1
|
Cracking the tubulin code: enzyme structures offer clues to microtubule control. Nature 2024:10.1038/d41586-024-02822-7. [PMID: 39261685 DOI: 10.1038/d41586-024-02822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
|
2
|
Guseva EA, Buev VS, Mirzaeva SE, Pletnev PI, Dontsova OA, Sergiev PV. Structure and Composition of Spermatozoa Fibrous Sheath in Diverse Groups of Metazoa. Int J Mol Sci 2024; 25:7663. [PMID: 39062905 PMCID: PMC11276731 DOI: 10.3390/ijms25147663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The proper functioning and assembly of the sperm flagella structures contribute significantly to spermatozoa motility and overall male fertility. However, the fine mechanisms of assembly steps are poorly studied due to the high diversity of cell types, low solubility of the corresponding protein structures, and high tissue and cell specificity. One of the open questions for investigation is the attachment of longitudinal columns to the doublets 3 and 8 of axonemal microtubules through the outer dense fibers. A number of mutations affecting the assembly of flagella in model organisms are known. Additionally, evolutionary genomics data and comparative analysis of flagella morphology are available for a set of non-model species. This review is devoted to the analysis of diverse ultrastructures of sperm flagellum of Metazoa combined with an overview of the evolutionary distribution and function of the mammalian fibrous sheath proteins.
Collapse
Affiliation(s)
- Ekaterina A. Guseva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 143025 Skolkovo, Russia; (E.A.G.); (O.A.D.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.S.B.); (S.E.M.); (P.I.P.)
| | - Vitaly S. Buev
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.S.B.); (S.E.M.); (P.I.P.)
- Faculty of Bioengeneering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sabina E. Mirzaeva
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.S.B.); (S.E.M.); (P.I.P.)
| | - Philipp I. Pletnev
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.S.B.); (S.E.M.); (P.I.P.)
| | - Olga A. Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 143025 Skolkovo, Russia; (E.A.G.); (O.A.D.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.S.B.); (S.E.M.); (P.I.P.)
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Petr V. Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 143025 Skolkovo, Russia; (E.A.G.); (O.A.D.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.S.B.); (S.E.M.); (P.I.P.)
| |
Collapse
|
3
|
Chen J, Zehr EA, Gruschus JM, Szyk A, Liu Y, Tanner ME, Tjandra N, Roll-Mecak A. Tubulin code eraser CCP5 binds branch glutamates by substrate deformation. Nature 2024; 631:905-912. [PMID: 39020174 DOI: 10.1038/s41586-024-07699-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/11/2024] [Indexed: 07/19/2024]
Abstract
Microtubule function is modulated by the tubulin code, diverse posttranslational modifications that are altered dynamically by writer and eraser enzymes1. Glutamylation-the addition of branched (isopeptide-linked) glutamate chains-is the most evolutionarily widespread tubulin modification2. It is introduced by tubulin tyrosine ligase-like enzymes and erased by carboxypeptidases of the cytosolic carboxypeptidase (CCP) family1. Glutamylation homeostasis, achieved through the balance of writers and erasers, is critical for normal cell function3-9, and mutations in CCPs lead to human disease10-13. Here we report cryo-electron microscopy structures of the glutamylation eraser CCP5 in complex with the microtubule, and X-ray structures in complex with transition-state analogues. Combined with NMR analysis, these analyses show that CCP5 deforms the tubulin main chain into a unique turn that enables lock-and-key recognition of the branch glutamate in a cationic pocket that is unique to CCP family proteins. CCP5 binding of the sequences flanking the branch point primarily through peptide backbone atoms enables processing of diverse tubulin isotypes and non-tubulin substrates. Unexpectedly, CCP5 exhibits inefficient processing of an abundant β-tubulin isotype in the brain. This work provides an atomistic view into glutamate branch recognition and resolution, and sheds light on homeostasis of the tubulin glutamylation syntax.
Collapse
Affiliation(s)
- Jiayi Chen
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Elena A Zehr
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - James M Gruschus
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Agnieszka Szyk
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Yanjie Liu
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin E Tanner
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nico Tjandra
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| |
Collapse
|
4
|
Aljammal R, Saravanan T, Guan T, Rhodes S, Robichaux MA, Ramamurthy V. Excessive tubulin glutamylation leads to progressive cone-rod dystrophy and loss of outer segment integrity. Hum Mol Genet 2024; 33:802-817. [PMID: 38297980 DOI: 10.1093/hmg/ddae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Mutations in Cytosolic Carboxypeptidase-like Protein 5 (CCP5) are associated with vision loss in humans. To decipher the mechanisms behind CCP5-associated blindness, we generated a novel mouse model lacking CCP5. In this model, we found that increased tubulin glutamylation led to progressive cone-rod dystrophy, with cones showing a more pronounced and earlier functional loss than rod photoreceptors. The observed functional reduction was not due to cell death, levels, or the mislocalization of major phototransduction proteins. Instead, the increased tubulin glutamylation caused shortened photoreceptor axonemes and the formation of numerous abnormal membranous whorls that disrupted the integrity of photoreceptor outer segments (OS). Ultimately, excessive tubulin glutamylation led to the progressive loss of photoreceptors, affecting cones more severely than rods. Our results highlight the importance of maintaining tubulin glutamylation for normal photoreceptor function. Furthermore, we demonstrate that murine cone photoreceptors are more sensitive to disrupted tubulin glutamylation levels than rods, suggesting an essential role for axoneme in the structural integrity of the cone outer segment. This study provides valuable insights into the mechanisms of photoreceptor diseases linked to excessive tubulin glutamylation.
