p = 0.05). Rumen and intestinal development (p < 0.05) and faecal microbial diversity (p < 0.05) were more pronounced in the TRT group. The relative abundances of eight genera differed (p < 0.001) between the groups. Supplementing calves with the LAB-based DFM increased live weight at weaning and had a more pronounced effect on the development of rumen and the gastrointestinal tract and on microbiota diversity and evenness. Future work is needed to better understand the potential association of LAB-DFM products on gut mucosa-associated microbiota.
Collapse
Affiliation(s)
- John I Alawneh
- School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia
| | - Hena Ramay
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T3R 1J3, Canada
| | - Timothy Olchowy
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T3R 1J3, Canada
| | - Rachel Allavena
- School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia
| | - Martin Soust
- Terragen Biotech Pty Ltd., Coolum Beach, QLD 4573, Australia
| | - Rafat Al Jassim
- Queensland Alliance for Agriculture and Food Innovation, St Lucia, QLD 4072, Australia
| |
Collapse
|
19
|
Sadek A, Taminiau B, Daube G, Sapountzis P, Chaucheyras-Durand F, Castex M, Coucheney F, Drider D. Impact of Dietary Regime and Seasonality on Hindgut's Mycobiota Diversity in Dairy Cows. Microorganisms 2023; 12:84. [PMID: 38257911 PMCID: PMC10820462 DOI: 10.3390/microorganisms12010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
We describe and discuss the intestinal mycobiota of dairy cows reared in France following variations in dietary regimes and two seasons. Two groups of 21 animals were followed over a summer and winter period, and another group of 28 animals was followed only during the same summer season. The summer diet was based on grazing supplemented with 3-5 kg/d of maize, grass silage and hay, while the winter diet consisted of 30% maize silage, 25% grass silage, 15% hay and 30% concentrate. A total of 69 DNA samples were extracted from the feces of these cows. Amplification and sequencing of the ITS2 region were used to assess mycobiota diversity. Analyses of alpha and beta diversity were performed and compared statistically. The mycobiota changed significantly from summer to winter conditions with a decrease in its diversity, richness and evenness parameters, while beta diversity analysis showed different mycobiota profiles. Of note, the Geotrichum operational taxonomic unit (OTU) was prevalent in the winter group, with a mean relative abundance (RA) of 65% of the total mycobiota. This Geotrichum OTU was also found in the summer group, but to a lesser extent (5%). In conclusion, a summer grazing diet allowed a higher fecal fungal diversity. These data show, for the first time, that a change in diet associated with seasonality plays a central role in shaping hindgut fungal diversity.
Collapse
Affiliation(s)
- Ali Sadek
- Unité Mixte de Recherche (UMR) Transfrontalière BioEcoAgro 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D’Opale, ICV—Institut Charles Viollette, 59000 Lille, France (B.T.); (G.D.)
- Lallemand SAS, 19 Rue des Briquetiers, 31702 Blagnac, France
| | - Bernard Taminiau
- Unité Mixte de Recherche (UMR) Transfrontalière BioEcoAgro 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D’Opale, ICV—Institut Charles Viollette, 59000 Lille, France (B.T.); (G.D.)
- Fundamental and Applied Research for Animal & Health (FARAH), Veterinary Medicine Faculty, Department of Food Sciences, University of Liège, 4000 Liège, Belgium
| | - Georges Daube
- Unité Mixte de Recherche (UMR) Transfrontalière BioEcoAgro 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D’Opale, ICV—Institut Charles Viollette, 59000 Lille, France (B.T.); (G.D.)
- Fundamental and Applied Research for Animal & Health (FARAH), Veterinary Medicine Faculty, Department of Food Sciences, University of Liège, 4000 Liège, Belgium
| | - Panagiotis Sapountzis
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France;
| | - Frédérique Chaucheyras-Durand
- Lallemand SAS, 19 Rue des Briquetiers, 31702 Blagnac, France
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France;
| | - Mathieu Castex
- Lallemand SAS, 19 Rue des Briquetiers, 31702 Blagnac, France
| | - Françoise Coucheney
- Unité Mixte de Recherche (UMR) Transfrontalière BioEcoAgro 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D’Opale, ICV—Institut Charles Viollette, 59000 Lille, France (B.T.); (G.D.)
| | - Djamel Drider
- Unité Mixte de Recherche (UMR) Transfrontalière BioEcoAgro 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D’Opale, ICV—Institut Charles Viollette, 59000 Lille, France (B.T.); (G.D.)
| |
Collapse
|
20
|
Wang J, Chen Y, Li M, Xia S, Zhao K, Fan H, Ni J, Sun W, Jia X, Lai S. The effects of differential feeding on ileum development, digestive ability and health status of newborn calves. Front Vet Sci 2023; 10:1255122. [PMID: 37745216 PMCID: PMC10514501 DOI: 10.3389/fvets.2023.1255122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Pre-weaning is the most important period for the growth and development of calves. Intestinal morphology, microbial community and immunity are initially constructed at this stage, and even have a lifelong impact on calves. Early feeding patterns have a significant impact on gastrointestinal development and microbial communities. This study mainly analyzed the effects of three feeding methods on the gastrointestinal development of calves, and provided a theoretical basis for further improving the feeding mode of calves. it is very important to develop a suitable feeding mode. In this study, we selected nine newborn healthy Holstein bull calves were randomly selected and divided into three groups (n = 3), which were fed with starter + hay + milk (SH group), starter + milk (SF group), total mixed ration + milk (TMR group). After 80 days of feeding Feeding to 80 days of age after, the ileum contents and blood samples were collected, and the differences were compared and analyzed by metagenomic analysis and serum metabolomics analysis. Results show that compared with the other two groups, the intestinal epithelium of the SH group was more complete and the goblet cells developed better. The feeding method of SH group was more conducive to the development of calves, with higher daily gain and no pathological inflammatory reaction. The intestinal microbial community was more conducive to digestion and absorption, and the immunity was stronger. These findings are helpful for us to explore better calf feeding patterns. In the next step, we will set up more biological replicates to study the deep-seated reasons for the differences in the development of pre-weaning calves. At the same time, the new discoveries of neuro microbiology broaden our horizons and are the focus of our future attention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
21
|
Abdelsattar MM, Zhao W, Saleem AM, Kholif AE, Vargas-Bello-Pérez E, Zhang N. Physical, Metabolic, and Microbial Rumen Development in Goat Kids: A Review on the Challenges and Strategies of Early Weaning. Animals (Basel) 2023; 13:2420. [PMID: 37570229 PMCID: PMC10417166 DOI: 10.3390/ani13152420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
The digestive system of newborn ruminant functions is similar to monogastric animals, and therefore milk flows into the abomasum instead of rumen for digestion. The rumen undergoes tremendous changes over time in terms of structure, function, and microbiome. These changes contribute to the smooth transition from the dependence on liquid diets to solid diets. Goat kids are usually separated at early ages from their dams in commercial intensive systems. The separation from dams minimizes the transfer of microbiota from dams to newborns. In this review, understanding how weaning times and methodologies could affect the normal development and growth of newborn goats may facilitate the development of new feeding strategies to control stress in further studies.
Collapse
Affiliation(s)
- Mahmoud M. Abdelsattar
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.M.A.); (W.Z.)
- Department of Animal and Poultry Production, Faculty of Agriculture, South Valley University, Qena 83523, Egypt;
| | - Wei Zhao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.M.A.); (W.Z.)
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Atef M. Saleem
- Department of Animal and Poultry Production, Faculty of Agriculture, South Valley University, Qena 83523, Egypt;
| | - Ahmed E. Kholif
- Department of Dairy Science, National Research Centre, Giza 12622, Egypt;
| | - Einar Vargas-Bello-Pérez
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, P.O. Box 237, Earley Gate, Reading RG6 6EU, UK;
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico R. Aldama Km 1, Chihuahua 31031, Mexico
| | - Naifeng Zhang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.M.A.); (W.Z.)
| |
Collapse
|
22
|
Dunière L, Ruiz P, Lebbaoui Y, Guillot L, Bernard M, Forano E, Chaucheyras-Durand F. Effects of rearing mode on gastro-intestinal microbiota and development, immunocompetence, sanitary status and growth performance of lambs from birth to two months of age. Anim Microbiome 2023; 5:34. [PMID: 37461095 DOI: 10.1186/s42523-023-00255-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/08/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Artificial rearing system, commonly used in prolific sheep breeds, is associated to increased mortality and morbidity rates before weaning, which might be linked to perturbations in digestive tract maturation, including microbiota colonization. This study evaluated the effect of rearing mode (mothered or artificially reared) on the establishment of the rumen and intestinal microbiome of lambs from birth to weaning. We also measured immunological and zootechnical parameters to assess lambs' growth and health. GIT anatomy as well as rumen and intestinal epithelium gene expression were also analysed on weaned animals to assess possible long-term effects of the rearing practice. RESULTS Total VFA concentrations were higher in mothered lambs at 2 months of age, while artificially-reared lambs had lower average daily gain, a more degraded sanitary status and lower serum IgG concentration in the early growth phase. Metataxonomic analysis revealed higher richness of bacterial and eukaryote populations in mothered vs. artificially-reared lambs in both Rumen and Feces. Beta diversity analysis indicated an evolution of rumen and fecal bacterial communities in mothered lambs with age, not observed in artificially-reared lambs. Important functional microorganisms such as the cellulolytic bacterium Fibrobacter succinogenes and rumen protozoa did not establish correctly before weaning in artificially-reared lambs. Enterobacteriaceae and Escherichia coli were dominant in the fecal microbiota of mothered lambs, but main E. coli virulence genes were not found differential between the two groups, suggesting they are commensal bacteria which could exert a protective effect against pathogens. The fecal microbiota of artificially-reared lambs had a high proportion of lactic acid bacteria taxa. No difference was observed in mucosa gene expression in the two lamb groups after weaning. CONCLUSIONS The rearing mode influences gastrointestinal microbiota and health-associated parameters in offspring in early life: rumen maturation was impaired in artificially-reared lambs which also presented altered sanitary status and higher risk of gut dysbiosis. The first month of age is thus a critical period where the gastrointestinal tract environment and microbiota are particularly unstable and special care should be taken in the management of artificially fed newborn ruminants.
