1
|
Alekseeva P, Makarov V, Efendiev K, Shiryaev A, Reshetov I, Loschenov V. Devices and Methods for Dosimetry of Personalized Photodynamic Therapy of Tumors: A Review on Recent Trends. Cancers (Basel) 2024; 16:2484. [PMID: 39001546 PMCID: PMC11240380 DOI: 10.3390/cancers16132484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Significance: Despite the widespread use of photodynamic therapy in clinical practice, there is a lack of personalized methods for assessing the sufficiency of photodynamic exposure on tumors, depending on tissue parameters that change during light irradiation. This can lead to different treatment results. Aim: The objective of this article was to conduct a comprehensive review of devices and methods employed for the implicit dosimetric monitoring of personalized photodynamic therapy for tumors. Methods: The review included 88 peer-reviewed research articles published between January 2010 and April 2024 that employed implicit monitoring methods, such as fluorescence imaging and diffuse reflectance spectroscopy. Additionally, it encompassed computer modeling methods that are most often and successfully used in preclinical and clinical practice to predict treatment outcomes. The Internet search engine Google Scholar and the Scopus database were used to search the literature for relevant articles. Results: The review analyzed and compared the results of 88 peer-reviewed research articles presenting various methods of implicit dosimetry during photodynamic therapy. The most prominent wavelengths for PDT are in the visible and near-infrared spectral range such as 405, 630, 660, and 690 nm. Conclusions: The problem of developing an accurate, reliable, and easily implemented dosimetry method for photodynamic therapy remains a current problem, since determining the effective light dose for a specific tumor is a decisive factor in achieving a positive treatment outcome.
Collapse
Affiliation(s)
- Polina Alekseeva
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.)
| | - Vladimir Makarov
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.)
- Department of Laser Micro-Nano and Biotechnologies, Institute of Engineering Physics for Biomedicine, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Kanamat Efendiev
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.)
- Department of Laser Micro-Nano and Biotechnologies, Institute of Engineering Physics for Biomedicine, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Artem Shiryaev
- Department of Oncology and Radiotherapy, Levshin Institute of Cluster Oncology, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Igor Reshetov
- Department of Oncology and Radiotherapy, Levshin Institute of Cluster Oncology, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Victor Loschenov
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.)
- Department of Laser Micro-Nano and Biotechnologies, Institute of Engineering Physics for Biomedicine, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| |
Collapse
|
2
|
Wijesinghe RE, Kahatapitiya NS, Lee C, Han S, Kim S, Saleah SA, Seong D, Silva BN, Wijenayake U, Ravichandran NK, Jeon M, Kim J. Growing Trend to Adopt Speckle Variance Optical Coherence Tomography for Biological Tissue Assessments in Pre-Clinical Applications. MICROMACHINES 2024; 15:564. [PMID: 38793137 PMCID: PMC11122893 DOI: 10.3390/mi15050564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Speckle patterns are a generic feature in coherent imaging techniques like optical coherence tomography (OCT). Although speckles are granular like noise texture, which degrades the image, they carry information that can be benefited by processing and thereby furnishing crucial information of sample structures, which can serve to provide significant important structural details of samples in in vivo longitudinal pre-clinical monitoring and assessments. Since the motions of tissue molecules are indicated through speckle patterns, speckle variance OCT (SV-OCT) can be well-utilized for quantitative assessments of speckle variance (SV) in biological tissues. SV-OCT has been acknowledged as a promising method for mapping microvasculature in transverse-directional blood vessels with high resolution in micrometers in both the transverse and depth directions. The fundamental scope of this article reviews the state-of-the-art and clinical benefits of SV-OCT to assess biological tissues for pre-clinical applications. In particular, focus on precise quantifications of in vivo vascular response, therapy assessments, and real-time temporal vascular effects of SV-OCT are primarily emphasized. Finally, SV-OCT-incorporating pre-clinical techniques with high potential are presented for future biomedical applications.
Collapse
Affiliation(s)
- Ruchire Eranga Wijesinghe
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka;
- Center for Excellence in Intelligent Informatics, Electronics & Transmission (CIET), Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Nipun Shantha Kahatapitiya
- Department of Computer Engineering, Faculty of Engineering, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; (N.S.K.); (U.W.)
| | - Changho Lee
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Nuclear Medicine, Chonnam National University Medical School & Hwasun Hospital, 264, Seoyang-ro, Hwasun 58128, Republic of Korea
| | - Sangyeob Han
- ICT Convergence Research Center, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Shinheon Kim
- ICT Convergence Research Center, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Sm Abu Saleah
- ICT Convergence Research Center, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Daewoon Seong
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Bhagya Nathali Silva
- Center for Excellence in Intelligent Informatics, Electronics & Transmission (CIET), Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
- Faculty of Computing, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Udaya Wijenayake
- Department of Computer Engineering, Faculty of Engineering, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; (N.S.K.); (U.W.)
| | - Naresh Kumar Ravichandran
- Center for Scientific Instrumentation, Korea Basic Science Institute, 169-148, Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea
| | - Mansik Jeon
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jeehyun Kim
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Efendiev K, Alekseeva P, Linkov K, Shiryaev A, Pisareva T, Gilyadova A, Reshetov I, Voitova A, Loschenov V. Tumor fluorescence and oxygenation monitoring during photodynamic therapy with chlorin e6 photosensitizer. Photodiagnosis Photodyn Ther 2024; 45:103969. [PMID: 38211779 DOI: 10.1016/j.pdpdt.2024.103969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND The study is aimed at developing a method for monitoring photodynamic therapy (PDT) of a tumor using chlorin-type photosensitizers (PSs). Lack of monitoring of chlorin e6 (Cе6) photobleaching, hemoglobin oxygenation and blood flow during light exposure can limit the PDT effectiveness. MATERIALS AND METHODS Phototheranostics includes spectral-fluorescence diagnostics of Ce6 distribution in the NIR range and PDT with simultaneous assessment of hemoglobin oxygenation and tumor blood flow. Fluorescence diagnostics and PDT were performed using the single laser λexc=660 ± 5 nm. RESULTS Combined spectroscopic PDT monitoring method allowed simultaneous estimation of Ce6 photobleaching, hemoglobin oxygenation and tumor vascular thrombosis during PDT without interrupting the therapeutic light exposure. CONCLUSION The developed method of tumor phototheranostics using chlorin-type PSs may make it possible to personalize the duration of therapeutic light exposure during PDT.