Collapse
Affiliation(s)
- Rawaa Aljammal
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Dr., Morgantown, WV 26506, United States
- Department of Ophthalmology and Visual Sciences, One Stadium Dr, West Virginia University, Morgantown, WV 26506, United States
| | - Thamaraiselvi Saravanan
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Dr., Morgantown, WV 26506, United States
- Department of Ophthalmology and Visual Sciences, One Stadium Dr, West Virginia University, Morgantown, WV 26506, United States
| | - Tongju Guan
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Dr., Morgantown, WV 26506, United States
- Department of Ophthalmology and Visual Sciences, One Stadium Dr, West Virginia University, Morgantown, WV 26506, United States
| | - Scott Rhodes
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Dr., Morgantown, WV 26506, United States
- Department of Ophthalmology and Visual Sciences, One Stadium Dr, West Virginia University, Morgantown, WV 26506, United States
| | - Michael A Robichaux
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Dr., Morgantown, WV 26506, United States
- Department of Ophthalmology and Visual Sciences, One Stadium Dr, West Virginia University, Morgantown, WV 26506, United States
| | - Visvanathan Ramamurthy
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Dr., Morgantown, WV 26506, United States
- Department of Ophthalmology and Visual Sciences, One Stadium Dr, West Virginia University, Morgantown, WV 26506, United States
| |
Collapse
|
5
|
Romeo-Cardeillac C, Trovero MF, Radío S, Smircich P, Rodríguez-Casuriaga R, Geisinger A, Sotelo-Silveira J. Uncovering a multitude of stage-specific splice variants and putative protein isoforms generated along mouse spermatogenesis. BMC Genomics 2024; 25:295. [PMID: 38509455 PMCID: PMC10953240 DOI: 10.1186/s12864-024-10170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Mammalian testis is a highly complex and heterogeneous tissue. This complexity, which mostly derives from spermatogenic cells, is reflected at the transcriptional level, with the largest number of tissue-specific genes and long noncoding RNAs (lncRNAs) compared to other tissues, and one of the highest rates of alternative splicing. Although it is known that adequate alternative-splicing patterns and stage-specific isoforms are critical for successful spermatogenesis, so far only a very limited number of reports have addressed a detailed study of alternative splicing and isoforms along the different spermatogenic stages. RESULTS In the present work, using highly purified stage-specific testicular cell populations, we detected 33,002 transcripts expressed throughout mouse spermatogenesis not annotated so far. These include both splice variants of already annotated genes, and of hitherto unannotated genes. Using conservative criteria, we uncovered 13,471 spermatogenic lncRNAs, which reflects the still incomplete annotation of lncRNAs. A distinctive feature of lncRNAs was their lower number of splice variants compared to protein-coding ones, adding to the conclusion that lncRNAs are, in general, less complex than mRNAs. Besides, we identified 2,794 unannotated transcripts with high coding potential (including some arising from yet unannotated genes), many of which encode unnoticed putative testis-specific proteins. Some of the most interesting coding splice variants were chosen, and validated through RT-PCR. Remarkably, the largest number of stage-specific unannotated transcripts are expressed during early meiotic prophase stages, whose study has been scarcely addressed in former transcriptomic analyses. CONCLUSIONS We detected a high number of yet unannotated genes and alternatively spliced transcripts along mouse spermatogenesis, hence showing that the transcriptomic diversity of the testis is considerably higher than previously reported. This is especially prominent for specific, underrepresented stages such as those of early meiotic prophase, and its unveiling may constitute a step towards the understanding of their key events.
Collapse
Affiliation(s)
- Carlos Romeo-Cardeillac
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay
| | - María Fernanda Trovero
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Santiago Radío
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay
| | - Pablo Smircich
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay
| | - Rosana Rodríguez-Casuriaga
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay
| | - Adriana Geisinger
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay.
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República (UdelaR), 11,400, Montevideo, Uruguay.
| | - José Sotelo-Silveira
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay.
- Department of Cell and Molecular Biology, Facultad de Ciencias, UdelaR, 11,400, Montevideo, Uruguay.
| |
Collapse
|
6
|
Chen J, Roll-Mecak A. Glutamylation is a negative regulator of microtubule growth. Mol Biol Cell 2023; 34:ar70. [PMID: 37074962 PMCID: PMC10295482 DOI: 10.1091/mbc.e23-01-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/20/2023] Open
Abstract
Microtubules are noncovalent polymers built from αβ-tubulin dimers. The disordered C-terminal tubulin tails are functionalized with multiple glutamate chains of variable lengths added and removed by tubulin tyrosine ligases (TTLLs) and carboxypeptidases (CCPs). Glutamylation is abundant on stable microtubule arrays such as in axonemes and axons, and its dysregulation leads to human pathologies. Despite this, the effects of glutamylation on intrinsic microtubule dynamics are unclear. Here we generate tubulin with short and long glutamate chains and show that glutamylation slows the rate of microtubule growth and increases catastrophes as a function of glutamylation levels. This implies that the higher stability of glutamylated microtubules in cells is due to effectors. Interestingly, EB1 is minimally affected by glutamylation and thus can report on the growth rates of both unmodified and glutamylated microtubules. Finally, we show that glutamate removal by CCP1 and 5 is synergistic and occurs preferentially on soluble tubulin, unlike TTLL enzymes that prefer microtubules. This substrate preference establishes an asymmetry whereby once the microtubule depolymerizes, the released tubulin is reset to a less-modified state, while polymerized tubulin accumulates the glutamylation mark. Our work shows that a modification on the disordered tubulin tails can directly affect microtubule dynamics and furthers our understanding of the mechanistic underpinnings of the tubulin code.