Collapse
Affiliation(s)
- Lysiane Dunière
- Lallemand SAS, CEDEX, 19 rue des Briquetiers, BP 59, Blagnac, 31702, France
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS (Microbiologie Environnement Digestif et Santé), Clermont-Ferrand, 63000, France
| | - Philippe Ruiz
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS (Microbiologie Environnement Digestif et Santé), Clermont-Ferrand, 63000, France
| | - Yacine Lebbaoui
- Lallemand SAS, CEDEX, 19 rue des Briquetiers, BP 59, Blagnac, 31702, France
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS (Microbiologie Environnement Digestif et Santé), Clermont-Ferrand, 63000, France
| | - Laurie Guillot
- Lallemand SAS, CEDEX, 19 rue des Briquetiers, BP 59, Blagnac, 31702, France
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS (Microbiologie Environnement Digestif et Santé), Clermont-Ferrand, 63000, France
| | - Mickael Bernard
- UE 1414 (Unité Expérimentale), INRAE, Herbipôle, Saint-Genès Champanelle, 63122, France
| | - Evelyne Forano
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS (Microbiologie Environnement Digestif et Santé), Clermont-Ferrand, 63000, France
| | - Frédérique Chaucheyras-Durand
- Lallemand SAS, CEDEX, 19 rue des Briquetiers, BP 59, Blagnac, 31702, France.
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS (Microbiologie Environnement Digestif et Santé), Clermont-Ferrand, 63000, France.
| |
Collapse
|
23
|
Yang S, Zhang G, Yuan Z, He S, Wang R, Zheng J, Mao H, Chai J, Wu D. Exploring the temporal dynamics of rumen bacterial and fungal communities in yaks ( Bos grunniens) from 5 days after birth to adulthood by full-length 16S and 18S rRNA sequencing. Front Vet Sci 2023; 10:1166015. [PMID: 37415968 PMCID: PMC10321131 DOI: 10.3389/fvets.2023.1166015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023] Open
Abstract
The rumen of ruminants is inhabited by complex and diverse microorganisms. Young animals are exposed to a variety of microorganisms from their mother and the environment, and a few colonize and survive in their digestive tracts, forming specific microflora as the young animals grow and develop. In this study, we conducted full-length sequencing of bacterial and fungal communities in the rumen of pastured yaks of different ages (from 5 days after birth to adulthood) using amplified sequencing technology. The results showed that the rumen microflora of Zhongdian yaks changed gradually from 5 to 180 days after birth and tended to stabilize at 2 years of age. The rumen of adult yaks was the most suitable for the growth and reproduction of most bacteria. Bactria diversity of the yak rumen increased gradually from 5 days after birth to adulthood. With the growth of yaks, different dominated bacteria were enriched in different groups, but Prevotella remained highly abundant in all groups. The yak rumen at 90 days of age was the most suitable for the growth and reproduction of most fungi, and 90 days of age could be a cut-off point for the distribution of fungal communities. Fungal Thelebolus was the firstly reported in yak rumen and was enriched in the yak rumen of 90 days after birth. The most abundant and balanced fungal genera were found in adult yaks, and most of them were only detected in adult yaks. Our study reported on the rumen bacterial and fungal communities of Zhongdian yaks grazed at different ages and provided insights into the dynamic changes of dominant microflora with yak growth.
Collapse
Affiliation(s)
- Shuli Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| | - Guangrong Zhang
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Zaimei Yuan
- Kunming Animal Disease Prevention And Control Center, Kunming, China
| | - Shichun He
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Rongjiao Wang
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, China
| | - Jieyi Zheng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| | - Huaming Mao
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Jianmin Chai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| | - Dongwang Wu
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
24
|
Li B, Yin W, Lei M, Wang X, Yang Y, Zhang C, Chen Y. Exploring the digesta- and mucosa-associated microbial community dynamics in the rumen and hindgut of goats from birth to adult. Front Microbiol 2023; 14:1190348. [PMID: 37396393 PMCID: PMC10311480 DOI: 10.3389/fmicb.2023.1190348] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023] Open
Abstract
Recently, the relationship between the goat host and its gastrointestinal microbiome has emerged as a hallmark of host-microbiota symbiosis, which was indispensable for the proper physiological function that convert the plant biomass to livestock products. However, little integrative information about the establishment of gastrointestinal microflora in goats exists. Herein, we characterized the colonizing process of the bacterial community in the digesta and mucosa of the rumen, cecum, and colon of the cashmere goat from birth to adulthood to compare its spatiotemporal difference via 16S rRNA gene sequencing. A total of 1,003 genera belonging to 43 phyla were identified. Principal coordinate analysis unveiled the similarity of microbial community between or within each age group increased and gradually developed toward mature whatever in digesta or mucosa. In the rumen, the composition of the bacterial community in digesta differed significantly from in mucosa across age groups; whereas in the hindgut, there was a high similarity of bacterial composition between the in digesta and mucosa in each age group before weaning, while the bacterial community structure differed markedly between these two types of samples after weaning. Taxonomic analysis indicated that 25 and 21 core genera coexisted in digesta and mucosa of the rumen and hindgut, respectively; but their abundances differed considerably by GIT region and/or age. In digesta, as goats aged, a lower abundance of Bacillus was observed with higher abundances of Prevotella 1 and Rikenellaceae RC9 in the rumen; while in the hindgut, the genera Escherichia-Shigella, Variovorax, and Stenotrophomonas decreased and Ruminococcaceae UCG-005, Ruminococcaceae UCG-010, and Alistipes increased with age increased. In mucosa, the rumen showed microbial dynamics with increases of Butyrivibrio 2 and Prevotellaceae UCG-001 and decreases of unclassified_f_Pasteurellaceae; while the genera Treponema 2 and Ruminococcaceae UCG-010 increased and Escherichia-Shigella decreased in the hindgut as goats aged. These results shed light on the colonization process of microbiota in the rumen and hindgut, which mainly include the initial, transit, and mature phases. Furthermore, there is a significant difference in the microbial composition between in digesta and mucosa, and both these exhibit a considerable spatiotemporal specificity.
Collapse
Affiliation(s)
- Bibo Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Weiqi Yin
- College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| | - Mingkai Lei
- College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Yuxin Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chunxiang Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| |
Collapse
|
25
|
Du W, Wang X, Hu M, Hou J, Du Y, Si W, Yang L, Xu L, Xu Q. Modulating gastrointestinal microbiota to alleviate diarrhea in calves. Front Microbiol 2023; 14:1181545. [PMID: 37362944 PMCID: PMC10286795 DOI: 10.3389/fmicb.2023.1181545] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
The calf stage is a critical period for the development of heifers. Newborn calves have low gastrointestinal barrier function and immunity before weaning, making them highly susceptible to infection by various intestinal pathogens. Diarrhea in calves poses a significant threat to the health of young ruminants and may cause serious economic losses to livestock farms. Antibiotics are commonly used to treat diarrhea and promote calf growth, leading to bacterial resistance and increasing antibiotic residues in meat. Therefore, finding new technologies to improve the diarrhea of newborn calves is a challenge for livestock production and public health. The operation of the gut microbiota in the early stages after birth is crucial for optimizing immune function and body growth. Microbiota colonization of newborn animals is crucial for healthy development. Early intervention of the calf gastrointestinal microbiota, such as oral probiotics, fecal microbiota transplantation and rumen microbiota transplantation can effectively relieve calf diarrhea. This review focuses on the role and mechanisms of oral probiotics such as Lactobacillus, Bifidobacterium and Faecalibacterium in relieving calf diarrhea. The aim is to develop appropriate antibiotic alternatives to improve calf health in a sustainable and responsible manner, while addressing public health issues related to the use of antibiotics in livestock.
Collapse
|
26
|
Matthews C, Walsh AM, Gordon SV, Markey B, Cotter PD, O' Mahony J. Differences in Faecal Microbiome Taxonomy, Diversity and Functional Potential in a Bovine Cohort Experimentally Challenged with Mycobacterium avium subsp. paratuberculosis (MAP). Animals (Basel) 2023; 13:ani13101652. [PMID: 37238082 DOI: 10.3390/ani13101652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of Johne's disease in ruminants, a chronic enteritis which results in emaciation and eventual loss of the animal. Recent advances in metagenomics have allowed a more in-depth study of complex microbiomes, including that of gastrointestinal tracts, and have the potential to provide insights into consequences of the exposure of an animal to MAP or other pathogens. This study aimed to investigate taxonomic diversity and compositional changes of the faecal microbiome of cattle experimentally challenged with MAP compared to an unexposed control group. Faecal swab samples were collected from a total of 55 animals [exposed group (n = 35) and a control group (n = 20)], across three time points (months 3, 6 and 9 post-inoculation). The composition and functional potential of the faecal microbiota differed across time and between the groups (p < 0.05), with the primary differences, from both a taxonomic and functional perspective, occurring at 3 months post inoculation. These included significant differences in the relative abundance of the genera Methanobrevibacter and Bifidobacterium and also of 11 other species (4 at a higher relative abundance in the exposed group and 7 at a higher relative abundance in the control group). Correlations were made between microbiome data and immunopathology measurements and it was noted that changes in the microbial composition correlated with miRNA-155, miR-146b and IFN-ɣ. In summary, this study illustrates the impact of exposure to MAP on the ruminant faecal microbiome with a number of species that may have relevance in veterinary medicine for tracking exposure to MAP.
