1
|
Wu L, Wang R, Li M, Du Z, Jin Y, Shi Y, Jiang W, Chen J, Jiao Y, Hu B, Huang J. Functional analysis of a rice 12-oxo-phytodienoic acid reductase gene (OsOPR1) involved in Cd stress tolerance. Mol Biol Rep 2024; 51:198. [PMID: 38270739 DOI: 10.1007/s11033-023-09159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND The accumulation of cadmium (Cd) in plants may compromise the growth and development of plants, thereby endangering human health through the food chain. Understanding how plants respond to Cd is important for breeding low-Cd rice cultivars. METHODS In this study, the functions of 12-oxo-phytodienoic acid reductase 1 (OsOPR1) were predicted through bioinformatics analysis. The expression levels of OsOPR1 under Cd stress were analyzed by using qRT-PCR. Then, the role that OsOPR1 gene plays in Cd tolerance was studied in Cd-sensitive yeast strain (ycf1), and the Cd concentration of transgenic yeast was analyzed using inductively coupled plasma mass spectrometry (ICP-MS). RESULTS Bioinformatics analysis revealed that OsOPR1 was a protein with an Old yellow enzyme-like FMN (OYE_like_FMN) domain, and the cis-acting elements which regulate hormone synthesis or responding abiotic stress were abundant in the promoter region, which suggested that OsOPR1 may exhibit multifaceted biological functions. The expression pattern analysis showed that the expression levels of OsOPR1 were induced by Cd stress both in roots and roots of rice plants. However, the induced expression of OsOPR1 by Cd was more significant in the roots compared to that in roots. In addition, the overexpression of OsOPR1 improved the Cd tolerance of yeast cells by affecting the expression of antioxidant enzyme related genes and reducing Cd content in yeast cells. CONCLUSION Overall, these results suggested that OsOPR1 is a Cd-responsive gene and may has a potential for breeding low-Cd or Cd-tolerant rice cultivars and for phytoremediation of Cd-contaminated in farmland.
Collapse
Affiliation(s)
- Longying Wu
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Ruolin Wang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Mingyu Li
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Zhiye Du
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Yufan Jin
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Yang Shi
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Wenjun Jiang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Sichuan, 611130, China.
| | - Yuan Jiao
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Binhua Hu
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Sichuan, 610066, China
| | - Jin Huang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China.
| |
Collapse
|
2
|
Comparison of Genome and Plasmid-Based Engineering of Multigene Benzylglucosinolate Pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 2022; 88:e0097822. [PMID: 36326240 PMCID: PMC9680641 DOI: 10.1128/aem.00978-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intake of brassicaceous vegetables such as cabbage is associated with numerous health benefits. The major defense compounds in the Brassicales order are the amino acid-derived glucosinolates that have been associated with the health-promoting effects.
Collapse
|
3
|
Jensen ED, Ambri F, Bendtsen MB, Javanpour AA, Liu CC, Jensen MK, Keasling JD. Integrating continuous hypermutation with high-throughput screening for optimization of cis,cis-muconic acid production in yeast. Microb Biotechnol 2021; 14:2617-2626. [PMID: 33645919 PMCID: PMC8601171 DOI: 10.1111/1751-7915.13774] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Directed evolution is a powerful method to optimize proteins and metabolic reactions towards user-defined goals. It usually involves subjecting genes or pathways to iterative rounds of mutagenesis, selection and amplification. While powerful, systematic searches through large sequence-spaces is a labour-intensive task, and can be further limited by a priori knowledge about the optimal initial search space, and/or limits in terms of screening throughput. Here, we demonstrate an integrated directed evolution workflow for metabolic pathway enzymes that continuously generate enzyme variants using the recently developed orthogonal replication system, OrthoRep and screens for optimal performance in high-throughput using a transcription factor-based biosensor. We demonstrate the strengths of this workflow by evolving a rate-limiting enzymatic reaction of the biosynthetic pathway for cis,cis-muconic acid (CCM), a precursor used for bioplastic and coatings, in Saccharomyces cerevisiae. After two weeks of simply iterating between passaging of cells to generate variant enzymes via OrthoRep and high-throughput sorting of best-performing variants using a transcription factor-based biosensor for CCM, we ultimately identified variant enzymes improving CCM titers > 13-fold compared with reference enzymes. Taken together, the combination of synthetic biology tools as adopted in this study is an efficient approach to debottleneck repetitive workflows associated with directed evolution of metabolic enzymes.