Collapse
Affiliation(s)
- Jiayi Chen
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, and
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, and
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892
| |
Collapse
|
7
|
Wang Y, Zhang Y, Guo X, Zheng Y, Zhang X, Feng S, Wu HY. CCP5 and CCP6 retain CP110 and negatively regulate ciliogenesis. BMC Biol 2023; 21:124. [PMID: 37226238 DOI: 10.1186/s12915-023-01622-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND The axonemal microtubules of primary cilium undergo a conserved protein posttranslational modification (PTM) - polyglutamylation. This reversible procedure is processed by tubulin tyrosine ligase-like polyglutamylases to form secondary polyglutamate side chains, which are metabolized by the 6-member cytosolic carboxypeptidase (CCP) family. Although polyglutamylation modifying enzymes have been linked to ciliary architecture and motility, it was unknown whether they also play a role in ciliogenesis. RESULTS In this study, we found that CCP5 expression is transiently downregulated upon the initiation of ciliogenesis, but recovered after cilia are formed. Overexpression of CCP5 inhibited ciliogenesis, suggesting that a transient downregulation of CCP5 expression is required for ciliation initiation. Interestingly, the inhibitory effect of CCP5 on ciliogenesis does not rely on its enzyme activity. Among other 3 CCP members tested, only CCP6 can similarly suppress ciliogenesis. Using CoIP-MS analysis, we identified a protein that potentially interacts with CCP - CP110, a known negative regulator of ciliogenesis, whose degradation at the distal end of mother centriole permits cilia assembly. We found that both CCP5 and CCP6 can modulate CP110 level. Particularly, CCP5 interacts with CP110 through its N-terminus. Loss of CCP5 or CCP6 led to the disappearance of CP110 at the mother centriole and abnormally increased ciliation in cycling RPE-1 cells. Co-depletion of CCP5 and CCP6 synergized this abnormal ciliation, suggesting their partially overlapped function in suppressing cilia formation in cycling cells. In contrast, co-depletion of the two enzymes did not further increase the length of cilia, although CCP5 and CCP6 differentially regulate polyglutamate side-chain length of ciliary axoneme and both contribute to limiting cilia length, suggesting that they may share a common pathway in cilia length control. Through inducing the overexpression of CCP5 or CCP6 at different stages of ciliogenesis, we further demonstrated that CCP5 or CCP6 inhibited cilia formation before ciliogenesis, while shortened the length of cilia after cilia formation. CONCLUSION These findings reveal the dual role of CCP5 and CCP6. In addition to regulating cilia length, they also retain CP110 level to suppress cilia formation in cycling cells, pointing to a novel regulatory mechanism for ciliogenesis mediated by demodifying enzymes of a conserved ciliary PTM, polyglutamylation.
Collapse
Affiliation(s)
- Yujuan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Building 24, Room 417-8, Tianjin, 300072, China
| | - Yuan Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Building 24, Room 417-8, Tianjin, 300072, China
| | - Xinyu Guo
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Building 24, Room 417-8, Tianjin, 300072, China
| | - Yiqiang Zheng
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Building 24, Room 417-8, Tianjin, 300072, China
| | - Xinjie Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Building 24, Room 417-8, Tianjin, 300072, China
| | - Shanshan Feng
- Key Laboratory of Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 51063, China
| | - Hui-Yuan Wu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Building 24, Room 417-8, Tianjin, 300072, China.
| |
Collapse
|
8
|
Klimas AS, Dominguez J, Shah BP, Lee ZY, Peel N. The C. elegans deglutamylase CCPP-6 does not operate redundantly with CCPP-1 in gross cilia integrity. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000740. [PMID: 37287505 PMCID: PMC10242412 DOI: 10.17912/micropub.biology.000740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Tubulin glutamylation is a reversible modification of the microtubules that regulates cilia stability and function. The addition of glutamates to the microtubule is catalyzed by members of the TTLL family of enzymes, while the removal is carried out by a family of cytosolic carboxypeptidase (CCP) enzymes. C. elegans has two deglutamylating enzymes, CCPP-1 and CCPP-6 . CCPP-1 is required for ciliary stability and function in the worm, however CCPP-6 is dispensable for cilia integrity. To investigate redundancy between the two deglutamylating enzymes we made a ccpp-1 ( ok1821 ); ccpp-6 ( ok382 ) double mutant. The double mutant shows normal viability, and the dye-filling phenotypes are not worse than the ccpp-1 single mutant, suggesting that CCPP-1 and CCPP-6 do not function redundantly in C. elegans cilia .
Collapse
Affiliation(s)
- Abigail S Klimas
- Department of Biology, College of New Jersey, Ewing, New Jersey, United States
| | - Jessica Dominguez
- Department of Biology, College of New Jersey, Ewing, New Jersey, United States
| | - Bhumi P Shah
- Department of Biology, College of New Jersey, Ewing, New Jersey, United States
| | - Zion Y Lee
- Department of Biology, College of New Jersey, Ewing, New Jersey, United States
| | - Nina Peel
- Department of Biology, College of New Jersey, Ewing, New Jersey, United States
| |
Collapse
|
9
|
CCP1, a Regulator of Tubulin Post-Translational Modifications, Potentially Plays an Essential Role in Cerebellar Development. Int J Mol Sci 2023; 24:ijms24065335. [PMID: 36982413 PMCID: PMC10049023 DOI: 10.3390/ijms24065335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
The cytosolic carboxypeptidase (CCP) 1 protein, encoded by CCP1, is expressed in cerebellar Purkinje cells (PCs). The dysfunction of CCP1 protein (caused by CCP1 point mutation) and the deletion of CCP1 protein (caused by CCP1 gene knockout) all lead to the degeneration of cerebellar PCs, which leads to cerebellar ataxia. Thus, two CCP1 mutants (i.e., Ataxia and Male Sterility [AMS] mice and Nna1 knockout [KO] mice) are used as disease models. We investigated the cerebellar CCP1 distribution in wild-type (WT), AMS and Nna1 KO mice on postnatal days (P) 7–28 to investigate the differential effects of CCP protein deficiency and disorder on cerebellar development. Immunohistochemical and immunofluorescence studies revealed significant differences in the cerebellar CCP1 expression in WT and mutant mice of P7 and P15, but no significant difference between AMS and Nna1 KO mice. Electron microscopy showed slight abnormality in the nuclear membrane structure of PCs in the AMS and Nna1 KO mice at P15 and significant abnormality with depolymerization and fragmentation of microtubule structure at P21. Using two CCP1 mutant mice strains, we revealed the morphological changes of PCs at postnatal stages and indicated that CCP1 played an important role in cerebellar development, most likely via polyglutamylation.