Collapse
Affiliation(s)
- Chloe Matthews
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland
- Teagasc Food Research Centre, Moorepark, P61 C996 Fermoy, Ireland
| | - Aaron M Walsh
- Teagasc Food Research Centre, Moorepark, P61 C996 Fermoy, Ireland
| | - Stephen V Gordon
- School of Veterinary Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Bryan Markey
- School of Veterinary Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, P61 C996 Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, T12 R229 Cork, Ireland
| | - Jim O' Mahony
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland
| |
Collapse
|
27
|
Zhang J, Shang J, Hao Y, Wang Y, Cao Z, Yang H, Wang W, Li S. Growth performance, blood metabolites, ruminal fermentation, and bacterial community in preweaning dairy calves fed corn silage-included starter and total mixed ration. J Dairy Sci 2023:S0022-0302(23)00208-4. [PMID: 37164844 DOI: 10.3168/jds.2022-22476] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 12/14/2022] [Indexed: 05/12/2023]
Abstract
The objective of this study was to evaluate the effects of the inclusion of whole-plant corn silage (WPCS) in a starter or total mixed ration (TMR) on growth, blood metabolites, ruminal fermentation, and microbial community in preweaning dairy calves. A total of 45 healthy dairy calves were blocked by date of birth and randomly assigned to 1 of 3 treatments: 100% calf starter (CONS), a mix of 85% calf starter and 15% WPCS [dry matter (DM) basis; CSCS], or 100% WPCS-based lactation TMR (CTMR). Pasteurized normal milk was fed to all the animals under the same regimen. The experiment ran from when the calves were 2 d old to weaning at 63 d. Milk and feed intakes were recorded daily. Growth performance data and blood samples were collected on wk 3, 5, 7, and 9 of the experiment. Rumen fluid was sampled at 40 and 60 d. The 3 treatments had different particle size fractions. The CSCS group had greater medium fraction (<19 mm, >8 mm) and particles retained on 8-mm sieves than the other 2 groups, whereas the CTMR group had the greatest long (>19 mm) and fine (<4 mm) fractions and physically effective neutral detergent fiber (NDF) on 8- and 4-mm sieves, but had the smallest short fraction (<8 mm, >4 mm) and particles retained on 4-mm sieves. The 24-h in vitro digestibility of DM, crude protein (CP), NDF, and acid detergent fiber (ADF) were decreased in order by the CONS, CSCS, and CTMR groups. Compared with the CONS group, the digestibility of ether extract (EE) was lower in the CSCS and CTMR groups, whereas the digestibility of starch was similar among treatments. During the experimental period, the DM, CP, and metabolizable energy intakes from milk, solid feed, and total feed were not affected by treatments. The NDF, ADF, and EE intakes and potentially digestible intakes were greater in the CTMR group than in the other 2 groups. With the exception that body barrel was greater for calves fed CSCS, growth parameters and blood metabolites were similar among treatments. Compared with the CSCS group, the CTMR group had greater rumen pH and total volatile fatty acids, propionate, and isovalerate concentrations, but a lower acetate:propionate ratio. The CTMR group had greater relative abundances of some cellulolytic bacteria (Rikenellaceae RC9 gut group, Christensenellaceae R7, Ruminococcaceae NK4A214, Ruminococcaceae UCG, Ruminococcus, and Erysipelotrichaceae UCG) in the rumen, which may be beneficial for the early acquisition of specific adult-associated microorganisms. In summary, a WPCS-based lactation TMR, but not the WPCS-included starter, had the potential to be an alternative starter in preweaning calves without having significant adverse effects. These findings provide theoretical and practical implications for the rational application of TMR in the early life of dairy calves.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jiaqi Shang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yangyi Hao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
28
|
Brown bear skin-borne secretions display evidence of individuality and age-sex variation. Sci Rep 2023; 13:3163. [PMID: 36823208 PMCID: PMC9950453 DOI: 10.1038/s41598-023-29479-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Scent originates from excretions and secretions, and its chemical complexity in mammals translates into a diverse mode of signalling. Identifying how information is encoded can help to establish the mechanisms of olfactory communication and the use of odours as chemical signals. Building upon existing behavioural and histological literature, we examined the chemical profile of secretions used for scent marking by a solitary, non-territorial carnivore, the brown bear (Ursus arctos). We investigated the incidence, abundance, and uniqueness of volatile organic compounds (VOCs) from cutaneous glandular secretions of 12 wild brown bears collected during late and post-breeding season, and assessed whether age-sex class, body site, and individual identity explained profile variation. VOC profiles varied in the average number of compounds, compound incidence, and compound abundance by age-sex class and individual identity (when individuals were grouped by sex), but not by body site. Mature males differed from other age-sex classes, secreting fewer compounds on average with the least variance between individuals. Compound uniqueness varied by body site and age for both males and females and across individuals. Our results indicate that brown bear skin-borne secretions may facilitate age-sex class and individual recognition, which can contribute towards further understanding of mating systems and social behaviour.
Collapse
|
29
|
Amin N, Schwarzkopf S, Tröscher-Mußotter J, Camarinha-Silva A, Dänicke S, Huber K, Frahm J, Seifert J. Host metabolome and faecal microbiome shows potential interactions impacted by age and weaning times in calves. Anim Microbiome 2023; 5:12. [PMID: 36788596 PMCID: PMC9926800 DOI: 10.1186/s42523-023-00233-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Calves undergo nutritional, metabolic, and behavioural changes from birth to the entire weaning period. An appropriate selection of weaning age is essential to reduce the negative effects caused by weaning-related dietary transitions. This study monitored the faecal microbiome and plasma metabolome of 59 female Holstein calves during different developmental stages and weaning times (early vs. late) and identified the potential associations of the measured parameters over an experimental period of 140 days. RESULTS A progressive development of the microbiome and metabolome was observed with significant differences according to the weaning groups (weaned at 7 or 17 weeks of age). Faecal samples of young calves were dominated by bifidobacterial and lactobacilli species, while their respective plasma samples showed high concentrations of amino acids (AAs) and biogenic amines (BAs). However, as the calves matured, the abundances of potential fiber-degrading bacteria and the plasma concentrations of sphingomyelins (SMs), few BAs and acylcarnitines (ACs) were increased. Early-weaning at 7 weeks significantly restructured the microbiome towards potential fiber-degrading bacteria and decreased plasma concentrations of most of the AAs and SMs, few BAs and ACs compared to the late-weaning event. Strong associations between faecal microbes, plasma metabolites and calf growth parameters were observed during days 42-98, where the abundances of Bacteroides, Parabacteroides, and Blautia were positively correlated with the plasma concentrations of AAs, BAs and SMs as well as the live weight gain or average daily gain in calves. CONCLUSION The present study reported that weaning at 17 weeks of age was beneficial due to higher growth rate of late-weaned calves during days 42-98 and a quick adaptability of microbiota to weaning-related dietary changes during day 112, suggesting an age-dependent maturation of the gastrointestinal tract. However, the respective plasma samples of late-weaned calves contained several metabolites with differential concentrations to the early-weaned group, suggesting a less abrupt but more-persistent effect of dietary changes on host metabolome compared to the microbiome.
Collapse
Affiliation(s)
- Nida Amin
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Sarah Schwarzkopf
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Johanna Tröscher-Mußotter
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Amélia Camarinha-Silva
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Sven Dänicke
- grid.417834.dInstitute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Brunswick, Germany
| | - Korinna Huber
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Jana Frahm
- grid.417834.dInstitute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Brunswick, Germany
| | - Jana Seifert
- HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany. .,Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593, Stuttgart, Germany.
| |
Collapse
|
30
|
Zhang X, Cao Z, Yang H, Wang Y, Wang W, Li S. Analysis of serum antioxidant capacity and gut microbiota in calves at different growth stages in Tibet. Front Microbiol 2023; 13:1089488. [PMID: 36798869 PMCID: PMC9927023 DOI: 10.3389/fmicb.2022.1089488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/22/2022] [Indexed: 01/31/2023] Open
Abstract
Introduction The hypoxic environment at high altitudes poses a major physiological challenge to animals, especially young animals, as it disturbs the redox state and induces intestinal dysbiosis. Information about its effects on Holstein calves is limited. Methods Here, serum biochemical indices and next-generation sequencing were used to explore serum antioxidant capacity, fecal fermentation performance, and fecal microbiota in Holstein calves aged 1, 2, 3, 4, 5, and 6 months in Tibet. Results and Discussion Serum antioxidant capacity changed with age, with the catalase and malondialdehyde levels significantly decreasing (p < 0.05), and superoxide dismutase levels significantly increasing (p < 0.05) with age. No significant differences (p > 0.05) in total volatile fatty acid levels were noted between the groups. In all groups, Firmicutes, Bacteroidetes, and Actinobacteria were the three most dominant phyla in the gut. Gut microbial alpha diversity significantly increased (p < 0.05) with age. Principal coordinate analysis plot based on Bray-Curtis dissimilarity revealed significant differences (p = 0.001) among the groups. Furthermore, the relative abundance of various genera changed dynamically with age, and the serum antioxidant capacity was associated with certain gut bacteria. The study provides novel insights for feeding Holstein calves in high-altitude regions.