Collapse
Affiliation(s)
- Kanamat Efendiev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia; National Research Nuclear University "MEPhI", Moscow, Russia.
| | - Polina Alekseeva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Kirill Linkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Artem Shiryaev
- Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Aida Gilyadova
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Igor Reshetov
- Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Victor Loschenov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia; National Research Nuclear University "MEPhI", Moscow, Russia
| |
Collapse
|
4
|
Shirmanova MV, Lukina MM, Sirotkina MA, Shimolina LE, Dudenkova VV, Ignatova NI, Tobita S, Shcheslavskiy VI, Zagaynova EV. Effects of Photodynamic Therapy on Tumor Metabolism and Oxygenation Revealed by Fluorescence and Phosphorescence Lifetime Imaging. Int J Mol Sci 2024; 25:1703. [PMID: 38338976 PMCID: PMC10855179 DOI: 10.3390/ijms25031703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
This work was aimed at the complex analysis of the metabolic and oxygen statuses of tumors in vivo after photodynamic therapy (PDT). Studies were conducted on mouse tumor model using two types of photosensitizers-chlorin e6-based drug Photoditazine predominantly targeted to the vasculature and genetically encoded photosensitizer KillerRed targeted to the chromatin. Metabolism of tumor cells was assessed by the fluorescence lifetime of the metabolic redox-cofactor NAD(P)H, using fluorescence lifetime imaging. Oxygen content was assessed using phosphorescence lifetime macro-imaging with an oxygen-sensitive probe. For visualization of the perfused microvasculature, an optical coherence tomography-based angiography was used. It was found that PDT induces different alterations in cellular metabolism, depending on the degree of oxygen depletion. Moderate decrease in oxygen in the case of KillerRed was accompanied by an increase in the fraction of free NAD(P)H, an indicator of glycolytic switch, early after the treatment. Severe hypoxia after PDT with Photoditazine resulted from a vascular shutdown yielded in a persistent increase in protein-bound (mitochondrial) fraction of NAD(P)H. These findings improve our understanding of physiological mechanisms of PDT in cellular and vascular modes and can be useful to develop new approaches to monitoring its efficacy.
Collapse
Affiliation(s)
- Marina V. Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia
| | - Maria M. Lukina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Marina A. Sirotkina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia
| | - Liubov E. Shimolina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia
| | - Varvara V. Dudenkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia
| | - Nadezhda I. Ignatova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia
| | - Seiji Tobita
- Department of Chemistry and Chemical Biology, Gunma University, Kiryu 376-8515, Gunma, Japan
| | - Vladislav I. Shcheslavskiy
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia
| | - Elena V. Zagaynova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| |
Collapse
|
5
|
Fan Y, Liu S, Gao E, Guo R, Dong G, Li Y, Gao T, Tang X, Liao H. The LMIT: Light-mediated minimally-invasive theranostics in oncology. Theranostics 2024; 14:341-362. [PMID: 38164160 PMCID: PMC10750201 DOI: 10.7150/thno.87783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/18/2023] [Indexed: 01/03/2024] Open
Abstract
Minimally-invasive diagnosis and therapy have gradually become the trend and research hotspot of current medical applications. The integration of intraoperative diagnosis and treatment is a development important direction for real-time detection, minimally-invasive diagnosis and therapy to reduce mortality and improve the quality of life of patients, so called minimally-invasive theranostics (MIT). Light is an important theranostic tool for the treatment of cancerous tissues. Light-mediated minimally-invasive theranostics (LMIT) is a novel evolutionary technology that integrates diagnosis and therapeutics for the less invasive treatment of diseased tissues. Intelligent theranostics would promote precision surgery based on the optical characterization of cancerous tissues. Furthermore, MIT also requires the assistance of smart medical devices or robots. And, optical multimodality lay a solid foundation for intelligent MIT. In this review, we summarize the important state-of-the-arts of optical MIT or LMIT in oncology. Multimodal optical image-guided intelligent treatment is another focus. Intraoperative imaging and real-time analysis-guided optical treatment are also systemically discussed. Finally, the potential challenges and future perspectives of intelligent optical MIT are discussed.
Collapse
Affiliation(s)
- Yingwei Fan
- School of Medical Technology, Beijing Institute of Technology, Beijing, China, 100081
| | - Shuai Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China, 100081
| | - Enze Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing, China, 100081
| | - Rui Guo
- School of Medical Technology, Beijing Institute of Technology, Beijing, China, 100081
| | - Guozhao Dong
- School of Medical Technology, Beijing Institute of Technology, Beijing, China, 100081
| | - Yangxi Li
- Dept. of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China, 100084
| | - Tianxin Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing, China, 100081
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China, 100081
| | - Hongen Liao
- Dept. of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China, 100084
| |
Collapse
|
6
|
Lin C, Wang J, Ma Y, Han W, Cao Y, Shao M, Cui S. Effect of a 630 nm light on vasculogenic mimicry in A549 lung adenocarcinoma cells in vitro. Photodiagnosis Photodyn Ther 2023; 44:103831. [PMID: 37806608 DOI: 10.1016/j.pdpdt.2023.103831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE The objective of this study was to investigate the effect of photodynamic therapy (PDT) on the formation of vasculogenic mimicry (VM) in the human lung adenocarcinoma A549 cell line in vitro. METHODS The participants were divided into a blank control group, a photosensitizer group, a light group, and a PDT group. Cells from each group were cultured in three dimensions using Matrigel, and vasculogenic mimicry generation was observed microscopically. Periodic Acid-Schiff (PAS) staining was used to verify the vasculogenic mimicry structure. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) was used to detect the expression levels of cellular osteopontin (OPN) and vascular endothelial growth factor (VEGF) mRNA. Western blotting was used to detect the expression levels of cellular OPN and VEGF protein. RESULTS A549 cells cultured on Matrigel for about six hours revealed VM on PAS staining, and the number of formations was significantly reduced in the PDT group compared with other groups (P < 0.05). The RT-PCR results showed that the PDT group downregulated OPN and VEGF mRNA expression compared with each control group (P < 0.05). Western blot results showed that OPN and VEGF protein expression was downregulated in the PDT group compared with each control group (P < 0.05). The results of RT-PCR showed that the expression of OPN and VEGF mRNA was downregulated in the PDT group compared with each control group (P < 0.05). The results of Western blotting showed that the expression of OPN and VEGF was downregulated in the protein PDT group compared with each control group (P < 0.001). CONCLUSION Photodynamic therapy significantly inhibited the formation of vasculogenic mimicry in human lung adenocarcinoma A549 cells in vitro and downregulated the expression of OPN, VEGF mRNA, and protein levels.
Collapse
Affiliation(s)
- Cunzhi Lin
- Department of Respiratory & Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Jingyu Wang
- Department of Respiratory & Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yijiang Ma
- Department of Respiratory & Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Weizhong Han
- Department of Respiratory & Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yiwei Cao
- Department of Respiratory & Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Mingju Shao
- Department of Respiratory & Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Shichao Cui
- Department of Respiratory & Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
7
|
Bromberger L, Heise B, Felbermayer K, Leiss-Holzinger E, Ilicic K, Schmid TE, Bergmayr A, Etzelstorfer T, Geinitz H. Radiation-induced alterations in multi-layered, in-vitro skin models detected by optical coherence tomography and histological methods. PLoS One 2023; 18:e0281662. [PMID: 36862637 PMCID: PMC9980765 DOI: 10.1371/journal.pone.0281662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/28/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Inflammatory skin reactions and skin alterations are still a potential side effect in radiation therapy (RT), which also need attention for patients' health care. METHOD In a pre-clinical study we consider alterations in irradiated in-vitro skin models of epidermal and dermal layers. Typical dose regimes in radiation therapy are applied for irradiation. For non-invasive imaging and characterization optical coherence tomography (OCT) is used. Histological staining method is additionally applied for comparison and discussion. RESULTS Structural features, such as keratinization, modifications in epidermal cell layer thickness and disorder in the layering-as indications for reactions to ionizing radiation and aging-could be observed by means of OCT and confirmed by histology. We were able to recognize known RT induced changes such as hyper-keratosis, acantholysis, and epidermal hyperplasia as well as disruption and/or demarcation of the dermo-epidermal junction. CONCLUSION The results may pave the way for OCT to be considered as a possible adjunctive tool to detect and monitor early skin inflammation and side effects of radiotherapy, thus supporting patient healthcare in the future.