Collapse
|
10
|
Guo X, Wang R, Ma R, Fan X, Gao Y, Zhang X, Yuchi Z, Wu HY. Facile purification of active recombinant mouse cytosolic carboxypeptidase 6 from Escherichia coli. Protein Expr Purif 2022; 197:106112. [DOI: 10.1016/j.pep.2022.106112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022]
|
11
|
Gadadhar S, Hirschmugl T, Janke C. The tubulin code in mammalian sperm development and function. Semin Cell Dev Biol 2022; 137:26-37. [PMID: 35067438 DOI: 10.1016/j.semcdb.2021.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 01/11/2023]
Abstract
Microtubules are cytoskeletal elements that play key roles throughout the different steps of sperm development. As an integral part of the sperm flagellum, the molecular machine that generates sperm motility, microtubules are also essential for the progressive swimming of sperm to the oocyte, which is a prerequisite for fertilisation. Given the central role of microtubules in all steps of spermatogenesis, their functions need to be tightly controlled. Recent work has showcased tubulin posttranslational modifications as key players in sperm development and function, with aberrations often leading to male infertility with a broad spectrum of sperm defects. Posttranslational modifications are part of the tubulin code, a mechanism that can control microtubule functions by modulating the properties of their molecular building blocks, the tubulin proteins. Here we review the current knowledge on the implications of the tubulin code in sperm development and functions and its importance for male fertility.
Collapse
Affiliation(s)
- Sudarshan Gadadhar
- Institut Curie, Université PSL, CNRS UMR3348, F-91401 Orsay, France; Université Paris-Saclay, CNRS UMR3348, F-91401 Orsay, France.
| | | | - Carsten Janke
- Institut Curie, Université PSL, CNRS UMR3348, F-91401 Orsay, France; Université Paris-Saclay, CNRS UMR3348, F-91401 Orsay, France.
| |
Collapse
|
12
|
Yogo K. Molecular basis of the morphogenesis of sperm head and tail in mice. Reprod Med Biol 2022; 21:e12466. [PMID: 35619659 PMCID: PMC9126569 DOI: 10.1002/rmb2.12466] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022] Open
Abstract
Background The spermatozoon has a complex molecular apparatus necessary for fertilization in its head and flagellum. Recently, numerous genes that are needed to construct the molecular apparatus of spermatozoa have been identified through the analysis of genetically modified mice. Methods Based on the literature information, the molecular basis of the morphogenesis of sperm heads and flagella in mice was summarized. Main findings (Results) The molecular mechanisms of vesicular trafficking and intraflagellar transport in acrosome and flagellum formation were listed. With the development of cryo‐electron tomography and mass spectrometry techniques, the details of the axonemal structure are becoming clearer. The fine structure and the proteins needed to form the central apparatus, outer and inner dynein arms, nexin‐dynein regulatory complex, and radial spokes were described. The important components of the formation of the mitochondrial sheath, fibrous sheath, outer dense fiber, and the annulus were also described. The similarities and differences between sperm flagella and Chlamydomonas flagella/somatic cell cilia were also discussed. Conclusion The molecular mechanism of formation of the sperm head and flagellum has been clarified using the mouse as a model. These studies will help to better understand the diversity of sperm morphology and the causes of male infertility.
Collapse
Affiliation(s)
- Keiichiro Yogo
- Department of Applied Life Sciences Faculty of Agriculture Shizuoka University Shizuoka Japan
| |
Collapse
|
13
|
Kiyozumi D, Ikawa M. Proteolysis in Reproduction: Lessons From Gene-Modified Organism Studies. Front Endocrinol (Lausanne) 2022; 13:876370. [PMID: 35600599 PMCID: PMC9114714 DOI: 10.3389/fendo.2022.876370] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022] Open
Abstract
The physiological roles of proteolysis are not limited to degrading unnecessary proteins. Proteolysis plays pivotal roles in various biological processes through cleaving peptide bonds to activate and inactivate proteins including enzymes, transcription factors, and receptors. As a wide range of cellular processes is regulated by proteolysis, abnormalities or dysregulation of such proteolytic processes therefore often cause diseases. Recent genetic studies have clarified the inclusion of proteases and protease inhibitors in various reproductive processes such as development of gonads, generation and activation of gametes, and physical interaction between gametes in various species including yeast, animals, and plants. Such studies not only clarify proteolysis-related factors but the biological processes regulated by proteolysis for successful reproduction. Here the physiological roles of proteases and proteolysis in reproduction will be reviewed based on findings using gene-modified organisms.