Collapse
|
31
|
Chen X, Han Z, Dong J, Xiao J, Zhao W, Rong J, Aschalew ND, Zhang X, Qin G, Zhen Y, Sun Z, Wang T. Dietary protein to starch metabolizable energy ratios alter growth performance and gastrointestinal microbiota of calves. Front Microbiol 2023; 14:1065721. [PMID: 36937312 PMCID: PMC10014794 DOI: 10.3389/fmicb.2023.1065721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/05/2023] [Indexed: 03/05/2023] Open
Abstract
The diet structure is very important for the growth and development of calves. This study aimed to investigate the effects of dietary protein-to-starch metabolizable energy ratios (DPSRs) on growth performance, blood index, and gastrointestinal microbiota of calves. Forty-eight Holstein bull calves were fed six dietary DPSRs including A20-35 (20% CP and 35% starch), B20-30, C20-25, D22-35, E22-30, and F22-25 at d 4 to d 60, and then changed to another six dietary DPSRs at d 61 to d 180 (A18-30, B18-27, C18-24, D20-30, E20-27, and F20-24). Twelve calves (d 60) from groups A20-35, C20-25, D22-35, and F22-25 (n = 3) and another twelve calves (d 180) from groups A18-30, C18-24, D20-30, and F20-24 (n = 3) were euthanized. The growth performance parameters were measured. Blood, ruminal fluid, and cecum digesta were collected for further analysis. Results showed heart girth gain of B18-27 was significantly higher than A18-30, C18-24, and heart girth gain (d 180) was significantly affected by protein × starch (DPSRs; p < 0.05). Blood urea nitrogen (BUN; d 60) in C20-25 was significantly higher than A20-35 and B20-30 (p < 0.05). The BUN (d 180) in D20-30 was significantly higher than A18-30 (p < 0.05). The BUN was significantly affected by protein × starch (p < 0.05) on d 60. The albumin (ALB) levels in C20-25 and C18-24 were significantly higher than that in A20-35 on d 60 and A18-30 on d 180, respectively (p < 0.05). The ALB level in D22-35 on d 60 and E20-27 on d 180 was significantly higher than that in other groups (p < 0.05). The ALB level was significantly affected by protein and starch, respectively, on d 60 (p < 0.05). In the rumen, the genera Roseburia (C20-25) and Dialister (D22-35), Prevotellaceae UCG-001 (C18-24), Erysipelotrichaceae UCG-002, and Anaerovorax (F20-24) were found in significant higher relative abundances than those in other groups (p < 0.05). In the cecum, the genera Bacteroides and Eisenbergiella (F22-25), Ruminiclostridium_1 and Candidatus Stoquefichus (A18-30), Erysipelotrichaceae UCG-004 and Tyzzerella 4 (D20-30), and Prevotellaceae UCG-003 and Klebsiella (F20-24) were found in significant higher abundances than those in other groups (p < 0.05). Collectively, these results indicated that the heart girth, BUN, ALB, and gastrointestinal microbiota responded distinctly to differing DPSRs.
Collapse
Affiliation(s)
- Xue Chen
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Jilin Agricultural University, Changchun, China
| | - Zhiyi Han
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Jilin Agricultural University, Changchun, China
| | - Jianan Dong
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Jilin Agricultural University, Changchun, China
| | - Jun Xiao
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Jilin Agricultural University, Changchun, China
| | - Wei Zhao
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Jilin Agricultural University, Changchun, China
| | - Jiye Rong
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Jilin Agricultural University, Changchun, China
| | - Natnael D. Aschalew
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Jilin Agricultural University, Changchun, China
| | - Xuefeng Zhang
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Jilin Agricultural University, Changchun, China
| | - Guixin Qin
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Jilin Agricultural University, Changchun, China
| | - Yuguo Zhen
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Zhe Sun
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
- *Correspondence: Zhe Sun,
| | - Tao Wang
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Jilin Agricultural University, Changchun, China
- Tao Wang,
| |
Collapse
|
32
|
Robles-Rodríguez C, Muley VY, González-Dávalos ML, Shimada A, Varela-Echavarría A, Mora O. Microbial colonization dynamics of the postnatal digestive tract of Bos indicus calves. Anim Sci J 2023; 94:e13872. [PMID: 37666790 DOI: 10.1111/asj.13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/19/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
The rumen and the jejunum of calves have distinct functional roles; the former is in the storage and fermentation of feed, and the latter is in transporting digesta to the ileum. It is unknown how nutrition changes the evolution of the microbiome of these organs after birth. We sequenced and characterized the entire microbiome of the rumen and the jejunum from Bos indicus calves of the Mexican Tropics to study their dynamics at Days 0, 7, 28, and 42 after birth. Operational taxonomic units (OTUs) belonging to 185 and 222 genera from 15 phylum were observed in the organs, respectively. The most abundant OTUs were Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. We observed that proteobacterial species were outcompeted after the first week of life by Bacteroidetes and Firmicutes in the rumen and the jejunum, respectively. Moreover, Prevotella species were found to predominate in the rumen (36% of total OTUs), while the jejunum microbiome is composed of small proportions of several genera. Presumably, their high relative abundance assists in specialized functions and is more likely in fermentation since they are anaerobes. In summary, the rumen and the jejunum microbiomes were outcompeted by new microbiomes in a dynamic process that begins at birth.
Collapse
Affiliation(s)
- Carolina Robles-Rodríguez
- Posgrado en Ciencias de la Producción y de la Salud Animal, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - María Laura González-Dávalos
- Laboratorio de Rumiología y Metabolismo Nutricional, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Armando Shimada
- Laboratorio de Rumiología y Metabolismo Nutricional, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | | | - Ofelia Mora
- Laboratorio de Rumiología y Metabolismo Nutricional, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| |
Collapse
|
33
|
Davies CP, Summers KL, Arfken AM, Darwish N, Chaudhari A, Frey JF, Schreier L, Proszkowiec-Weglarz M. Temporal dynamics of the chicken mycobiome. Front Physiol 2022; 13:1057810. [PMID: 36589448 PMCID: PMC9799259 DOI: 10.3389/fphys.2022.1057810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
The microbiome is an integral part of chicken health and can affect immunity, nutrient utilization, and performance. The role of bacterial microbiota members in host health is relatively well established, but less attention has been paid to fungal members of the gastrointestinal tract (GIT) community. However, human studies indicate that fungi play a critical role in health. Here, we described fungal communities, or mycobiomes, in both the lumen and mucosa of the chicken ileum and cecum from hatch through 14 days of age. We also assessed the effects of delayed access to feed immediately post-hatch (PH) on mycobiome composition, as PH feed delay is commonly associated with poor health performance. Chicken mycobiomes in each of the populations were distinct and changed over time. All mycobiomes were dominated by Gibberella, but Aspergillus, Cladosporium, Sarocladium, Meyerozyma, and Penicillium were also abundant. Relative abundances of some taxa differed significantly over time. In the cecal and ileal lumens, Penicillium was present in extremely low quantities or absent during days one and two and then increased over time. Meyerozyma and Wickerhamomyces also increased over time in luminal sites. In contrast, several highly abundant unclassified fungi decreased after days one and two, highlighting the need for improved understanding of fungal gut biology. Mycobiomes from chicks fed during the first 2 days PH versus those not fed during the first 2 days did not significantly differ, except during days one and two. Similarities observed among mycobiomes of fed and unfed chicks at later timepoints suggest that delays in PH feeding do not have long lasting effects on mycobiome composition. Together, these results provide a foundation for future mycobiome studies, and suggest that negative health and production impacts of delayed feeding are not likely related to the development of fungal populations in the GIT.
Collapse
Affiliation(s)
- Cary Pirone Davies
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States,*Correspondence: Cary Pirone Davies,
| | - Katie Lynn Summers
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Ann M. Arfken
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States,Oak Ridge Institute for Science and Education through an interagency Agreement between the U.S., Department of Energy and the USDA, Atlanta, GA, United States,Oak Ridge Institute for Science and Education, Center for Disease Control, Atlanta, GA, United States
| | - Nadia Darwish
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States,Oak Ridge Institute for Science and Education through an interagency Agreement between the U.S., Department of Energy and the USDA, Atlanta, GA, United States,University of Arkansas for Medical Sciences, Little Rock, AK, United States
| | - Atul Chaudhari
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States,Oak Ridge Institute for Science and Education through an interagency Agreement between the U.S., Department of Energy and the USDA, Atlanta, GA, United States,Pharmaceuticals Product Development, Wilmington, NC, United States
| | - Juli Foster Frey
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States,Northeast Area, United States Department of Agriculture, Beltsville, MD, United States
| | - Lori Schreier
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Monika Proszkowiec-Weglarz
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| |
Collapse
|
34
|
Guerra V, Tiago I, Aires A, Coelho C, Nunes J, Martins LO, Veríssimo A. The gastrointestinal microbiome of browsing goats (Capra hircus). PLoS One 2022; 17:e0276262. [PMID: 36251671 PMCID: PMC9576075 DOI: 10.1371/journal.pone.0276262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/04/2022] [Indexed: 11/25/2022] Open
Abstract
Despite the growing interest in the ruminants' gastrointestinal tract (GIT) microbiomes' ability to degrade plant materials by animal husbandry and industrial sectors, only a few studies addressed browsing ruminants. The present work describes the taxonomic and functional profile of the bacterial and archaeal communities from five different gastrointestinal sections (rumen, omasum-abomasum, jejunum, cecum and colon) of browsing Capra hircus, by metabarcoding using 16S rRNA genes hypervariable regions. The bacterial communities across the GITs are mainly composed of Bacillota and Bacteroidota. Prevotella was the leading bacterial group found in the stomachs, Romboutsia in the jejuna, and Rikenellaceae_RC9_gut_group, Bacteroides, UCG-010_ge, UCG-005, and Alistipes in large intestines. The archaeal communities in the stomachs and jejuna revealed to be mainly composed of Methanobrevibacter, while in the large intestines its dominance is shared with Methanocorpusculum. Across the GITs, the main metabolic functions were related to carbohydrate, amino acid, and energy metabolisms. Significant differences in the composition and potential biological functions of the bacterial communities were observed among stomachs, jejuna and large intestines. In contrast, significant differences were observed among stomachs and jejuna verse large intestines for archaeal communities. Overall different regions of the GIT are occupied by different microbial communities performing distinct biological functions. A high variety of glycoside hydrolases (GHs) indispensable for degrading plant cell wall materials were predicted to be present in all the GIT sections.