Collapse
Affiliation(s)
- Luisa Bromberger
- Department of Radiation Oncology, Ordensklinikum Linz Barmherzige Schwestern (BHS), Linz, Austria
| | - Bettina Heise
- Institute for Mathematical Methods in Medicine and Data Based Modelling, Johannes Kepler University (JKU), Linz, Austria
- Research Center for Non-Destructive Testing (RECENDT)-GmbH, Linz, Austria
- * E-mail:
| | | | | | - Katarina Ilicic
- Department of Radiation Oncology, Klinikum rechts der Isar (MRI), TUM München, München, Germany
| | - Thomas Ernst Schmid
- Department of Radiation Oncology, Klinikum rechts der Isar (MRI), TUM München, München, Germany
| | - Alexandra Bergmayr
- Department of Pathology, Ordensklinikum Linz Barmherzige Schwestern (BHS), Linz, Austria
| | - Tanja Etzelstorfer
- Department of Radiation Oncology, Ordensklinikum Linz Barmherzige Schwestern (BHS), Linz, Austria
| | - Hans Geinitz
- Department of Radiation Oncology, Ordensklinikum Linz Barmherzige Schwestern (BHS), Linz, Austria
| |
Collapse
|
8
|
Optical Coherence Tomography Angiography and Attenuation Imaging for Label-Free Observation of Functional Changes in the Intestine after Sympathectomy: A Pilot Study. PHOTONICS 2022. [DOI: 10.3390/photonics9050304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We present in this study optical coherence tomography angiography (OCTA) and OCT attenuation imaging (OCTAI) for in vivo non-destructive visualization of intramural blood and lymphatic vessels of the intestine wall. Rabbit small intestine in the norm and after thoracolumbar sympathectomy served as the object of the intraoperative study. Compared to OCTA real-time imaging, OCTAI takes several minutes and can be termed as “nearly real time”. OCTAI signal processing was modified to take into account the signal-to-noise ratio and the final thickness of the intestine wall. The results showed that, after sympathectomy, changes in functioning of intramural blood and lymphatic vessels were observed with a high statistical significance. The occurrence of trauma-induced constriction of the blood and lymphatic vessels led to an especially pronounced decrease in the length of small-caliber (<30 µm) blood vessels (p < 10−5), as well as in the volumetric density of lymphatic vessels (on average by ~50%) compared to their initial state. Remarkably, OCTA/OCTAI modalities provide the unique ability for “nearly-instant detection” of changes in functional status of the tissues, long before they become visible on histology. The proposed approach can be used in further experiments to clarify the mechanisms of changes in intestinal blood and lymph flows in response to trauma of the nervous system. Furthermore, potentially it can be used intraoperatively in patients requiring express diagnosis of the state of intramural blood and lymph circulation.
Collapse
|
9
|
BODIPY nanoparticles functionalized with lactose for cancer-targeted and fluorescence imaging-guided photodynamic therapy. Sci Rep 2022; 12:2541. [PMID: 35169149 PMCID: PMC8847361 DOI: 10.1038/s41598-022-06000-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/19/2022] [Indexed: 01/10/2023] Open
Abstract
A series of four lactose-modified BODIPY photosensitizers (PSs) with different substituents (-I, -H, -OCH3, and -NO2) in the para-phenyl moiety attached to the meso-position of the BODIPY core were synthesized; the photophysical properties and photodynamic anticancer activities of these sensitizers were investigated, focusing on the electronic properties of the different substituent groups. Compared to parent BODIPY H, iodine substitution (BODIPY I) enhanced the intersystem crossing (ISC) to produce singlet oxygen (1O2) due to the heavy atom effect, and maintained a high fluorescence quantum yield (ΦF) of 0.45. Substitution with the electron-donating methoxy group (BODIPY OMe) results in a significant perturbation of occupied frontier molecular orbitals and consequently achieves higher 1O2 generation capability with a high ΦF of 0.49, while substitution with the electron-withdrawing nitro group (BODIPY NO2) led a perturbation of unoccupied frontier molecular orbitals and induces a forbidden dark S1 state, which is negative for both fluorescence and 1O2 generation efficiencies. The BODIPY PSs formed water-soluble nanoparticles (NPs) functionalized with lactose as liver cancer-targeting ligands. BODIPY I and OMe NPs showed good fluorescence imaging and PDT activity against various tumor cells (HeLa and Huh-7 cells). Collectively, the BODIPY NPs demonstrated high 1O2 generation capability and ΦF may create a new opportunity to develop useful imaging-guided PDT agents for tumor cells.
Collapse
|
10
|
Kobayashi T, Nitta M, Shimizu K, Saito T, Tsuzuki S, Fukui A, Koriyama S, Kuwano A, Komori T, Masui K, Maehara T, Kawamata T, Muragaki Y. Therapeutic Options for Recurrent Glioblastoma—Efficacy of Talaporfin Sodium Mediated Photodynamic Therapy. Pharmaceutics 2022; 14:pharmaceutics14020353. [PMID: 35214085 PMCID: PMC8879869 DOI: 10.3390/pharmaceutics14020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Recurrent glioblastoma (GBM) remains one of the most challenging clinical issues, with no standard treatment and effective treatment options. To evaluate the efficacy of talaporfin sodium (TS) mediated photodynamic therapy (PDT) as a new treatment for this condition, we retrospectively analyzed 70 patients who underwent surgery with PDT (PDT group) for recurrent GBM and 38 patients who underwent surgery alone (control group). The median progression-free survival (PFS) in the PDT and control groups after second surgery was 5.7 and 2.2 months, respectively (p = 0.0043). The median overall survival (OS) after the second surgery was 16.0 and 12.8 months, respectively (p = 0.031). Both univariate and multivariate analyses indicated that surgery with PDT and a preoperative Karnofsky Performance Scale were significant independent prognostic factors for PFS and OS. In the PDT group, there was no significant difference regarding PFS and OS between patients whose previous pathology before recurrence was already GBM and those who had malignant transformation to GBM from lower grade glioma. There was also no significant difference in TS accumulation in the tumor between these two groups. According to these results, additional PDT treatment for recurrent GBM could have potential survival benefits and its efficacy is independent of the pre-recurrence pathology.
Collapse
Affiliation(s)
- Tatsuya Kobayashi
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
| | - Masayuki Nitta
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
- Faculty of Advanced Techno-Surgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
- Correspondence:
| | - Kazuhide Shimizu
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA;
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan;
| | - Taiichi Saito
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
- Faculty of Advanced Techno-Surgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Shunsuke Tsuzuki
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
| | - Atsushi Fukui
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
| | - Shunichi Koriyama
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
| | - Atsushi Kuwano
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu-shi, Tokyo 183-0042, Japan;
| | - Kenta Masui
- Department of Pathology, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan;
| | - Taketoshi Maehara
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan;
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
- Faculty of Advanced Techno-Surgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
11
|
Kozlikina EI, Efendiev KT, Grigoriev AY, Bogdanova OY, Trifonov IS, Krylov VV, Loschenov VB. A Pilot Study of Fluorescence-Guided Resection of Pituitary Adenomas with Chlorin e6 Photosensitizer. Bioengineering (Basel) 2022; 9:bioengineering9020052. [PMID: 35200407 PMCID: PMC8869665 DOI: 10.3390/bioengineering9020052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/13/2022] Open
Abstract
Fluorescence diagnostics is one of the promising methods for intraoperative detection of brain tumor boundaries and helps in maximizing the extent of resection. This paper presents the results of a pilot study on the first use of the chlorin e6 photosensitizer and a two-channel video system for fluorescence-guided resection of pituitary adenomas. The study’s clinical part involved two patients diagnosed with hormonally inactive pituitary macroadenomas and one patient with a hormonally active one. All neoplasms had different sizes and growth patterns. The data showed accumulation of chlorin e6 in tumor tissues in high concentrations: Patient 1: 2 mg/kg, Patient 2: 5 mg/kg, and Patient 3: 4 mg/kg. For Patient 1, the residual part of the tumor was not resected since it was intimately attached to the anterior genu of the internal carotid artery. For Patients 2 and 3, no regions of increased Ce6 accumulation were detected in the tumor foci after resection. Therefore, the use of the Ce6 and a two-channel video system helped to achieve a high degree of tumor resection in each case.