Collapse
Affiliation(s)
- Daiji Kiyozumi
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
14
|
Zhou Y, Zhang X, Xiong S, Zeng X, Zhang X. Predicted gene 31453 (Gm31453) and the gene encoding carboxypeptidase A5 (Cpa5) are not essential for spermatogenesis and male fertility in the mouse. Reprod Fertil Dev 2021; 33:401-409. [PMID: 33745502 DOI: 10.1071/rd20284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/09/2021] [Indexed: 01/03/2023] Open
Abstract
Numerous long non-coding (lnc) RNAs are highly enriched or exclusively expressed in the mammalian testis, even in spermatids. Spermatid perinuclear RNA-binding protein (STRBP) can bind many RNAs, and loss of STRBP impairs male fertility. However, the functions of lncRNAs interacting with STRBP are unknown. In this study, the roles of one STRBP-interacting lncRNA, namely predicted gene 31453 (Gm31453), and its potential target gene encoding carboxypeptidase A5 (Cpa5) in spermatogenesis were determined using gene-knockout (KO) mice. Gm31453 and Cpa5 are located adjacent to each other on the same chromosome and are highly expressed in the testis. Gm31453 and Cpa5 are primarily expressed from secondary spermatocytes to elongated spermatids, implying their involvement in spermiogenesis. Although deletion of Gm31453 disturbed the expression of both its target and interacting gene, as indicated by decreased Cpa5 and increased Strbp mRNA levels, both Gm31453- and Cpa5-KO mice showed normal spermatogenesis and fertility, and had no detectable abnormalities in terms of testicular and epididymal development, sperm production morphology or motility, pregnancy rate or litter size. Thus, Gm31453 and Cpa5 are dispensable for spermatogenesis and male fertility in mice. Their involvement in spermatogenesis may be a fine-tuning role, regulating gene expression at the molecular level.
Collapse
Affiliation(s)
- Yang Zhou
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, PR China
| | - Xiaona Zhang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, PR China
| | - Suping Xiong
- Institute of Life Science, Nanchang University, Nanchang 330031, PR China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, PR China; and Corresponding authors. ;
| | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, PR China; and Institute of Life Science, Nanchang University, Nanchang 330031, PR China; and Corresponding authors. ;
| |
Collapse
|
15
|
Yang WT, Hong SR, He K, Ling K, Shaiv K, Hu J, Lin YC. The Emerging Roles of Axonemal Glutamylation in Regulation of Cilia Architecture and Functions. Front Cell Dev Biol 2021; 9:622302. [PMID: 33748109 PMCID: PMC7970040 DOI: 10.3389/fcell.2021.622302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Cilia, which either generate coordinated motion or sense environmental cues and transmit corresponding signals to the cell body, are highly conserved hair-like structures that protrude from the cell surface among diverse species. Disruption of ciliary functions leads to numerous human disorders, collectively referred to as ciliopathies. Cilia are mechanically supported by axonemes, which are composed of microtubule doublets. It has been recognized for several decades that tubulins in axonemes undergo glutamylation, a post-translational polymodification, that conjugates glutamic acid chains onto the C-terminal tail of tubulins. However, the physiological roles of axonemal glutamylation were not uncovered until recently. This review will focus on how cells modulate glutamylation on ciliary axonemes and how axonemal glutamylation regulates cilia architecture and functions, as well as its physiological importance in human health. We will also discuss the conventional and emerging new strategies used to manipulate glutamylation in cilia.
Collapse
Affiliation(s)
- Wen-Ting Yang
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
| | - Shi-Rong Hong
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
| | - Kai He
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Kritika Shaiv
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
| | - JingHua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
- Department of Medical Science, National Tsing Hua University, HsinChu City, Taiwan
| |
Collapse
|
16
|
Gadadhar S, Alvarez Viar G, Hansen JN, Gong A, Kostarev A, Ialy-Radio C, Leboucher S, Whitfield M, Ziyyat A, Touré A, Alvarez L, Pigino G, Janke C. Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility. Science 2021; 371:371/6525/eabd4914. [PMID: 33414192 DOI: 10.1126/science.abd4914] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/13/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022]
Abstract
Posttranslational modifications of the microtubule cytoskeleton have emerged as key regulators of cellular functions, and their perturbations have been linked to a growing number of human pathologies. Tubulin glycylation modifies microtubules specifically in cilia and flagella, but its functional and mechanistic roles remain unclear. In this study, we generated a mouse model entirely lacking tubulin glycylation. Male mice were subfertile owing to aberrant beat patterns of their sperm flagella, which impeded the straight swimming of sperm cells. Using cryo-electron tomography, we showed that lack of glycylation caused abnormal conformations of the dynein arms within sperm axonemes, providing the structural basis for the observed dysfunction. Our findings reveal the importance of microtubule glycylation for controlled flagellar beating, directional sperm swimming, and male fertility.
Collapse
Affiliation(s)
- Sudarshan Gadadhar
- Institut Curie, Université PSL, CNRS UMR3348, F-91400 Orsay, France. .,Université Paris-Saclay, CNRS UMR3348, F-91400 Orsay, France
| | - Gonzalo Alvarez Viar
- Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| | - Jan Niklas Hansen
- Institute of Innate Immunity, Medical Faculty, University of Bonn, D-53127 Bonn, Germany
| | - An Gong
- Center of Advanced European Studies and Research, D-53175 Bonn, Germany
| | - Aleksandr Kostarev
- Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| | - Côme Ialy-Radio
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Sophie Leboucher
- Institut Curie, Université PSL, CNRS UMR3348, F-91400 Orsay, France.,Université Paris-Saclay, CNRS UMR3348, F-91400 Orsay, France
| | - Marjorie Whitfield
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Ahmed Ziyyat
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France.,Service d'histologie, d'embryologie, Biologie de la reproduction, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, F-75014 Paris, France
| | - Aminata Touré
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Luis Alvarez
- Center of Advanced European Studies and Research, D-53175 Bonn, Germany.