Collapse
Affiliation(s)
- Emil D. Jensen
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs. LyngbyDenmark
| | - Francesca Ambri
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs. LyngbyDenmark
| | - Marie B. Bendtsen
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs. LyngbyDenmark
| | - Alex A. Javanpour
- Department of Biomedical EngineeringUniversity of California, IrvineIrvineCA92697USA
| | - Chang C. Liu
- Department of Biomedical EngineeringUniversity of California, IrvineIrvineCA92697USA
- Department of ChemistryUniversity of California, IrvineIrvineCA92697USA
- Department of Molecular Biology and BiochemistryUniversity of California, IrvineIrvineCA92697USA
| | - Michael K. Jensen
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs. LyngbyDenmark
| | - Jay D. Keasling
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs. LyngbyDenmark
- Joint BioEnergy InstituteEmeryvilleCAUSA
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCAUSA
- Department of Chemical and Biomolecular EngineeringDepartment of BioengineeringUniversity of CaliforniaBerkeleyCAUSA
- Center for Synthetic BiochemistryInstitute for Synthetic BiologyShenzhen Institutes of Advanced TechnologiesShenzhenChina
| |
Collapse
|
4
|
Zhang ZX, Wang LR, Xu YS, Jiang WT, Shi TQ, Sun XM, Huang H. Recent advances in the application of multiplex genome editing in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2021; 105:3873-3882. [PMID: 33907890 DOI: 10.1007/s00253-021-11287-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 01/04/2023]
Abstract
Saccharomyces cerevisiae is a widely used microorganism and a greatly popular cell factory for the production of various chemicals. In order to improve the yield of target chemicals, it is often necessary to increase the copy numbers of key genes or engineer the related metabolic pathways, which traditionally required time-consuming repetitive rounds of gene editing. With the development of gene-editing technologies such as meganucleases, TALENs, and the CRISPR/Cas system, multiplex genome editing has entered a period of rapid development to speed up cell factory optimization. Multi-copy insertion and removing bottlenecks in biosynthetic pathways can be achieved through gene integration and knockout, for which multiplexing can be accomplished by targeting repetitive sequences and multiple sites, respectively. Importantly, the development of the CRISPR/Cas system has greatly increased the speed and efficiency of multiplex editing. In this review, the various multiplex genome editing technologies in S. cerevisiae were summarized, and the principles, advantages, and the disadvantages were analyzed and discussed. Finally, the practical applications and future prospects of multiplex genome editing were discussed. KEY POINTS: • The development of multiplex genome editing in S. cerevisiae was summarized. • The pros and cons of various multiplex genome editing technologies are discussed. • Further prospects on the improvement of multiplex genome editing are proposed.
Collapse
Affiliation(s)
- Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu Province, China
| | - Ling-Ru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu Province, China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu Province, China
| | | | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu Province, China.
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu Province, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu Province, China
| |
Collapse
|
5
|
Jarczynska ZD, Rendsvig JKH, Pagels N, Viana VR, Nødvig CS, Kirchner FH, Strucko T, Nielsen ML, Mortensen UH. DIVERSIFY: A Fungal Multispecies Gene Expression Platform. ACS Synth Biol 2021; 10:579-588. [PMID: 33651591 DOI: 10.1021/acssynbio.0c00587] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent sequencing of numerous fungal species revealed large repertoires of putative biotechnologically relevant genes and secondary metabolite gene clusters. However, often the commercial potential of these species is impeded by difficulties to predict host physiological and metabolic compatibility with a given product, and lack of adequate genetic tools. Consequently, most heterologous production is performed in standard hosts where genetic tools and experience are in place. However, these species may not be suitable for all products. To increase chances of successful heterologous production, we have created a flexible platform, DIVERSIFY, for multispecies heterologous gene expression. This reduces the workload to construction of a single gene expression cassette, used to transform all DIVERSIFY strains in order to identify the optimal cell factory host. As proof of principle of the DIVERSIFY concept, we present the first version of our platform, DIVERSIFY 1.0, which we have successfully used for the production of three proteins and a metabolite in four different Aspergilli species, and for the identification of the best producer for each of the products. Moreover, we show that DIVERSIFY 1.0 is compatible with marker-free gene targeting induced by the CRISPR nucleases Cas9 and MAD7.