Collapse
Affiliation(s)
- Elizaveta I. Kozlikina
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (K.T.E.); (V.B.L.)
- Institute for Physics and Engineering in Biomedicine, National Research Nuclear University MEPhI, 115409 Moscow, Russia
- Correspondence:
| | - Kanamat T. Efendiev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (K.T.E.); (V.B.L.)
- Institute for Physics and Engineering in Biomedicine, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Andrey Yu. Grigoriev
- Federal State Budgetary Educational Institution of Higher Education “A.I. Evdokimov Moscow State University of Medicine and Dentistry”, The Ministry of Healthcare of the Russian Federation, 127473 Moscow, Russia; (A.Y.G.); (O.Y.B.); (I.S.T.); (V.V.K.)
- The National Medical Research Centre for Endocrinology, 117292 Moscow, Russia
| | - Olesia Y. Bogdanova
- Federal State Budgetary Educational Institution of Higher Education “A.I. Evdokimov Moscow State University of Medicine and Dentistry”, The Ministry of Healthcare of the Russian Federation, 127473 Moscow, Russia; (A.Y.G.); (O.Y.B.); (I.S.T.); (V.V.K.)
| | - Igor S. Trifonov
- Federal State Budgetary Educational Institution of Higher Education “A.I. Evdokimov Moscow State University of Medicine and Dentistry”, The Ministry of Healthcare of the Russian Federation, 127473 Moscow, Russia; (A.Y.G.); (O.Y.B.); (I.S.T.); (V.V.K.)
| | - Vladimir V. Krylov
- Federal State Budgetary Educational Institution of Higher Education “A.I. Evdokimov Moscow State University of Medicine and Dentistry”, The Ministry of Healthcare of the Russian Federation, 127473 Moscow, Russia; (A.Y.G.); (O.Y.B.); (I.S.T.); (V.V.K.)
| | - Victor B. Loschenov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (K.T.E.); (V.B.L.)
- Institute for Physics and Engineering in Biomedicine, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| |
Collapse
|
12
|
Phototheranostics of Cervical Neoplasms with Chlorin e6 Photosensitizer. Cancers (Basel) 2022; 14:cancers14010211. [PMID: 35008375 PMCID: PMC8750251 DOI: 10.3390/cancers14010211] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Neoplasms of the cervix are the most common types of oncological pathology. Photodynamic therapy with intravenous administration of the photosensitizer chlorin e6 shows high efficiency in the treatment of precancerous lesions of the cervix with complete eradication of the human papillomavirus. The treatment method can reduce deaths from cervical cancer and preserve fertility in patients. Spectral and video fluorescence diagnostics allows intraoperatively assessing the degree of photosensitizer accumulation and photobleaching and visualizing the boundaries of pathologically altered tissues. Abstract (1) Purpose: Improving the treatment effectiveness of intraepithelial neoplasia of the cervix associated with human papillomavirus infection, based on the application of the method of photodynamic therapy with simultaneous laser excitation of fluorescence to clarify the boundaries of cervical neoplasms. (2) Methods: Examination and treatment of 52 patients aged 22 to 53 years with morphologically and cytologically confirmed mild to severe intraepithelial cervix neoplasia, preinvasive, micro-invasive, and squamous cell cervix carcinoma. All patients were carriers of human papillomavirus infection. The patients underwent photodynamic therapy with simultaneous laser excitation of fluorescence. The combined use of video and spectral fluorescence diagnostics for cervical neoplasms made it possible to control the photodynamic therapy process at all stages of the procedure. Evaluation of the photodynamic therapy of intraepithelial cervical neoplasms was carried out with colposcopic examination, cytological conclusion, and morphological verification of the biopsy material after the photodynamic therapy course. The success of human papillomavirus therapy was assessed based on the results of the polymerase chain reaction. (3) Results. The possibility of simultaneous spectral fluorescence diagnostics and photodynamic therapy using a laser source with a wavelength of 660 nm has been established, making it possible to assess the fluorescence index in real-time and control the photobleaching of photosensitizers in the irradiated area. The treatment of all 52 patients was successful after the first photodynamic therapy procedure. According to the PCR test of the discharge from the cervical canal, the previously identified HPV types were not observed in 48 patients. Previously identified HPV types were absent after repeated PDT in four patients (CIN III (n = 2), CIS (n = 2)). In 80.8% of patients, regression of the lesion was noted. (4) Conclusions. The high efficiency of photodynamic therapy with intravenous photosensitizer administration of chlorin e6 has been demonstrated both in relation to eradication therapy of human papillomavirus and in relation to the treatment of intraepithelial lesions of the cervix.
Collapse
|
13
|
Diffuse Optical Spectroscopy Monitoring of Experimental Tumor Oxygenation after Red and Blue Light Photodynamic Therapy. PHOTONICS 2021. [DOI: 10.3390/photonics9010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Photodynamic therapy (PDT) is an effective technique for cancer treatment based on photoactivation of photosensitizer accumulated in pathological tissues resulting in singlet oxygen production. Employment of red (660 nm) or blue (405 nm) light differing in typical penetration depth within the tissue for PDT performance provides wide opportunities for improving PDT protocols. Oxygenation dynamics in the treated area can be monitored using diffuse optical spectroscopy (DOS) which allows evaluating tumor response to treatment. In this study, we report on monitoring oxygenation dynamics in experimental tumors after PDT treatment with chlorin-based photosensitizers using red or blue light. The untreated and red light PDT groups demonstrate a gradual decrease in tumor oxygen saturation during the 7-day observation period, however, the reason is different: in the untreated group, the effect is explained by the excessive tumor growth, while in the PDT group, the effect is caused by the blood flow arrest preventing delivery of oxygenated blood to the tumor. The blue light PDT procedure, on the contrary, demonstrates the preservation of the blood oxygen saturation in the tumor during the entire observation period due to superficial action of the blue-light PDT and weaker tumor growth inhibition. Irradiation-only regimes show a primarily insignificant decrease in tumor oxygen saturation owing to partial inhibition of tumor growth. The DOS observations are interpreted based on histology analysis.