Collapse
Affiliation(s)
- Vera Guerra
- Department of Life Sciences, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Centre Bio R&D Unit, Association BLC3—Technology and Innovation Campus, Lagares da Beira, Oliveira do Hospital, Portugal
| | - Igor Tiago
- Department of Life Sciences, Centre for Functional Ecology–Science for People and the Planet, University of Coimbra, Coimbra, Portugal
| | - Aitana Aires
- Department of Life Sciences, Centre for Functional Ecology–Science for People and the Planet, University of Coimbra, Coimbra, Portugal
- FitoLab, Laboratory for Phytopathology, Instituto Pedro Nunes, Coimbra, Portugal
| | - Catarina Coelho
- Department of Life Sciences, Centre for Functional Ecology–Science for People and the Planet, University of Coimbra, Coimbra, Portugal
| | - João Nunes
- Centre Bio R&D Unit, Association BLC3—Technology and Innovation Campus, Lagares da Beira, Oliveira do Hospital, Portugal
| | - Lígia O. Martins
- Instituto de Tecnologia e Química Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - António Veríssimo
- Department of Life Sciences, Centre for Functional Ecology–Science for People and the Planet, University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
35
|
Teseo S, Otani S, Brinch C, Leroy S, Ruiz P, Desvaux M, Forano E, Aarestrup FM, Sapountzis P. A global phylogenomic and metabolic reconstruction of the large intestine bacterial community of domesticated cattle. MICROBIOME 2022; 10:155. [PMID: 36155629 PMCID: PMC9511753 DOI: 10.1186/s40168-022-01357-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/24/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND The large intestine is a colonization site of beneficial microbes complementing the nutrition of cattle but also of zoonotic and animal pathogens. Here, we present the first global gene catalog of cattle fecal microbiomes, a proxy of the large intestine microbiomes, from 436 metagenomes from six countries. RESULTS Phylogenomics suggested that the reconstructed genomes and their close relatives form distinct branches and produced clustering patterns that were reminiscent of the metagenomics sample origin. Bacterial taxa had distinct metabolic profiles, and complete metabolic pathways were mainly linked to carbohydrates and amino acids metabolism. Dietary changes affected the community composition, diversity, and potential virulence. However, predicted enzymes, which were part of complete metabolic pathways, remained present, albeit encoded by different microbes. CONCLUSIONS Our findings provide a global insight into the phylogenetic relationships and the metabolic potential of a rich yet understudied bacterial community and suggest that it provides valuable services to the host. However, we tentatively infer that members of that community are not irreplaceable, because similar to previous findings, symbionts of complex bacterial communities of mammals are expendable if there are substitutes that can perform the same task. Video Abstract.
Collapse
Affiliation(s)
- S Teseo
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - S Otani
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - C Brinch
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - S Leroy
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | - P Ruiz
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | - M Desvaux
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | - E Forano
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | - F M Aarestrup
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - P Sapountzis
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France.
| |
Collapse
|
36
|
Williamson JR, Callaway TR, Lourenco JM, Ryman VE. Characterization of rumen, fecal, and milk microbiota in lactating dairy cows. Front Microbiol 2022; 13:984119. [PMID: 36225385 PMCID: PMC9549371 DOI: 10.3389/fmicb.2022.984119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Targeting the gastrointestinal microbiome for improvement of feed efficiency and reduction of production costs is a potential promising strategy. However little progress has been made in manipulation of the gut microbiomes in dairy cattle to improve milk yield and milk quality. Even less understood is the milk microbiome. Understanding the milk microbiome may provide insight into how the microbiota correlate with milk yield and milk quality. The objective of this study was to characterize similarities between rumen, fecal, and milk microbiota simultaneously, and to investigate associations between microbiota, milk somatic cell count (SCC), and milk yield. A total of 51 mid-lactation, multiparous Holstein dairy cattle were chosen for sampling of ruminal, fecal, and milk contents that were processed for microbial DNA extraction and sequencing. Cows were categorized based on low, medium, and high SCC; as well as low, medium, and high milk yield. Beta diversity indicated that ruminal, fecal, and milk populations were distinct (p < 0.001). Additionally, the Shannon index demonstrated that ruminal microbial populations were more diverse (p < 0.05) than were fecal and milk populations, and milk microbiota was the least diverse of all sample types (p < 0.001). While diversity indices were not linked (p > 0.1) with milk yield, milk microbial populations from cows with low SCC demonstrated a more evenly distributed microbiome in comparison to cows with high SCC values (p = 0.053). These data demonstrate the complexity of host microbiomes both in the gut and mammary gland. Further, we conclude that there is a significant relationship between mammary health (i.e., SCC) and the milk microbiome. Whether this microbiome could be utilized in efforts to protect the mammary gland remains unclear, but should be explored in future studies.
Collapse
|
37
|
The Association between Gut Microbiome Diversity and Composition and Heat Tolerance in Cattle. Microorganisms 2022; 10:microorganisms10081672. [PMID: 36014088 PMCID: PMC9414853 DOI: 10.3390/microorganisms10081672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Cattle are raised around the world and are frequently exposed to heat stress, whether in tropical countries or in regions with temperate climates. It is universally acknowledged that compared to those in temperate areas, the cattle breeds developed in tropical and subtropical areas have better heat tolerance. However, the underlying mechanism of heat tolerance has not been fully studied, especially from the perspective of intestinal microbiomics. The present study collected fecal samples of cattle from four representative climatic regions of China, namely, the mesotemperate (HLJ), warm temperate (SD), subtropical (HK), and tropical (SS) regions. Then, the feces were analyzed using high-throughput 16S rRNA sequencing. The results showed that with increasing climatic temperature from HLJ to SS, the abundance of Firmicutes increased, accompanied by an increasing Firmicutes to Bacteroidota ratio. Proteobacteria showed a trend of reduction from HLJ to SS. Patescibacteria, Chloroflexi, and Actinobacteriota were particularly highest in SS for adapting to the tropical environment. The microbial phenotype in the tropics was characterized by an increase in Gram-positive bacteria and a decrease in Gram-negative bacteria, aerobic bacteria, and the forming of_biofilms. Consistently, the functional abundances of organismal systems and metabolism were decreased to reduce the material and energy demands in a hot environment. Genetic information processing and information storage and processing may be how gut flora deals with hot conditions. The present study revealed the differences in the structure and function of gut microbes of cattle from mesotemperate to tropical climates and provided an important reference for future research on the mechanism of heat tolerance regulated by the gut microbiota and a potential microbiota-based target to alleviate heat stress.
Collapse
|
38
|
Li LP, Peng KL, Xue MY, Zhu SL, Liu JX, Sun HZ. An Age Effect of Rumen Microbiome in Dairy Buffaloes Revealed by Metagenomics. Microorganisms 2022; 10:microorganisms10081491. [PMID: 35893549 PMCID: PMC9332492 DOI: 10.3390/microorganisms10081491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Age is an important factor in shaping the gut microbiome. However, the age effect on the rumen microbial community for dairy buffaloes remains less explored. Using metagenomics, we examined the microbial composition and functions of rumen microbiota in dairy Murrah buffaloes of different ages: Y (1 year old), M (3−5 years old), E (6−8 years old), and O (>9 years old). We found that Bacteroidetes and Firmicutes were the predominant phyla, with Prevotella accounting for the highest abundance at the genus level. The proportion of Bacteroides and Methanobrevibacter significantly increased with age, while the abundance of genus Lactobacillus significantly decreased with age (LDA > 3, p < 0.05). Most differed COG and KEGG pathways were enriched in Y with carbohydrate metabolism, while older buffaloes enriched more functions of protein metabolism and the processing of replication and repair (LDA > 2, p < 0.05). Additionally, the functional contribution analysis revealed that the genera Prevotella and Lactobacillus of Y with more functions of CAZymes encoded genes of glycoside hydrolases and carbohydrate esterases for their roles of capable of metabolizing starch and sucrose-associated oligosaccharide enzyme, hemicellulase, and cellulase activities than the other three groups (LDA > 2, p < 0.05), thus affecting the 1-year-old dairy buffalo rumen carbohydrate metabolism. This study provides comprehensive dairy buffalo rumen metagenome data and assists in manipulating the rumen microbiome for improved dairy buffalo production.
Collapse
Affiliation(s)
- Long-Ping Li
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China; (L.-P.L.); (K.-L.P.); (M.-Y.X.); (S.-L.Z.); (J.-X.L.)
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China
| | - Ke-Lan Peng
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China; (L.-P.L.); (K.-L.P.); (M.-Y.X.); (S.-L.Z.); (J.-X.L.)
| | - Ming-Yuan Xue
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China; (L.-P.L.); (K.-L.P.); (M.-Y.X.); (S.-L.Z.); (J.-X.L.)
| | - Sen-Lin Zhu
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China; (L.-P.L.); (K.-L.P.); (M.-Y.X.); (S.-L.Z.); (J.-X.L.)
| | - Jian-Xin Liu
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China; (L.-P.L.); (K.-L.P.); (M.-Y.X.); (S.-L.Z.); (J.-X.L.)
| | - Hui-Zeng Sun
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China; (L.-P.L.); (K.-L.P.); (M.-Y.X.); (S.-L.Z.); (J.-X.L.)