Collapse
Affiliation(s)
- Zofia D Jarczynska
- Eukaryotic Molecular Cell Biology, Section for Synthetic Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - Jakob K H Rendsvig
- Eukaryotic Molecular Cell Biology, Section for Synthetic Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | | | - Veronica R Viana
- Eukaryotic Molecular Cell Biology, Section for Synthetic Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | | | - Ferdinand H Kirchner
- Eukaryotic Molecular Cell Biology, Section for Synthetic Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - Tomas Strucko
- Eukaryotic Molecular Cell Biology, Section for Synthetic Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | | | - Uffe H Mortensen
- Eukaryotic Molecular Cell Biology, Section for Synthetic Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
6
|
Strucko T, Lisby M, Mortensen UH. DNA Double-Strand Break-Induced Gene Amplification in Yeast. Methods Mol Biol 2021; 2153:239-252. [PMID: 32840784 DOI: 10.1007/978-1-0716-0644-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Precise control of the gene copy number in the model yeast Saccharomyces cerevisiae may facilitate elucidation of enzyme functions or, in cell factory design, can be used to optimize production of proteins and metabolites. Currently, available methods can provide high gene-expression levels but fail to achieve accurate gene dosage. Moreover, strains generated using these methods often suffer from genetic instability resulting in loss of gene copies during prolonged cultivation. Here we present a method, CASCADE, which enables construction of strains with defined gene copy number. With our present system, gene(s) of interest can be amplified up to nine copies, but the upper copy limit of the system can be expanded. Importantly, the resulting strains can be stably propagated in selection-free media.
Collapse
Affiliation(s)
- Tomas Strucko
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Uffe Hasbro Mortensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
7
|
Regulatory control circuits for stabilizing long-term anabolic product formation in yeast. Metab Eng 2020; 61:369-380. [DOI: 10.1016/j.ymben.2020.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/02/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
|
8
|
Connecting central carbon and aromatic amino acid metabolisms to improve de novo 2-phenylethanol production in Saccharomyces cerevisiae. Metab Eng 2019; 56:165-180. [DOI: 10.1016/j.ymben.2019.09.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 11/19/2022]
|
9
|
Zahoor A, Küttner FTF, Blank LM, Ebert BE. Evaluation of pyruvate decarboxylase-negative Saccharomyces cerevisiae strains for the production of succinic acid. Eng Life Sci 2019; 19:711-720. [PMID: 32624964 PMCID: PMC6999389 DOI: 10.1002/elsc.201900080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/19/2019] [Accepted: 08/07/2019] [Indexed: 01/06/2023] Open
Abstract
Dicarboxylic acids are important bio‐based building blocks, and Saccharomyces cerevisiae is postulated to be an advantageous host for their fermentative production. Here, we engineered a pyruvate decarboxylase‐negative S. cerevisiae strain for succinic acid production to exploit its promising properties, that is, lack of ethanol production and accumulation of the precursor pyruvate. The metabolic engineering steps included genomic integration of a biosynthesis pathway based on the reductive branch of the tricarboxylic acid cycle and a dicarboxylic acid transporter. Further modifications were the combined deletion of GPD1 and FUM1 and multi‐copy integration of the native PYC2 gene, encoding a pyruvate carboxylase required to drain pyruvate into the synthesis pathway. The effect of increased redox cofactor supply was tested by modulating oxygen limitation and supplementing formate. The physiologic analysis of the differently engineered strains focused on elucidating metabolic bottlenecks. The data not only highlight the importance of a balanced activity of pathway enzymes and selective export systems but also shows the importance to find an optimal trade‐off between redox cofactor supply and energy availability in the form of ATP.