Collapse
|
14
|
From Basic Mechanisms to Clinical Research: Photodynamic Therapy Applications in Head and Neck Malignancies and Vascular Anomalies. J Clin Med 2021; 10:jcm10194404. [PMID: 34640423 PMCID: PMC8509369 DOI: 10.3390/jcm10194404] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023] Open
Abstract
Head and neck cancers are largely squamous cell carcinomas derived from the epithelial lining of the structures in the region, and are often classified anatomically into oral, oropharyngeal, nasopharyngeal and laryngeal carcinomas. The region’s component structures serve complex and intricate functions, such as speaking, swallowing and breathing, which are often compromised by these neoplasms. Such lesions may also cause disfigurement, leading to distressing social and psychological issues. Conventional treatments of these neoplasms usually involve surgical intervention with or without chemoradiotherapy. These have shown to be efficacious; however, they can also cause damage to healthy as well as diseased tissue, exacerbating the aforementioned problems. Access to a given region to deliver the treatments is also often a problem, due to the complex anatomical structures involved. The use of photodynamic therapy in the head and neck region has been established for about two decades. In this review, we looked at the basic mechanisms of this intervention, examined its use in common head and neck malignancies and vascular anomalies, and reported on the most recent clinical studies. We further included a clinical guide which can help replicate the use of this technology by any unit. Based on this review, photodynamic therapy has been shown to be efficacious in the treatment of head and neck malignancies and vascular tumours. This therapy can be targeted to the diseased tissue and causes no damage to underlying structures. Recent studies have shown this therapy to be as effective as conventional therapies, without causing major adverse effects.
Collapse
|
15
|
Morais JAV, Almeida LR, Rodrigues MC, Azevedo RB, Muehlmann LA. The induction of immunogenic cell death by photodynamic therapy in B16F10 cells in vitro is effected by the concentration of the photosensitizer. Photodiagnosis Photodyn Ther 2021; 35:102392. [PMID: 34133961 DOI: 10.1016/j.pdpdt.2021.102392] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022]
Abstract
Photodynamic therapy (PDT) can trigger immune responses against cancer cells. The induction of immunogenic cell death (ICD) is one of the possible mechanisms behind this event, but the protocol conditions necessary for a robust induction of ICD by PDT have not been defined. In this work, the immunogenicity of B16F10 melanoma cells treated with different PDT protocols was investigated. The exposure of damage-associated molecules (DAMPs), namely HMGB1, calreticulin and ATP, a hallmark of ICD, and the presence of apoptotic and necrotic cells were assessed after the application of PDT mediated by different concentrations of aluminum-phthalocyanine (AlPcNE) in vitro. Furthermore, the in vivo immunogenicity of PDT-treated B16F10 cells was investigated with an immunization-challenge model in C57BL/6 mice. The percentage of dead cells was directly proportional to the concentration of AlPcNE. The IC50, IC70 and IC90 concentrations of AlPcNE induced the exposure of DAMPs by B16F10 cells after PDT. In the in vivo model, however, only the B16F10 cells treated with PDT-AlPcNE at the IC50 or IC70 rendered C57BL/6 significantly more resistant to a subsequent challenge with viable B16F10 cells. Thus, the induction of ICD in B16F10 cells by PDT occurs only at a specific range of AlPcNE concentrations.
Collapse
Affiliation(s)
- José Athayde Vasconcelos Morais
- Laboratory of Nanoscience and Immunology, Faculty of Ceilandia, University of Brasilia, Brasilia/DF, Brazil; Laboratory of Nanobiotechnology. Department of Genetics and Morphology, Institute of Biological Sciences. University of Brasilia, Brasilia/DF, Brazil
| | - Letícia R Almeida
- Laboratory of Nanoscience and Immunology, Faculty of Ceilandia, University of Brasilia, Brasilia/DF, Brazil; Laboratory of Nanobiotechnology. Department of Genetics and Morphology, Institute of Biological Sciences. University of Brasilia, Brasilia/DF, Brazil
| | - Mosar C Rodrigues
- Laboratory of Nanoscience and Immunology, Faculty of Ceilandia, University of Brasilia, Brasilia/DF, Brazil; Laboratory of Nanobiotechnology. Department of Genetics and Morphology, Institute of Biological Sciences. University of Brasilia, Brasilia/DF, Brazil
| | - Ricardo B Azevedo
- Laboratory of Nanobiotechnology. Department of Genetics and Morphology, Institute of Biological Sciences. University of Brasilia, Brasilia/DF, Brazil
| | - Luis A Muehlmann
- Laboratory of Nanoscience and Immunology, Faculty of Ceilandia, University of Brasilia, Brasilia/DF, Brazil; Laboratory of Nanobiotechnology. Department of Genetics and Morphology, Institute of Biological Sciences. University of Brasilia, Brasilia/DF, Brazil.
| |
Collapse
|
16
|
Kirillin M, Kurakina D, Khilov A, Orlova A, Shakhova M, Orlinskaya N, Sergeeva E. Red and blue light in antitumor photodynamic therapy with chlorin-based photosensitizers: a comparative animal study assisted by optical imaging modalities. BIOMEDICAL OPTICS EXPRESS 2021; 12:872-892. [PMID: 33680547 PMCID: PMC7901330 DOI: 10.1364/boe.411518] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 05/10/2023]
Abstract
The goal of this study is a comparative analysis of the efficiency of the PDT protocols for CT26 tumor model treatment in Balb/c mice employing red and blue light with both topical and intravenous administration of chlorin-based photosensitizers (PSs). The considered protocols include the doses of 250 J/cm2 delivered at 660 nm, 200 J/cm2 delivered at 405 nm, and 250 J/cm2 delivered at both wavelengths with equal energy density contribution. Dual-wavelength fluorescence imaging was employed to estimate both photobleaching efficiency, typical photobleaching rates and the procedure impact depth, while optical coherence tomography with angiography modality (OCT-A) was employed to monitor the tumor vasculature response for up to 7 days after the procedure with subsequent histology inspection. Red light or dual-wavelength PDT regimes with intravenous PS injection were demonstrated to provide the most pronounced tumor response among all the considered cases. On the contrary, blue light regimes were demonstrated to be most efficient among topical application and irradiation only regimes. Tumor size dynamics for different groups is in good agreement with the tumor response predictions based on OCT-A taken in 24h after exposure and the results of histology analysis performed in 7 days after the exposure.