| | - Gaia Pigino
- Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany. .,Human Technopole, I-20157 Milan, Italy
| | - Carsten Janke
- Institut Curie, Université PSL, CNRS UMR3348, F-91400 Orsay, France. .,Université Paris-Saclay, CNRS UMR3348, F-91400 Orsay, France
| |
Collapse
|
17
|
Khan AO, Slater A, Maclachlan A, Nicolson PLR, Pike JA, Reyat JS, Yule J, Stapley R, Rayes J, Thomas SG, Morgan NV. Post-translational polymodification of β1-tubulin regulates motor protein localisation in platelet production and function. Haematologica 2020; 107:243-259. [PMID: 33327716 PMCID: PMC8719104 DOI: 10.3324/haematol.2020.270793] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 11/17/2022] Open
Abstract
In specialized cells, the expression of specific tubulin isoforms and their subsequent post-translational modifications drive and coordinate unique morphologies and behaviors. The mechanisms by which b1-tubulin, the platelet and megakaryocyte (MK) lineage restricted tubulin isoform, drives platelet production and function remains poorly understood. We investigated the roles of two key post-translational tubulin polymodifications (polyglutamylation and polyglycylation) on these processes using a cohort of thrombocytopenic patients, human induced pluripotent stem cell derived MK, and healthy human donor platelets. We find distinct patterns of polymodification in MK and platelets, mediated by the antagonistic activities of the cell specific expression of tubulin tyrosine ligase like enzymes and cytosolic carboxypeptidase enzymes. The resulting microtubule patterning spatially regulates motor proteins to drive proplatelet formation in megakaryocytes, and the cytoskeletal reorganization required for thrombus formation. This work is the first to show a reversible system of polymodification by which different cell specific functions are achieved.
Collapse
Affiliation(s)
- Abdullah O Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT.
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT
| | - Annabel Maclachlan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT
| | - Phillip L R Nicolson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT
| | - Jeremy A Pike
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT; Centre of Membrane and Protein and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands
| | - Jasmeet S Reyat
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT
| | - Jack Yule
- Centre of Membrane and Protein and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands
| | - Rachel Stapley
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT
| | - Steven G Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT; Centre of Membrane and Protein and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT.
| |
Collapse
|
18
|
Li J, Snyder EY, Tang FHF, Pasqualini R, Arap W, Sidman RL. Nna1 gene deficiency triggers Purkinje neuron death by tubulin hyperglutamylation and ER dysfunction. JCI Insight 2020; 5:136078. [PMID: 33004692 PMCID: PMC7566705 DOI: 10.1172/jci.insight.136078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Posttranslational glutamylation/deglutamylation balance in tubulins influences dendritic maturation and neuronal survival of cerebellar Purkinje neurons (PNs). PNs and some additional neuronal types degenerate in several spontaneous, independently occurring Purkinje cell degeneration (pcd) mice featuring mutant neuronal nuclear protein induced by axotomy (Nna1), a deglutamylase gene. This defective deglutamylase allows glutamylases to form hyperglutamylated tubulins. In pcd, all PNs die during postnatal “adolescence.” Neurons in some additional brain regions also die, mostly later than PNs. We show in laser capture microdissected single PNs, in cerebellar granule cell neuronal clusters, and in dissected hippocampus and substantia nigra that deglutamase mRNA and protein were virtually absent before pcd PNs degenerated, whereas glutaminase mRNA and protein remained normal. Hyperglutamylated microtubules and dimeric tubulins accumulated in pcd PNs and were involved in pcd PN death by glutamylase/deglutamylase imbalance. Importantly, treatment with a microtubule depolymerizer corrected the glutamylation/deglutamylation ratio, increasing PN survival. Further, before onset of neuronal death, pcd PNs displayed prominent basal polylisosomal masses rich in ER. We propose a “seesaw” metamorphic model summarizing mutant Nna1-induced tubulin hyperglutamylation, the pcd’s PN phenotype, and report that the neuronal disorder involved ER stress, unfolded protein response, and protein synthesis inhibition preceding PN death by apoptosis/necroptosis. Purkinje cell degeneration is due to ER stress, unfolded protein response, and protein synthesis inhibition preceding Purkinje neuron death by apoptosis/necroptosis.
Collapse
Affiliation(s)
- Jianxue Li
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Evan Y Snyder
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Fenny HF Tang
- Rutgers Cancer Institute of New Jersey and Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey and Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey and Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Richard L Sidman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Moutin MJ, Bosc C, Peris L, Andrieux A. Tubulin post-translational modifications control neuronal development and functions. Dev Neurobiol 2020; 81:253-272. [PMID: 33325152 PMCID: PMC8246997 DOI: 10.1002/dneu.22774] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/26/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022]
Abstract
Microtubules (MTs) are an essential component of the neuronal cytoskeleton; they are involved in various aspects of neuron development, maintenance, and functions including polarization, synaptic plasticity, and transport. Neuronal MTs are highly heterogeneous due to the presence of multiple tubulin isotypes and extensive post‐translational modifications (PTMs). These PTMs—most notably detyrosination, acetylation, and polyglutamylation—have emerged as important regulators of the neuronal microtubule cytoskeleton. With this review, we summarize what is currently known about the impact of tubulin PTMs on microtubule dynamics, neuronal differentiation, plasticity, and transport as well as on brain function in normal and pathological conditions, in particular during neuro‐degeneration. The main therapeutic approaches to neuro‐diseases based on the modulation of tubulin PTMs are also summarized. Overall, the review indicates how tubulin PTMs can generate a large number of functionally specialized microtubule sub‐networks, each of which is crucial to specific neuronal features.