Collapse
Affiliation(s)
- Ahmed Zahoor
- Institute of Applied Microbiology - iAMB Aachen Biology and Biotechnology - ABBt RWTH Aachen University Aachen Germany
| | - Felix T F Küttner
- Institute of Applied Microbiology - iAMB Aachen Biology and Biotechnology - ABBt RWTH Aachen University Aachen Germany
| | - Lars M Blank
- Institute of Applied Microbiology - iAMB Aachen Biology and Biotechnology - ABBt RWTH Aachen University Aachen Germany
| | - Birgitta E Ebert
- Institute of Applied Microbiology - iAMB Aachen Biology and Biotechnology - ABBt RWTH Aachen University Aachen Germany
| |
Collapse
|
10
|
Rajkumar AS, Özdemir E, Lis AV, Schneider K, Qin J, Jensen MK, Keasling JD. Engineered Reversal of Function in Glycolytic Yeast Promoters. ACS Synth Biol 2019; 8:1462-1468. [PMID: 31051075 DOI: 10.1021/acssynbio.9b00027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Promoters are key components of cell factory design, allowing precise expression of genes in a heterologous pathway. Several commonly used promoters in yeast cell factories belong to glycolytic genes, highly expressed in actively growing yeast when glucose is used as a carbon source. However, their expression can be suboptimal when alternate carbon sources are used, or if there is a need to decouple growth from production. Hence, there is a need for alternate promoters for different carbon sources and production schemes. In this work, we demonstrate a reversal of regulatory function in two glycolytic yeast promoters by replacing glycolytic regulatory elements with ones induced by the diauxic shift. We observe a shift in induction from glucose-rich to glucose-poor medium without loss of regulatory activity, and strong ethanol induction. Applications of these promoters were validated for expression of the vanillin biosynthetic pathway, reaching production of vanillin comparable to pathway designs using strong constitutive promoters.
Collapse
Affiliation(s)
- Arun S. Rajkumar
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Emre Özdemir
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Alicia V. Lis
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Konstantin Schneider
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Jiufu Qin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Michael K. Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Jay D. Keasling
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94704, United States
- Department of Chemical and Biomolecular Engineering & Department of Bioengineering, University of California, Berkeley, California 94720-1462, United States
- Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes of Advanced Technologies, Shenzhen, China
| |
Collapse
|
11
|
Alexander WG. A history of genome editing in Saccharomyces cerevisiae. Yeast 2018; 35:355-360. [PMID: 29247562 DOI: 10.1002/yea.3300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 12/14/2022] Open
Abstract
Genome editing is a form of highly precise genetic engineering which produces alterations to an organism's genome as small as a single base pair with no incidental or auxiliary modifications; this technique is crucial to the field of synthetic biology, which requires such precision in the installation of novel genetic circuits into host genomes. While a new methodology for most organisms, genome editing capabilities have been used in the budding yeast Saccharomyces cerevisiae for decades. In this review, I will present a brief history of genome editing in S. cerevisiae, discuss the current gold standard method of Cas9-mediated genome editing, and speculate on future directions of the field.
Collapse
|
12
|
Hemmerich J, Noack S, Wiechert W, Oldiges M. Microbioreactor Systems for Accelerated Bioprocess Development. Biotechnol J 2018; 13:e1700141. [PMID: 29283217 DOI: 10.1002/biot.201700141] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/15/2017] [Indexed: 12/14/2022]
Abstract
In recent years, microbioreactor (MBR) systems have evolved towards versatile bioprocess engineering tools. They provide a unique solution to combine higher experimental throughput with extensive bioprocess monitoring and control, which is indispensable to develop economically and ecologically competitive bioproduction processes. MBR systems are based either on down-scaled stirred tank reactors or on advanced shaken microtiter plate cultivation devices. Importantly, MBR systems make use of optical measurements for non-invasive, online monitoring of important process variables like biomass concentration, dissolved oxygen, pH, and fluorescence. The application range of MBR systems can be further increased by integration into liquid handling robots, enabling automatization and, thus standardization, of various handling and operation procedures. Finally, the tight integration of quantitative strain phenotyping with bioprocess development under industrially relevant conditions greatly increases the probability of finding the right combination of producer strain and bioprocess control strategy. This review will discuss the current state of the art in the field of MBR systems and we can readily conclude that their importance for industrial biotechnology will further increase in the near future.
Collapse
Affiliation(s)
- Johannes Hemmerich
- Forschungszentrum Jülich, Institute of Bio- and Geosciences - Biotechnology (IBG-1), Wilhelm-Johnen Straße 1, 52425, Jülich, Germany.,Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Stephan Noack
- Forschungszentrum Jülich, Institute of Bio- and Geosciences - Biotechnology (IBG-1), Wilhelm-Johnen Straße 1, 52425, Jülich, Germany.,Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Wolfgang Wiechert
- RWTH Aachen University, Computational Systems Biotechnology (AVT.CSB), Forckenbeckstraße 51, 52074 Aachen, Germany.,Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Marco Oldiges
- Forschungszentrum Jülich, Institute of Bio- and Geosciences - Biotechnology (IBG-1), Wilhelm-Johnen Straße 1, 52425, Jülich, Germany.,RWTH Aachen University, Institute of Biotechnology, Worringer Weg 3, 52074 Aachen, Germany.,Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|