- Correspondence: ; Tel.: +86-0571-88981341
| |
Collapse
|
39
|
Liang Z, Zhang J, Du M, Ahmad AA, Wang S, Zheng J, Salekdeh GH, Yan P, Han J, Tong B, Ding X. Age-dependent changes of hindgut microbiota succession and metabolic function of Mongolian cattle in the semi-arid rangelands. Front Microbiol 2022; 13:957341. [PMID: 35935190 PMCID: PMC9354825 DOI: 10.3389/fmicb.2022.957341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Dietary changes have significant effects on gut microbiota and host health. Weaning is an important stage of dietary change in ruminants. The gastrointestinal tract (GIT) microbiota of calf in the early life undergo some changes, and the plasticity of the calf is beneficial to cope with these changes and challenges. However, the complex development of hindgut microorganisms in post-weaning ruminants is not fully understood. In this study, we used 16S rRNA sequencing and untargeted metabolomic analysis to determine the cecal and colonic bacterial community and associated metabolome of Mongolian cattle at age of the 5th (at weaning), 18th, and 36th months. Moreover, the maturation patterns of the hindgut bacterial community and the dynamic changes of metabolites were also explored. Sequencing results showed that Firmicutes and Bacteroidetes were the dominant phyla in the cecum and colon. The linear discriminant analysis (LDA) effect size (LEfSe) analysis revealed bacterial features that were stage-specific in the cecum and colon. The relative abundance of Ruminococcaceae, a microbial family related to fiber degradation, gradually increased with age in the cecum, while the relative abundance of Bacteroides and Alistipes, which are related to immunity, gradually increased in the colon. The differential metabolites in the cecum and colon were mainly enriched in steroid hormone biosynthesis, primary bile acid biosynthesis, and arachidonic acid metabolism between different ages of Mongolian cattle after weaning. Consequently, this dual omics analysis provided important information on the changes in microbial and metabolite interactions in Mongolian cattle after weaning. The microorganisms and metabolites in the cecum and colon further enhanced the abiotic stress resistance of Mongolian cattle to the harsh environment. The information obtained in this study is of great significance for future strategies of cecum and colon microbiota regulation of post-weaning Mongolian cattle in the harsh Mongolian Plateau ecosystem.
Collapse
Affiliation(s)
- Zeyi Liang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianbo Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Mei Du
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Anum Ali Ahmad
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shengyi Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Juanshan Zheng
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ghasem Hosseini Salekdeh
- Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | - Ping Yan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianlin Han
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Bin Tong
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xuezhi Ding
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
40
|
Dorbek-Kolin E, Husso A, Niku M, Loch M, Pessa-Morikawa T, Niine T, Kaart T, Iivanainen A, Orro T. Faecal microbiota in two-week-old female dairy calves during acute cryptosporidiosis outbreak - Association with systemic inflammatory response. Res Vet Sci 2022; 151:116-127. [PMID: 35901524 DOI: 10.1016/j.rvsc.2022.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/15/2022] [Accepted: 07/17/2022] [Indexed: 11/25/2022]
Abstract
In the present study, relationships between the intestinal microbiota and innate immunity response, acute cryptosporidiosis, and weight gain in female dairy calves were investigated. A total of 112 calves born during a natural outbreak of cryptosporidiosis on one dairy farm was included in the study. Microbiota composition was analysed by means of 16S ribosomal RNA gene amplicon sequencing from faecal samples collected during the second week of life, while the status of Cryptosporidium spp. infection was determined using immunofluorescence. Serum samples from the second week of life were colourimetrically analysed for the following markers of acute inflammation: acute-phase proteins (serum amyloid A and haptoglobin) and pro-inflammatory cytokines (interleukin-1 beta, interleukin-6, and tumour necrosis factor-alpha). Statistical analyses were performed using random forest analysis, variance-partitioning, and negative binomial regression. The faecal microbiota of the two-week old calves was composed of the phyla Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, and Actinobacteria (in order of decreasing abundance). Microbial diversity, measured in terms of the Shannon index, increased with the age of the calves and decreased if a high count of Cryptosporidium spp. oocysts was found in the faeces. Fusobacterium was positively associated with Cryptosporidium spp. oocyst count and serum amyloid A concentration. Peptostreptococcus was positively associated with haptoglobin and serum amyloid A concentrations, and negatively associated with average daily weight gain at 9 months of age. The markers of innate immunity, in combination with age, explained 6% of the microbial variation. These results suggest that some components of the intestinal microbiota may have a long-lasting negative effect on animal growth through the stimulation of the systemic innate immune response.
Collapse
Affiliation(s)
- Elisabeth Dorbek-Kolin
- Veterinary Biomedicine and Food Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia.
| | - Aleksi Husso
- Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, P.O. Box 66, Helsinki, Finland
| | - Mikael Niku
- Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, P.O. Box 66, Helsinki, Finland
| | - Marina Loch
- Clinical Veterinary Medicine, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia
| | - Tiina Pessa-Morikawa
- Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, P.O. Box 66, Helsinki, Finland
| | - Tarmo Niine
- Veterinary Biomedicine and Food Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia
| | - Tanel Kaart
- Animal Breeding and Biotechnology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia
| | - Antti Iivanainen
- Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, P.O. Box 66, Helsinki, Finland
| | - Toomas Orro
- Clinical Veterinary Medicine, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia
| |
Collapse
|
41
|
He Z, Ma Y, Chen X, Yang S, Zhang S, Liu S, Xiao J, Wang Y, Wang W, Yang H, Li S, Cao Z. Temporal Changes in Fecal Unabsorbed Carbohydrates Relative to Perturbations in Gut Microbiome of Neonatal Calves: Emerging of Diarrhea Induced by Extended-Spectrum β-lactamase-Producing Enteroaggregative Escherichia coli. Front Microbiol 2022; 13:883090. [PMID: 35875583 PMCID: PMC9301005 DOI: 10.3389/fmicb.2022.883090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Early gut microbiota development and colonization are crucial for the long-term health and performance of ruminants. However, cognition among these microbiota is still vague, particularly among the neonatal dairy calves. Here, extended-spectrum β-lactamase-producing enteroaggregative E. coli (ESBL-EAEC)-induced temporal changes in diversity, stability, and composition of gut microbiota were investigated among the neonatal female calves, with the view of discerning potential biomarkers of this arising diarrhea cases in local pastures. Nearly, 116 newborn calves were enrolled in this time period study during their first 2 weeks of life, and a total of 40 selected fecal samples from corresponding calves were used in this study. The results revealed that differentiated gut microbiome and metabolome discerned from neonatal calves were accompanied by bacterial infections over time. Commensal organisms like Butyricicoccus, Faecalibacterium, Ruminococcus, Collinsella, and Coriobacterium, as key microbial markers, mainly distinguish “healthy” and “diarrheic” gut microbiome. Random forest machine learning algorithm indicated that enriched fecal carbohydrates, including rhamnose and N-acetyl-D-glucosamine, and abundant short-chain fatty acids (SCFAs) existed in healthy ones. In addition, Spearman correlation results suggested that the presence of Butyricicoccus, Faecalibacterium, Collinsella, and Coriobacterium, key commensal bacteria of healthy calves, is positively related to high production of unabsorbed carbohydrates, SCFAs, and other prebiotics, and negatively correlated to increased concentrations of lactic acid, hippuric acid, and α-linolenic acid. Our data suggested that ESBL-EAEC-induced diarrhea in female calves could be forecasted by alterations in the gut microbiome and markedly changed unabsorbed carbohydrates in feces during early lives, which might be conducive to conduct early interventions to ameliorate clinical symptoms of diarrhea induced by the rising prevalence of ESBL-EAEC.
Collapse
|
42
|
He Z, Ma Y, Yang S, Zhang S, Liu S, Xiao J, Wang Y, Wang W, Yang H, Li S, Cao Z. Gut microbiota-derived ursodeoxycholic acid from neonatal dairy calves improves intestinal homeostasis and colitis to attenuate extended-spectrum β-lactamase-producing enteroaggregative Escherichia coli infection. MICROBIOME 2022; 10:79. [PMID: 35643532 PMCID: PMC9142728 DOI: 10.1186/s40168-022-01269-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/06/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND Antimicrobials are often used to prevent and treat diarrhea induced by enteroaggregative Escherichia coli (EAEC) in young ruminants. However, drug overuse or misuse accelerates the spread of multidrug-resistant extended-spectrum β-lactamase (ESBL)-producing E. coli. Thus, supplementary foods as alternatives to antibiotics are needed to prevent colibacillus diarrhea in neonatal dairy calves. Ursodeoxycholic acid (UDCA), a therapeutic bile acid, helps alleviate colitis. However, how UDCA helps alleviate ESBL-EAEC-induced clinical symptoms and colitis remains unclear. RESULTS We investigated the microbial profiles and metabolites of healthy and diarrheic neonatal calves to determine microbial and metabolite biomarkers in early-life development. Both the gut microbiota communities and their associated metabolites differed between healthy and diarrheic calves. Commensal Butyricicoccus, Faecalibacterium, Ruminococcus, Collinsella, and Coriobacterium were key microbial markers that distinguished healthy and diarrheic gut microbiomes. Random forest machine-learning algorithm and Spearman correlation results indicated that enriched UDCA, short-chain fatty acids (SCFAs), and other prebiotics were strongly positively correlated with these five bacterial genera. We explored the effect of ursodiol on bacterial growth, cell adherence, and lipopolysaccharide-treated Caco-2 cells. Adding ursodiol induced direct antibacterial effects, suppressed proinflammatory effects, and reduced cell integrity damage. Oral ursodiol delivery to neonatal mice exhibited significant antibacterial effects and helped maintain colonic barrier integrity in mouse models of peritonitis sepsis and oral infection. UDCA supplementation attenuated colitis and recovered colonic SCFA production. To validate this, we performed fecal microbiota transplantations to inoculate ESBL-EAEC-infected neonatal mice. Microbiotas from UDCA-treated neonatal mice ameliorated colitis and hindgut commensal bacterial damage compared with that of the microbiotas from the control and placebo mice, as evidenced by colonization of abundant bacteria, including Oscillospiraceae, Ruminococcaceae, Lachnospiraceae, and Clostridia_UCG-014, and upregulated SCFA production. CONCLUSIONS This study provided the first evidence that UDCA could confer diarrhea resistance in ESBL-EAEC-infected newborn dairy calves. UDCA blocked bacterial growth and invasion both in vitro and in vivo, alleviated commensal bacterial dysbiosis during ESBL-EAEC infection in neonatal mouse models of sepsis and colitis via the TGR5-NF-κB axis, and upregulated SCFA production in the hindgut digesta. Our findings provide insight into the UDCA-mediated remission of ESBL-EAEC infections and the potential role of UDCA as an antibiotic alternative. Video abstract.