Collapse
Affiliation(s)
- Mikhail Kirillin
- Institute of Applied Physics RAS, 46 Ulyanov St., Nizhny Novgorod, 603950, Russia
| | - Daria Kurakina
- Institute of Applied Physics RAS, 46 Ulyanov St., Nizhny Novgorod, 603950, Russia
| | - Aleksandr Khilov
- Institute of Applied Physics RAS, 46 Ulyanov St., Nizhny Novgorod, 603950, Russia
| | - Anna Orlova
- Institute of Applied Physics RAS, 46 Ulyanov St., Nizhny Novgorod, 603950, Russia
| | - Maria Shakhova
- Institute of Applied Physics RAS, 46 Ulyanov St., Nizhny Novgorod, 603950, Russia
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, 603950, Russia
| | - Natalia Orlinskaya
- Institute of Applied Physics RAS, 46 Ulyanov St., Nizhny Novgorod, 603950, Russia
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, 603950, Russia
| | - Ekaterina Sergeeva
- Institute of Applied Physics RAS, 46 Ulyanov St., Nizhny Novgorod, 603950, Russia
| |
Collapse
|
17
|
Elagin V, Gubarkova E, Garanina O, Davydova D, Orlinskaya N, Matveev L, Klemenova I, Shlivko I, Shirmanova M, Zagaynova E. In vivo multimodal optical imaging of dermoscopic equivocal melanocytic skin lesions. Sci Rep 2021; 11:1405. [PMID: 33446823 PMCID: PMC7809210 DOI: 10.1038/s41598-020-80744-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/17/2020] [Indexed: 11/09/2022] Open
Abstract
There is a wide range of equivocal melanocytic lesions that can be clinically and dermoscopically indistinguishable from early melanoma. In the present work, we assessed the possibilities of combined using of multiphoton microscopy (MPM) and optical coherence angiography (OCA) for differential diagnosis of the equivocal melanocytic lesions. Clinical and dermoscopic examinations of 60 melanocytic lesions revealed 10 benign lesions and 32 melanomas, while 18 lesions remained difficult to diagnose. Histopathological analysis of these lesions revealed 4 intradermal, 3 compound and 3 junctional nevi in the "benign" group, 7 superficial spreading, 14 lentigo maligna and 11 nodular melanomas in the "melanoma" group and 2 lentigo simplex, 4 dysplastic nevi, 6 melanomas in situ, 4 invasive lentigo melanomas and 2 invasive superficial spreading melanomas in the "equivocal" group. On the basis of MPM, a multiphoton microscopy score (MPMS) has been developed for quantitative assessment of melanoma features at the cellular level, that showed lower score for benign lesions compare with malignant ones. OCA revealed that the invasive melanoma has a higher vessel density and thicker blood vessels than melanoma in situ and benign lesions. Discriminant functions analysis of MPM and OCA data allowed to differentiate correctly between all equivocal melanocytic lesions. Therefore, we demonstrate, for the first time, that a combined use of MPM and OCA has the potential to improve early diagnosis of melanoma.
Collapse
Affiliation(s)
- V Elagin
- Privolzhsky Research Medical University, Minin and Pozharsky Square 10/1, Nizhny Novgorod, Russia, 603950.
| | - E Gubarkova
- Privolzhsky Research Medical University, Minin and Pozharsky Square 10/1, Nizhny Novgorod, Russia, 603950
| | - O Garanina
- Privolzhsky Research Medical University, Minin and Pozharsky Square 10/1, Nizhny Novgorod, Russia, 603950
| | - D Davydova
- Nizhny Novgorod Regional Clinical Oncology Center, Delovaya Street, 11/1, Nizhny Novgorod, Russia, 603126
| | - N Orlinskaya
- Privolzhsky Research Medical University, Minin and Pozharsky Square 10/1, Nizhny Novgorod, Russia, 603950
| | - L Matveev
- Institute of Applied Physics of the Russian Academy of Sciences, Ulyanov Street 46, Nizhny Novgorod, Russia, 603950
| | - I Klemenova
- Privolzhsky Research Medical University, Minin and Pozharsky Square 10/1, Nizhny Novgorod, Russia, 603950
| | - I Shlivko
- Privolzhsky Research Medical University, Minin and Pozharsky Square 10/1, Nizhny Novgorod, Russia, 603950
| | - M Shirmanova
- Privolzhsky Research Medical University, Minin and Pozharsky Square 10/1, Nizhny Novgorod, Russia, 603950
| | - E Zagaynova
- Privolzhsky Research Medical University, Minin and Pozharsky Square 10/1, Nizhny Novgorod, Russia, 603950
- Lobachevsky State University of Nizhni Novgorod, Prospekt Gagarina (Gagarin Avenue) 23, Nizhny Novgorod, Russia, 603950
| |
Collapse
|
18
|
De Silva P, Saad MA, Thomsen HC, Bano S, Ashraf S, Hasan T. Photodynamic therapy, priming and optical imaging: Potential co-conspirators in treatment design and optimization - a Thomas Dougherty Award for Excellence in PDT paper. J PORPHYR PHTHALOCYA 2020; 24:1320-1360. [PMID: 37425217 PMCID: PMC10327884 DOI: 10.1142/s1088424620300098] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Photodynamic therapy is a photochemistry-based approach, approved for the treatment of several malignant and non-malignant pathologies. It relies on the use of a non-toxic, light activatable chemical, photosensitizer, which preferentially accumulates in tissues/cells and, upon irradiation with the appropriate wavelength of light, confers cytotoxicity by generation of reactive molecular species. The preferential accumulation however is not universal and, depending on the anatomical site, the ratio of tumor to normal tissue may be reversed in favor of normal tissue. Under such circumstances, control of the volume of light illumination provides a second handle of selectivity. Singlet oxygen is the putative favorite reactive molecular species although other entities such as nitric oxide have been credibly implicated. Typically, most photosensitizers in current clinical use have a finite quantum yield of fluorescence which is exploited for surgery guidance and can also be incorporated for monitoring and treatment design. In addition, the photodynamic process alters the cellular, stromal, and/or vascular microenvironment transiently in a process termed photodynamic priming, making it more receptive to subsequent additional therapies including chemo- and immunotherapy. Thus, photodynamic priming may be considered as an enabling technology for the more commonly used frontline treatments. Recently, there has been an increase in the exploitation of the theranostic potential of photodynamic therapy in different preclinical and clinical settings with the use of new photosensitizer formulations and combinatorial therapeutic options. The emergence of nanomedicine has further added to the repertoire of photodynamic therapy's potential and the convergence and co-evolution of these two exciting tools is expected to push the barriers of smart therapies, where such optical approaches might have a special niche. This review provides a perspective on current status of photodynamic therapy in anti-cancer and anti-microbial therapies and it suggests how evolving technologies combined with photochemically-initiated molecular processes may be exploited to become co-conspirators in optimization of treatment outcomes. We also project, at least for the short term, the direction that this modality may be taking in the near future.
Collapse
Affiliation(s)
- Pushpamali De Silva
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mohammad A. Saad
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hanna C. Thomsen
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shazia Bano
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shoaib Ashraf
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
19
|
Chen D, Yuan W, Park HC, Li X. In vivo assessment of vascular-targeted photodynamic therapy effects on tumor microvasculature using ultrahigh-resolution functional optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2020; 11:4316-4325. [PMID: 32923045 PMCID: PMC7449727 DOI: 10.1364/boe.397602] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 05/23/2023]
Abstract
Vascular-targeted photodynamic therapy (VTP) is an emerging treatment for tumors. The change of tumor vasculatures, including a newly-formed microvascular, in response to VTP, is a key assessment parameter for optimizing the treatment effect. However, an accurate assessment of vasculature, particularly the microvasculature's changes in vivo, remains challenging due to the limited resolution afforded by existing imaging modalities. In this study, we demonstrated the in vivo imaging of VTP effects on an A431 tumor-bearing window chamber model of a mouse with an 800-nm ultrahigh-resolution functional optical coherence tomography (UHR-FOCT). We further quantitatively demonstrated the effects of VTP on the size and density of tumor microvasculature before, during, and after the treatment. Our results suggest the promising potential of UHR-FOCT for assessing the tumor treatment with VTP in vivo and in real time to achieve an optimal outcome.