Collapse
Affiliation(s)
- Marie-Jo Moutin
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble, France
| | - Christophe Bosc
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble, France
| | - Leticia Peris
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble, France
| | - Annie Andrieux
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble, France
| |
Collapse
|
20
|
The emerging role of tubulin posttranslational modifications in cilia and ciliopathies. BIOPHYSICS REPORTS 2020. [DOI: 10.1007/s41048-020-00111-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
21
|
The tubulin code and its role in controlling microtubule properties and functions. Nat Rev Mol Cell Biol 2020; 21:307-326. [PMID: 32107477 DOI: 10.1038/s41580-020-0214-3] [Citation(s) in RCA: 421] [Impact Index Per Article: 105.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
Microtubules are core components of the eukaryotic cytoskeleton with essential roles in cell division, shaping, motility and intracellular transport. Despite their functional heterogeneity, microtubules have a highly conserved structure made from almost identical molecular building blocks: the tubulin proteins. Alternative tubulin isotypes and a variety of post-translational modifications control the properties and functions of the microtubule cytoskeleton, a concept known as the 'tubulin code'. Here we review the current understanding of the molecular components of the tubulin code and how they impact microtubule properties and functions. We discuss how tubulin isotypes and post-translational modifications control microtubule behaviour at the molecular level and how this translates into physiological functions at the cellular and organism levels. We then go on to show how fine-tuning of microtubule function by some tubulin modifications can affect homeostasis and how perturbation of this fine-tuning can lead to a range of dysfunctions, many of which are linked to human disease.
Collapse
|
22
|
Bodakuntla S, Magiera MM, Janke C. Measuring the Impact of Tubulin Posttranslational Modifications on Axonal Transport. Methods Mol Biol 2020; 2101:353-370. [PMID: 31879913 DOI: 10.1007/978-1-0716-0219-5_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Axonal transport is a process essential for neuronal function and survival that takes place on the cellular highways-the microtubules. It requires three major components: the microtubules that serve as tracks for the transport, the motor proteins that drive the movement, and the transported cargoes with their adaptor proteins. Axonal transport could be controlled by tubulin posttranslational modifications, which by decorating specific microtubule tracks could determine the specificity of cargo delivery inside neurons. However, it appears that the effects of tubulin modifications on transport can be rather subtle, and might thus be easily overlooked depending on which parameter of the transport process is analyzed. Here we propose an analysis paradigm that allows detecting rather subtle alterations in neuronal transport, as induced for instance by accumulation of posttranslational polyglutamylation. Analyzing mitochondria movements in axons, we found that neither the average speed nor the distance traveled were affected by hyperglutamylation, but we detected an about 50% reduction of the overall motility, suggesting that polyglutamylation controls the efficiency of mitochondria transport in axons. Our protocol can readily be expanded to the analysis of the impact of other tubulin modifications on the transport of a range of different neuronal cargoes.
Collapse
Affiliation(s)
- Satish Bodakuntla
- Institut Curie, PSL Research University, CNRS UMR3348, Centre Universitaire, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Maria M Magiera
- Institut Curie, PSL Research University, CNRS UMR3348, Centre Universitaire, Orsay, France. .,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France.
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR3348, Centre Universitaire, Orsay, France. .,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France.
| |
Collapse
|
23
|
Giordano T, Gadadhar S, Bodakuntla S, Straub J, Leboucher S, Martinez G, Chemlali W, Bosc C, Andrieux A, Bieche I, Arnoult C, Geimer S, Janke C. Loss of the deglutamylase CCP5 perturbs multiple steps of spermatogenesis and leads to male infertility. J Cell Sci 2019; 132:jcs.226951. [DOI: 10.1242/jcs.226951] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/21/2018] [Indexed: 12/23/2022] Open
Abstract
Sperm cells are highly specialized mammalian cells, and their biogenesis requires unique intracellular structures. Perturbations of spermatogenesis often lead to male infertility. Here we assess the role of a posttranslational modification of tubulin, glutamylation, in spermatogenesis. We show that mice lacking the tubulin deglutamylase CCP5 do not form functional sperm. Spermatids accumulate polyglutamylated tubulin, accompanied by the occurrence of disorganized microtubule arrays, in particular the sperm manchette, fail to re-arrange their intracellular space and accumulate organelles and cytosol, while nuclei condense normally. Strikingly, spermatids lacking CCP5 show supernumerary centrioles, suggesting that glutamylation could control centriole duplication. We show that most of these observed defects are also present in mice in which CCP5 is deleted only in the male germ line, strongly suggesting that they are germ-cell-autonomous. Our findings reveal that polyglutamylation is, beyond its known importance for sperm flagella, and essential regulator of several microtubule-based functions during spermatogenesis. This makes enzymes involved in glutamylation prime candidates for genes involved in male sterility.