Collapse
Affiliation(s)
- Zhiyuan He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Sirui Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shuyuan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
43
|
Dynamic changes in fecal bacterial microbiota of dairy cattle across the production line. BMC Microbiol 2022; 22:132. [PMID: 35568809 PMCID: PMC9107139 DOI: 10.1186/s12866-022-02549-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/11/2022] [Indexed: 12/28/2022] Open
Abstract
Background Microbiota play important roles in the gastrointestinal tract (GIT) of dairy cattle as the communities are responsible for host health, growth, and production performance. However, a systematic characterization and comparison of microbial communities in the GIT of cattle housed in different management units on a modern dairy farm are still lacking. We used 16S rRNA gene sequencing to evaluate the fecal bacterial communities of 90 dairy cattle housed in 12 distinctly defined management units on a modern dairy farm. Results We found that cattle from management units 5, 6, 8, and 9 had similar bacterial communities while the other units showed varying levels of differences. Hutch calves had a dramatically different bacterial community than adult cattle, with at least 10 genera exclusively detected in their samples but not in non-neonatal cattle. Moreover, we compared fecal bacteria of cattle from every pair of the management units and detailed the number and relative abundance of the significantly differential genera. Lastly, we identified 181 pairs of strongly correlated taxa in the community, showing possible synergistic or antagonistic relationships. Conclusions This study assesses the fecal microbiota of cattle from 12 distinctly defined management units along the production line on a California dairy farm. The results highlight the similarities and differences of fecal microbiota between cattle from each pair of the management units. Especially, the data indicate that the newborn calves host very different gut bacterial communities than non-neonatal cattle, while non-neonatal cattle adopt one of the two distinct types of gut bacterial communities with subtle differences among the management units. The gut microbial communities of dairy cattle change dramatically in bacterial abundances at different taxonomic levels along the production line. The findings provide a reference for research and practice in modern dairy farm management. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02549-3.
Collapse
|
44
|
Bibbal D, Ruiz P, Sapountzis P, Mazuy-Cruchaudet C, Loukiadis E, Auvray F, Forano E, Brugère H. Persistent Circulation of Enterohemorrhagic Escherichia coli (EHEC) O157:H7 in Cattle Farms: Characterization of Enterohemorrhagic Escherichia coli O157:H7 Strains and Fecal Microbial Communities of Bovine Shedders and Non-shedders. Front Vet Sci 2022; 9:852475. [PMID: 35411306 PMCID: PMC8994043 DOI: 10.3389/fvets.2022.852475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Cattle are carriers, without clinical manifestations, of enterohemorrhagic Escherichia coli (EHEC) O157:H7 responsible for life-threatening infections in humans. A better identification of factors playing a role in maintaining persistence of such strains in cattle is required to develop more effective control measures. Hence, we conducted a study to identify farms with a persistent circulation of EHEC O157:H7. The EHEC O157:H7 herd status of 13 farms, which had previously provided bovine EHEC O157:H7 carriers at slaughter was investigated. Two farms were still housing positive young bulls, and this was true over a 1-year period. Only one fecal sample could be considered from a supershedder, and 60% of the carriers shed concentrations below 10 MPN/g. Moreover, EHEC O157:H7 represented minor subpopulations of E. coli. PFGE analysis of the EHEC O157:H7 strains showed that persistent circulation was due either to the persistence of a few predominant strains or to the repeated exposure of cattle to various strains. Finally, we compared fecal microbial communities of shedders (S) (n = 24) and non-shedders (NS) (n = 28), including 43 young bulls and nine cows, from one farm. Regarding alpha diversity, no significant difference between S vs. NS young bulls (n = 43) was observed. At the genus level, we identified 10 amplicon sequence variant (ASV) indicators of the S or NS groups. The bacterial indicators of S belonged to the family XIII UCG-001, Slackia, and Campylobacter genera, and Ruminococcaceae NK4A21A, Lachnospiraceae-UGC-010, and Lachnospiraceae-GCA-900066575 groups. The NS group indicator ASVs were affiliated to Pirellulaceae-1088-a5 gut group, Anaerovibrio, Victivallis, and Sellimonas genera. In conclusion, the characteristics enhancing the persistence of some predominant strains observed here should be explored further, and studies focused on mechanisms of competition among E. coli strains are also needed.
Collapse
Affiliation(s)
- Delphine Bibbal
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Philippe Ruiz
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Clermont-Ferrand, France
| | | | - Christine Mazuy-Cruchaudet
- Université de Lyon, VetAgro Sup, National Reference Laboratory for E. coli (including VTEC), Marcy l'Etoile, France.,Université de Lyon, Laboratoire d'Ecologie Microbienne de Lyon, CNRS, INRAE, Université de Lyon 1, VetAgro Sup, Microbial Ecology Laboratory, Research Group on Bacterial Opportunistic Pathogens and Environment, Villeurbanne, France
| | - Estelle Loukiadis
- Université de Lyon, VetAgro Sup, National Reference Laboratory for E. coli (including VTEC), Marcy l'Etoile, France.,Université de Lyon, Laboratoire d'Ecologie Microbienne de Lyon, CNRS, INRAE, Université de Lyon 1, VetAgro Sup, Microbial Ecology Laboratory, Research Group on Bacterial Opportunistic Pathogens and Environment, Villeurbanne, France
| | - Frédéric Auvray
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Evelyne Forano
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Clermont-Ferrand, France
| | - Hubert Brugère
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| |
Collapse
|
45
|
Li M, Wang Z, Wang L, Xue B, Hu R, Zou H, Liu S, Shah AM, Peng Q. Comparison of changes in fecal microbiota of calves with and without dam. PeerJ 2022; 10:e12826. [PMID: 35386429 PMCID: PMC8978885 DOI: 10.7717/peerj.12826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/03/2022] [Indexed: 01/10/2023] Open
Abstract
In pastoral areas and semi-agricultural and semi-pastoral areas of Sichuan, beef cattle breeding mode is mainly dependent on nature to raise livestock. On the one hand, owing to the shortage of forage grass in spring, cows suffer from malnutrition. On the other hand, competition for milk between human and livestock further deepens the malnutrition of newborn calves, and the mortality rate even exceeds 40%, resulting in serious waste of beef cattle source resources. The objective of this study was to investigate the effect of different cultivation methods (calves with and without dam) and age on calves hindgut microbiome. Sixteen healthy calves (Yak ♂ × Pian cattle ♀, with similar birthday 0 ± 2 d and body weight 13.1 ± 1.13 kg), were selected and randomly divided into two groups. The control group was cultivated with heifers, whereas the treatment group was cultivated without heifers and was fed milk replacer during the whole 95 days formal experimental period. Fecal samples were collected on 35, 65 and 95 days of age for high-throughput sequencing. The α-diversity was different between the two groups on day 35; however, the bacterial species richness and diversity was almost not different on day 95. Principal coordinates analysis revealed significant difference between the two groups on all the three time points, and the timepoints of day 65 and 95 were closer and separated from the timepoints of day 35 in calves with dam, whereas the timepoints of day 35 and 65 were closer and separated from day 95 in calves without dam. As time passed, the abundance of Firmicutes increased, while Proteobacteria and Actinobacteria decreased in calves with dam. But in calves without dam, the abundance of Bacteroidetes and Proteobacteria increased on day 65 and then decreased on day 95. In genus level, the relative abundance of Bacteroides decreased in calf with dam while its abundance increased first and then decreased in calf without dam but both resulted in the range of 3.5~4.5%. The relative abundance of Lactobacillus decreased, whereas Ruminococcaceae UCG-005 increased in both groups as the calf grew up. It was concluded that the richness and evenness of the microbial communities was higher in calves with dam than without dam, and a stable gut microbiome in calve with dam is established earlier than calf without dam.
Collapse
|
46
|
He Z, Ma Y, Chen X, Liu S, Xiao J, Wang Y, Wang W, Yang H, Li S, Cao Z. Protective Effects of Intestinal Gallic Acid in Neonatal Dairy Calves Against Extended-Spectrum β-lactamase Producing Enteroaggregative Escherichia coli Infection: Modulating Intestinal Homeostasis and Colitis. Front Nutr 2022; 9:864080. [PMID: 35399688 PMCID: PMC8988045 DOI: 10.3389/fnut.2022.864080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Calf diarrhea induced by enteroaggregative E. coli (EAEC) spreads fast among young ruminants, causing continuous hazard to dairy industry. Antimicrobial drug abuse aggravates the incidence rate of multi-drug resistant (MDR) extended-spectrum β-lactamase-producing E. coli (ESBL-EC). However, knowledge of detection and significance of disease-related biomarkers in neonatal female calves are still limited. Gallic acid (GA), a natural secondary metabolite mostly derived from plants, has attracted increasing attention for its excellent anti-inflammatory and anti-oxidative properties. However, it is vague how GA engenders amelioration effects on clinical symptoms and colitis induced by ESBL-EAEC infection in neonatal animals. Here, differentiated gut microbiome and fecal metabolome discerned from neonatal calves were analyzed to ascertain biomarkers in their early lives. Commensal Collinsella and Coriobacterium acted as key microbial markers mediating colonization resistance. In addition, there exists a strongly positive relation between GA, short-chain fatty acid (SCFA) or other prebiotics, and those commensals using random forest machine learning algorithm and Spearman correlation analyses. The protective effect of GA pretreatment on bacterial growth, cell adherence, and ESBL-EAEC-lipopolysaccharide (LPS)-treated Caco-2 cells were first assessed, and results revealed direct antibacterial effects and diminished colonic cell inflammation. Then, oral GA mediated colitis attenuation and recovery of colonic short-chain fatty acid (SCFA) productions on neonatal mice peritonitis sepsis or oral infection model. To corroborate this phenomenon, fecal microbiota transplantation (FMT) method was adopted to remedy the bacterial infection. Of note, FMT from GA-treated neonatal mice achieved profound remission of clinical symptoms and colitis over the other groups as demonstrated by antibacterial capability and prominent anti-inflammatory abilities, revealing improved hindgut microbiota structure with enriched Clostridia_UCG-014, Lachnospiraceae, Oscillospiraceae, and Enterococcaceae, and upregulation of SCFA productions. Collectively, our findings provided the direct evidence of hindgut microbiota and intestinal metabolites, discriminating the health status of neonatal calves post ESBL-EAEC infection. The data provided novel insights into GA-mediated remission of colitis via amelioration of hindgut commensal structure and upregulation of SCFA productions. In addition, its eminent role as potential antibiotic alternative or synergist for future clinic ESBL-EAEC control in livestock.