Collapse
Affiliation(s)
- Defu Chen
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- These authors contributed equally to this work
| | - Wu Yuan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- These authors contributed equally to this work
- Current address: Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hyeon-Cheol Park
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xingde Li
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
20
|
Sirotkina MA, Gubarkova EV, Plekhanov AA, Sovetsky AA, Elagin VV, Matveyev AL, Matveev LA, Kuznetsov SS, Zagaynova EV, Gladkova ND, Zaitsev VY. In vivo assessment of functional and morphological alterations in tumors under treatment using OCT-angiography combined with OCT-elastography. BIOMEDICAL OPTICS EXPRESS 2020; 11:1365-1382. [PMID: 32206416 PMCID: PMC7075625 DOI: 10.1364/boe.386419] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/08/2020] [Accepted: 02/09/2020] [Indexed: 05/13/2023]
Abstract
Emerging methods of anti-tumor therapies require new approaches to tumor response evaluation, especially enabling label-free diagnostics and in vivo utilization. Here, to assess the tumor early reaction and predict its long-term response, for the first time we apply in combination the recently developed OCT extensions - optical coherence angiography (OCA) and compressional optical coherence elastography (OCE), thus enabling complementary functional/microstructural tumor characterization. We study two vascular-targeted therapies of different types, (1) anti-angiogenic chemotherapy (ChT) and (2) photodynamic therapy (PDT), aimed to indirectly kill tumor cells through blood supply injury. Despite different mechanisms of anti-angiogenic action for ChT and PDT, in both cases OCA demonstrated high sensitivity to blood perfusion cessation. The new method of OCE-based morphological segmentation revealed very similar histological structure alterations. The OCE results showed high correlation with conventional histology in evaluating percentages of necrotic and viable tumor zones. Such possibilities make OCE an attractive tool enabling previously inaccessible in vivo monitoring of individual tumor response to therapies without taking multiple biopsies.
Collapse
Affiliation(s)
| | | | | | | | - Vadim V. Elagin
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | | | - Lev A. Matveev
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
| | - Sergey S. Kuznetsov
- N.A. Semashko Nizhny Novgorod Regional Clinical Hospital, Nizhny Novgorod, Russia
| | | | | | | |
Collapse
|
21
|
Gubarkova EV, Feldchtein FI, Zagaynova EV, Gamayunov SV, Sirotkina MA, Sedova ES, Kuznetsov SS, Moiseev AA, Matveev LA, Zaitsev VY, Karashtin DA, Gelikonov GV, Pires L, Vitkin A, Gladkova ND. Optical coherence angiography for pre-treatment assessment and treatment monitoring following photodynamic therapy: a basal cell carcinoma patient study. Sci Rep 2019; 9:18670. [PMID: 31822752 PMCID: PMC6904495 DOI: 10.1038/s41598-019-55215-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/26/2019] [Indexed: 01/10/2023] Open
Abstract
Microvascular networks of human basal cell carcinomas (BCC) and surrounding skin were assessed with optical coherence angiography (OCA) in conjunction with photodynamic therapy (PDT). OCA images were collected and analyzed in 31 lesions pre-treatment, and immediately/24 hours/3-12 months post-treatment. Pre-treatment OCA enabled differentiation between prevalent subtypes of BCC (nodular and superficial) and nodular-with-necrotic-core BCC subtypes with a diagnostic accuracy of 78%; this can facilitate more accurate biopsy reducing sampling error and better therapy regimen selection. Post-treatment OCA images at 24 hours were 98% predictive of eventual outcome. Additional findings highlight the importance of pre-treatment necrotic core, vascular metrics associated with hypertrophic scar formation, and early microvascular changes necessary in both tumorous and peri-tumorous regions to ensure treatment success.
Collapse
Affiliation(s)
- E V Gubarkova
- Privolzhsky Research Medical University, Minina Square 10/1, 603005, Nizhny Novgorod, Russia.
| | - F I Feldchtein
- Privolzhsky Research Medical University, Minina Square 10/1, 603005, Nizhny Novgorod, Russia
| | - E V Zagaynova
- Privolzhsky Research Medical University, Minina Square 10/1, 603005, Nizhny Novgorod, Russia
| | - S V Gamayunov
- A. Tsyb Medical Radiological Research Center, Korolev Street 4, Obninsk, 249036, Kaluga region, Russia
| | - M A Sirotkina
- Privolzhsky Research Medical University, Minina Square 10/1, 603005, Nizhny Novgorod, Russia
| | - E S Sedova
- Privolzhsky Research Medical University, Minina Square 10/1, 603005, Nizhny Novgorod, Russia
| | - S S Kuznetsov
- N.A. Semashko Nizhny Novgorod Regional Clinical Hospital, Rodionova Street 190, 603093, Nizhny Novgorod, Russia
| | - A A Moiseev
- Institute of Applied Physics Russian Academy of Science, Ulyanova Street 46, 603950, Nizhny Novgorod, Russia
| | - L A Matveev
- Institute of Applied Physics Russian Academy of Science, Ulyanova Street 46, 603950, Nizhny Novgorod, Russia
| | - V Y Zaitsev
- Institute of Applied Physics Russian Academy of Science, Ulyanova Street 46, 603950, Nizhny Novgorod, Russia
| | - D A Karashtin
- Institute of Applied Physics Russian Academy of Science, Ulyanova Street 46, 603950, Nizhny Novgorod, Russia
| | - G V Gelikonov
- Institute of Applied Physics Russian Academy of Science, Ulyanova Street 46, 603950, Nizhny Novgorod, Russia
| | - L Pires
- University of Toronto and University Health Network, 610 University Ave., Toronto, Ontario, M5G 2M9, Canada
| | - A Vitkin
- University of Toronto and University Health Network, 610 University Ave., Toronto, Ontario, M5G 2M9, Canada
| | - N D Gladkova
- Privolzhsky Research Medical University, Minina Square 10/1, 603005, Nizhny Novgorod, Russia
| |
Collapse
|
22
|
Kurakina D, Khilov A, Shakhova M, Orlinskaya N, Sergeeva E, Meller A, Turchin I, Kirillin M. Comparative analysis of single- and dual-wavelength photodynamic therapy regimes with chlorin-based photosensitizers: animal study. JOURNAL OF BIOMEDICAL OPTICS 2019; 25:1-17. [PMID: 31872580 PMCID: PMC7013345 DOI: 10.1117/1.jbo.25.6.063804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/25/2019] [Indexed: 05/25/2023]
Abstract
Two pronounced absorption peaks in blue and red ranges of the chlorin-based photosensitizer (PS) absorption spectrum provide additional benefits in photodynamic therapy (PDT) performance. Differing optical properties of biological tissues in these ranges allow for both dual-wavelength diagnostics and PDT performance. We provide a comparative analysis of different PDT regimes performed with blue and red lights and their combination, with doses varying from 50 to 150 J / cm2. The study was performed on the intact skin of a rabbit ear inner surface, with the use of chlorin e6 as a PS. PDT procedure protocol included monitoring of the treated site with fluorescence imaging technique to evaluate PS accumulation and photobleaching, as well as with optical coherence tomography (OCT) to register morphological and functional responses of the tissue. Optical diagnostic observations were compared with the results of histopathology examination. We demonstrated that PDT procedures with the considered regimes induce weaker organism reaction manifested by edema in normal tissue as compared to irradiation-only exposures with the same light doses. The light doses delivered with red light induce weaker tissue reaction as compared to the same doses delivered with blue light only or with a combination of red and blue lights in equal parts. Results of in-vivo OCT monitoring of tissue reaction are in agreement with the results of histopathology study.