Collapse
Affiliation(s)
- Tiziana Giordano
- Institut Curie, PSL Research University, CNRS UMR3348, F-91405 Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, F-91405 Orsay, France
| | - Sudarshan Gadadhar
- Institut Curie, PSL Research University, CNRS UMR3348, F-91405 Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, F-91405 Orsay, France
| | - Satish Bodakuntla
- Institut Curie, PSL Research University, CNRS UMR3348, F-91405 Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, F-91405 Orsay, France
| | - Jonas Straub
- Cell Biology and Electron Microscopy, University of Bayreuth, 95440 Bayreuth, Germany
| | - Sophie Leboucher
- Institut Curie, PSL Research University, CNRS UMR3348, F-91405 Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, F-91405 Orsay, France
| | - Guillaume Martinez
- Université Grenoble Alpes, Grenoble, F-38000, France
- Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France
| | - Walid Chemlali
- Institut Curie, PSL Research University, Department of Genetics, F-75005, Paris, France
| | - Christophe Bosc
- Université Grenoble Alpes, Grenoble, F-38000, France
- Inserm U1216, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Annie Andrieux
- Université Grenoble Alpes, Grenoble, F-38000, France
- Inserm U1216, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Ivan Bieche
- Institut Curie, PSL Research University, Department of Genetics, F-75005, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, F-75005, Paris, France
| | - Christophe Arnoult
- Université Grenoble Alpes, Grenoble, F-38000, France
- Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France
| | - Stefan Geimer
- Cell Biology and Electron Microscopy, University of Bayreuth, 95440 Bayreuth, Germany
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR3348, F-91405 Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, F-91405 Orsay, France
| |
Collapse
|
24
|
Ferreira LT, Figueiredo AC, Orr B, Lopes D, Maiato H. Dissecting the role of the tubulin code in mitosis. Methods Cell Biol 2018; 144:33-74. [PMID: 29804676 DOI: 10.1016/bs.mcb.2018.03.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitosis is an essential process that takes place in all eukaryotes and involves the equal division of genetic material from a parental cell into two identical daughter cells. During mitosis, chromosome movement and segregation are orchestrated by a specialized structure known as the mitotic spindle, composed of a bipolar array of microtubules. The fundamental structure of microtubules comprises of α/β-tubulin heterodimers that associate head-to-tail and laterally to form hollow filaments. In vivo, microtubules are modified by abundant and evolutionarily conserved tubulin posttranslational modifications (PTMs), giving these filaments the potential for a wide chemical diversity. In recent years, the concept of a "tubulin code" has emerged as an extralayer of regulation governing microtubule function. A range of tubulin isoforms, each with a diverse set of PTMs, provides a readable code for microtubule motors and other microtubule-associated proteins. This chapter focuses on the complexity of tubulin PTMs with an emphasis on detyrosination and summarizes the methods currently used in our laboratory to experimentally manipulate these modifications and study their impact in mitosis.
Collapse
Affiliation(s)
- Luísa T Ferreira
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana C Figueiredo
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Bernardo Orr
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Danilo Lopes
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Helder Maiato
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Faculdade de Medicina, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
25
|
Magiera MM, Singh P, Gadadhar S, Janke C. Tubulin Posttranslational Modifications and Emerging Links to Human Disease. Cell 2018; 173:1323-1327. [PMID: 29856952 DOI: 10.1016/j.cell.2018.05.018] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Tubulin posttranslational modifications are currently emerging as important regulators of the microtubule cytoskeleton and thus have a strong potential to be implicated in a number of disorders. Here, we review the latest advances in understanding the physiological roles of tubulin modifications and their links to a variety of pathologies.
Collapse
Affiliation(s)
- Maria M Magiera
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France.
| | - Puja Singh
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Sudarshan Gadadhar
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France.
| |
Collapse
|
26
|
Hong SR, Wang CL, Huang YS, Chang YC, Chang YC, Pusapati GV, Lin CY, Hsu N, Cheng HC, Chiang YC, Huang WE, Shaner NC, Rohatgi R, Inoue T, Lin YC. Spatiotemporal manipulation of ciliary glutamylation reveals its roles in intraciliary trafficking and Hedgehog signaling. Nat Commun 2018; 9:1732. [PMID: 29712905 PMCID: PMC5928066 DOI: 10.1038/s41467-018-03952-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 03/22/2018] [Indexed: 12/22/2022] Open
Abstract
Tubulin post-translational modifications (PTMs) occur spatiotemporally throughout cells and are suggested to be involved in a wide range of cellular activities. However, the complexity and dynamic distribution of tubulin PTMs within cells have hindered the understanding of their physiological roles in specific subcellular compartments. Here, we develop a method to rapidly deplete tubulin glutamylation inside the primary cilia, a microtubule-based sensory organelle protruding on the cell surface, by targeting an engineered deglutamylase to the cilia in minutes. This rapid deglutamylation quickly leads to altered ciliary functions such as kinesin-2-mediated anterograde intraflagellar transport and Hedgehog signaling, along with no apparent crosstalk to other PTMs such as acetylation and detyrosination. Our study offers a feasible approach to spatiotemporally manipulate tubulin PTMs in living cells. Future expansion of the repertoire of actuators that regulate PTMs may facilitate a comprehensive understanding of how diverse tubulin PTMs encode ciliary as well as cellular functions. Tubulin post-translational modifications (PTMs) occur spatiotemporally throughout cells, therefore assessing the physiological roles in specific subcellular compartments has been challenging. Here the authors develop a method to rapidly deplete tubulin glutamylation inside the primary cilia by targeting an engineered deglutamylase to the axoneme.
Collapse
Affiliation(s)
- Shi-Rong Hong
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Cuei-Ling Wang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yao-Shen Huang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Chen Chang
- Department of Life Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ya-Chu Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ganesh V Pusapati
- Departments of Medicine and Biochemistry, Stanford University School of Medicine, Stanford, 94305, CA, USA
| | - Chun-Yu Lin
- Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ning Hsu
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hsiao-Chi Cheng
- Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yueh-Chen Chiang
- Interdisciplinary Program of Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Wei-En Huang
- Department of Life Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Nathan C Shaner
- Department of Photobiology and Bioimaging, The Scintillon Institute, San Diego, 92121, CA, USA
| | - Rajat Rohatgi
- Departments of Medicine and Biochemistry, Stanford University School of Medicine, Stanford, 94305, CA, USA
| | - Takanari Inoue
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, 21205, MD, USA.
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan. .,Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|