Collapse
|
47
|
Zhu Y, Bu D, Ma L. Integration of Multiplied Omics, a Step Forward in Systematic Dairy Research. Metabolites 2022; 12:metabo12030225. [PMID: 35323668 PMCID: PMC8955540 DOI: 10.3390/metabo12030225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023] Open
Abstract
Due to their unique multi-gastric digestion system highly adapted for rumination, dairy livestock has complicated physiology different from monogastric animals. However, the microbiome-based mechanism of the digestion system is congenial for biology approaches. Different omics and their integration have been widely applied in the dairy sciences since the previous decade for investigating their physiology, pathology, and the development of feed and management protocols. The rumen microbiome can digest dietary components into utilizable sugars, proteins, and volatile fatty acids, contributing to the energy intake and feed efficiency of dairy animals, which has become one target of the basis for omics applications in dairy science. Rumen, liver, and mammary gland are also frequently targeted in omics because of their crucial impact on dairy animals’ energy metabolism, production performance, and health status. The application of omics has made outstanding contributions to a more profound understanding of the physiology, etiology, and optimizing the management strategy of dairy animals, while the multi-omics method could draw information of different levels and organs together, providing an unprecedented broad scope on traits of dairy animals. This article reviewed recent omics and multi-omics researches on physiology, feeding, and pathology on dairy animals and also performed the potential of multi-omics on systematic dairy research.
Collapse
Affiliation(s)
- Yingkun Zhu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- School of Agriculture & Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Joint Laboratory on Integrated Crop-Tree-Livestock Systems of the Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR), and World Agroforestry Center (ICRAF), Beijing 100193, China
- Correspondence: (D.B.); (L.M.)
| | - Lu Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Correspondence: (D.B.); (L.M.)
| |
Collapse
|
48
|
Wang S, Chai J, Zhao G, Zhang N, Cui K, Bi Y, Ma T, Tu Y, Diao Q. The Temporal Dynamics of Rumen Microbiota in Early Weaned Lambs. Microorganisms 2022; 10:microorganisms10010144. [PMID: 35056593 PMCID: PMC8779368 DOI: 10.3390/microorganisms10010144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 02/07/2023] Open
Abstract
Weaning affects the development of ruminal bacteria in lambs during early life. However, the temporal dynamics of rumen microbiota in early weaned lambs is unknown compared to conventionally weaned lambs. In this study, one group was reared with their dams (control, CON) and conventionally weaned at 49 days (d), while the other lambs were weaned at 21 d (early weaning, EW) using starter. Rumen microbial samples collected at 26, 35, and 63 d were used for next-generation sequencing. Here, we found that the abundance and diversity of rumen microbiota in EW were significantly lower at 26 and 35 d than the CON. Linear discriminant analysis Effect Size (LEfSe) analysis was performed to identify the signature microbiota for EW at these three ages. At 26 d, Prevotella 7, Syntrophococcus, Sharpea, Dialister, Pseudoscardovia, and Megasphaera in the rumen of the EW group had greater relative abundances. At 35 d, the Lachnospiraceae_NK3A20_group was enriched in CON. On 63 d, Erysipelotrichaceae_UCG-002 was abundant in EW. Syntrophococcus and Megaspheaera in EW lambs were abundant at 26 and 35 d, but kept similar to CON at 63 d. The relative abundance of Erysipelotrichaceae_UCG-002 at all-time points was consistently higher in the EW group. In conclusion, early weaning led to a significant decrease in rumen microbiota richness and diversity in the short term. The changes in rumen microbiota are associated with the persistence of weaning stress. The temporal dynamics of relative abundances of Syntrophococcus, Megasphaera, and Ruminococcaceae_UCG-014 reflect the weaning stress over a short period and rumen recovery after early weaning.
Collapse
Affiliation(s)
- Shiqin Wang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (J.C.); (G.Z.); (N.Z.); (K.C.); (Y.B.); (T.M.); (Y.T.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
| | - Jianmin Chai
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (J.C.); (G.Z.); (N.Z.); (K.C.); (Y.B.); (T.M.); (Y.T.)
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Guohong Zhao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (J.C.); (G.Z.); (N.Z.); (K.C.); (Y.B.); (T.M.); (Y.T.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
| | - Naifeng Zhang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (J.C.); (G.Z.); (N.Z.); (K.C.); (Y.B.); (T.M.); (Y.T.)
| | - Kai Cui
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (J.C.); (G.Z.); (N.Z.); (K.C.); (Y.B.); (T.M.); (Y.T.)
| | - Yanliang Bi
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (J.C.); (G.Z.); (N.Z.); (K.C.); (Y.B.); (T.M.); (Y.T.)
| | - Tao Ma
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (J.C.); (G.Z.); (N.Z.); (K.C.); (Y.B.); (T.M.); (Y.T.)
| | - Yan Tu
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (J.C.); (G.Z.); (N.Z.); (K.C.); (Y.B.); (T.M.); (Y.T.)
| | - Qiyu Diao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (J.C.); (G.Z.); (N.Z.); (K.C.); (Y.B.); (T.M.); (Y.T.)
- Correspondence: ; Tel.: +86-010-8210-6055
| |
Collapse
|
49
|
Lee A, Le Bon M, Connerton IF, Mellits KH. OUP accepted manuscript. FEMS Microbiol Ecol 2022; 98:6576765. [PMID: 35511201 PMCID: PMC9113333 DOI: 10.1093/femsec/fiac048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/24/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Adam Lee
- Corresponding author: Division of Microbiology, Brewing and Biotechnology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom. Tel: 07845 963223; E-mail:
| | - Melanie Le Bon
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Ian F Connerton
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Kenneth H Mellits
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
| |
Collapse
|
50
|
Zhang J, Wang P, Dingkao R, Du M, Ahmad AA, Liang Z, Zheng J, Shen J, Yan P, Ding X. Fecal Microbiota Dynamics Reveal the Feasibility of Early Weaning of Yak Calves under Conventional Grazing System. BIOLOGY 2021; 11:biology11010031. [PMID: 35053029 PMCID: PMC8773362 DOI: 10.3390/biology11010031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 12/22/2022]
Abstract
Simple Summary Yak (Bos grunniens) is the most economically and culturally important domestic bovine species adapted to the extreme ecological environment of the Qinghai–Tibetan Plateau (QTP), which provides milk, meat, transportation, fuel (yak dung), and wool for local nomads as well as major sources of income. Calves are an important part of the sustainable development of the yak industry on the QTP, and the quality of calf rearing directly determines the production performance of adult animals. Under the traditional grazing management, late weaning (>180 days) of yak calves seriously affects the improvement of their production performance. A comparative study of fecal microbiota dynamics of yak and cattle (Bos taurus) calves in different months after weaning will help to understand the changes in intestinal microbiota structure, and will aid in in improving growth rate and survivability of early weaned calves. Our research will contribute to the development of appropriate strategies to regulate the gut microbiome and thus improve the growth and health of the grazing ruminants on the QTP. Abstract Background: The gut microbiota plays an important role in the health and production of animals. However, little information is available on the dynamic variations and comparison of intestinal microbiota in post-weaning yak calves living on the QTP. Methods: We explored the fecal bacterial microbiota succession of yak calves at different months after early weaning (60 d) compared with cattle calves by 16S rRNA gene amplicon sequencing and functional composition prediction. Results: We found no significant difference in blood biochemical parameters related to glucose and lipid metabolism between yaks and calves in different months after weaning. The core fecal bacterial microbiota from both species of calves was dominated by Ruminococcaceae, Rikenellaceae, and Bacteroidaceae. The fecal microbial community has a great alteration within the time after weaning in both cattle and yak calves, but cattle showed a larger change. After five months, the microbiota achieves a stable and concentrated state. This is also similar to the functional profile. Conclusions: Based on the exploration of dynamic changes in the fecal microbiota at an early stage of life, our results illustrated that there were no negative effects of intestinal microbiota succession on yak calves when early weaning was employed.
Collapse
Affiliation(s)
- Jianbo Zhang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (J.Z.); (M.D.); (A.A.A.); (Z.L.); (J.Z.); (J.S.); (P.Y.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China;
| | - Peng Wang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China;
| | - Renqing Dingkao
- Gannan Institute of Animal Husbandry Science, Hezuo 747000, China;
| | - Mei Du
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (J.Z.); (M.D.); (A.A.A.); (Z.L.); (J.Z.); (J.S.); (P.Y.)
| | - Anum Ali Ahmad
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (J.Z.); (M.D.); (A.A.A.); (Z.L.); (J.Z.); (J.S.); (P.Y.)
| | - Zeyi Liang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (J.Z.); (M.D.); (A.A.A.); (Z.L.); (J.Z.); (J.S.); (P.Y.)
| | - Juanshan Zheng
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (J.Z.); (M.D.); (A.A.A.); (Z.L.); (J.Z.); (J.S.); (P.Y.)
| | - Jiahao Shen
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (J.Z.); (M.D.); (A.A.A.); (Z.L.); (J.Z.); (J.S.); (P.Y.)
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (J.Z.); (M.D.); (A.A.A.); (Z.L.); (J.Z.); (J.S.); (P.Y.)
| | - Xuezhi Ding
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (J.Z.); (M.D.); (A.A.A.); (Z.L.); (J.Z.); (J.S.); (P.Y.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China;
- Correspondence: ; Tel.: +86-0931-2115255
| |
Collapse
|