Collapse
Affiliation(s)
- Daria Kurakina
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
| | | | - Maria Shakhova
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Natalia Orlinskaya
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | | | - Alina Meller
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Ilya Turchin
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
| | | |
Collapse
|
23
|
Photodynamic Therapy Versus Glucose for the Treatment of Telangiectasia: A Randomised Controlled Study in a Rabbit Ear Model. Eur J Vasc Endovasc Surg 2019; 58:583-591. [PMID: 31474494 DOI: 10.1016/j.ejvs.2019.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/07/2019] [Accepted: 05/01/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Telangiectasia is a common venous formation that mainly affects women and causes discomfort, including psychological distress. This study compared photodynamic therapy (PDT) with glucose for vessel sclerosis in a rabbit ear model. METHODS Thirty-six ears of 18 rabbits were randomly divided into four groups: Group 1: only injection of Photogem (4 mg/mL); Group 2: only light (635 nm, 100 mW/cm2, 8 min, 48 J/cm2); Group 3: glucose 75% injection; Group 4: PDT procedure with injection of Photogem and illumination immediately after. Injections were made into the central ear artery. After injection or sham procedures, manual compression of the marginal vein was maintained for 8 min in all ears. Follow up was immediately after the procedures, and one and six days later. The percentage of length reduction of spider veins, the target vessels, was analysed in digital photographs with Image J software. Ear thermographs were made with a thermocamera device and average temperatures were collected for analysis. Ear biopsies were obtained after six days. Endothelium average, inflammation, fibrosis, necrosis, skin burn, and vascular thrombosis were assessed using a specific score. RESULTS The mean vessel length reduction was 26% for Group 4, 2.4% for Group 3, .4% for Group 1, and 0 for Group 2, highlighting that in Group 4, the vessel lengths were significantly reduced compared with the other groups (p < .001). In the thermal analysis, in Group 3, the temperature was unchanged from the initial temperature and the central diameter vessel increased after six days, while, in Group 4, the temperature decreased and the vessels were not clearly detected, suggesting a reduction of the vessels and smaller infusion. Histology showed no difference among groups and one case of necrosis was found in Group 4. CONCLUSIONS PDT was associated with significantly more target vessel sclerosis than glucose injection and controls.
Collapse
|
24
|
Karwicka M, Pucelik B, Gonet M, Elas M, Dąbrowski JM. Effects of Photodynamic Therapy with Redaporfin on Tumor Oxygenation and Blood Flow in a Lung Cancer Mouse Model. Sci Rep 2019; 9:12655. [PMID: 31477749 PMCID: PMC6718604 DOI: 10.1038/s41598-019-49064-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/08/2019] [Indexed: 11/24/2022] Open
Abstract
Three photodynamic therapy (PDT) protocols with 15 min, 3 h and 72 h drug-to-light time intervals (DLIs) were performed using a bacteriochlorin named redaporfin, as a photosensitizer. Blood flow and pO2 changes after applying these protocols were investigated in a Lewis lung carcinoma (LLC) mouse model and correlated with long-term tumor responses. In addition, cellular uptake, cytotoxicity and photocytotoxicity of redaporfin in LLC cells were evaluated. Our in vitro tests revealed negligible cytotoxicity, significant cellular uptake, generation of singlet oxygen, superoxide ion and hydroxyl radicals in the cells and changes in the mechanism of cell death as a function of the light dose. Results of in vivo studies showed that treatment focused on vascular destruction (V-PDT) leads to a highly effective long-term antineoplastic response mediated by a strong deprivation of blood supply. Tumors in 67% of the LLC bearing mice treated with V-PDT regressed completely and did not reappear for over 1 year. This significant efficacy can be attributed to photosensitizer (PS) properties as well as distribution and accurate control of oxygen level and density of vessels before and after PDT. V-PDT has a greater potential for success than treatment based on longer DLIs as usually applied in clinical practice.
Collapse
Affiliation(s)
- Malwina Karwicka
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Gronostajowa 7, 30-387, Kraków, Poland
| | - Barbara Pucelik
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Kraków, Poland
- Jagiellonian University, Małopolska Centre of Biotechnology, Gronostajowa 7A, 30-387, Kraków, Poland
| | - Michał Gonet
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Gronostajowa 7, 30-387, Kraków, Poland
| | - Martyna Elas
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Gronostajowa 7, 30-387, Kraków, Poland
| | - Janusz M Dąbrowski
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Kraków, Poland.
| |
Collapse
|
25
|
Sirotkina MA, Moiseev AA, Matveev LA, Zaitsev VY, Elagin VV, Kuznetsov SS, Gelikonov GV, Ksenofontov SY, Zagaynova EV, Feldchtein FI, Gladkova ND, Vitkin A. Accurate early prediction of tumour response to PDT using optical coherence angiography. Sci Rep 2019; 9:6492. [PMID: 31019242 PMCID: PMC6482310 DOI: 10.1038/s41598-019-43084-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
Prediction of tumour treatment response may play a crucial role in therapy selection and optimization of its delivery parameters. Here we use optical coherence angiography (OCA) as a minimally-invasive, label-free, real-time bioimaging method to visualize normal and pathological perfused vessels and monitor treatment response following vascular-targeted photodynamic therapy (PDT). Preclinical results are reported in a convenient experimental model (CT-26 colon tumour inoculated in murine ear), enabling controlled PDT and post-treatment OCA monitoring. To accurately predict long-term treatment outcome, a robust and simple microvascular metric is proposed. It is based on perfused vessels density (PVD) at t = 24 hours post PDT, calculated for both tumour and peri-tumour regions. Histological validation in the examined experimental cohort (n = 31 animals) enabled further insight into the excellent predictive power of the derived early-response OCA microvascular metric. The results underscore the key role of peri-tumour microvasculature in determining the long-term PDT response.
Collapse
Affiliation(s)
- M A Sirotkina
- Privolzhsky Research Medical University, Minin Square 10/1, 603950, Nizhny Novgorod, Russia.
| | - A A Moiseev
- Institute of Applied Physics of the Russian Academy of Sciences, Ulyanov Street 46, 603950, Nizhny Novgorod, Russia
| | - L A Matveev
- Institute of Applied Physics of the Russian Academy of Sciences, Ulyanov Street 46, 603950, Nizhny Novgorod, Russia
| | - V Y Zaitsev
- Institute of Applied Physics of the Russian Academy of Sciences, Ulyanov Street 46, 603950, Nizhny Novgorod, Russia
| | - V V Elagin
- Privolzhsky Research Medical University, Minin Square 10/1, 603950, Nizhny Novgorod, Russia
| | - S S Kuznetsov
- Privolzhsky Research Medical University, Minin Square 10/1, 603950, Nizhny Novgorod, Russia
| | - G V Gelikonov
- Institute of Applied Physics of the Russian Academy of Sciences, Ulyanov Street 46, 603950, Nizhny Novgorod, Russia
| | - S Y Ksenofontov
- Institute of Applied Physics of the Russian Academy of Sciences, Ulyanov Street 46, 603950, Nizhny Novgorod, Russia
| | - E V Zagaynova
- Privolzhsky Research Medical University, Minin Square 10/1, 603950, Nizhny Novgorod, Russia
| | - F I Feldchtein
- Privolzhsky Research Medical University, Minin Square 10/1, 603950, Nizhny Novgorod, Russia
| | - N D Gladkova
- Privolzhsky Research Medical University, Minin Square 10/1, 603950, Nizhny Novgorod, Russia
| | - A Vitkin
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto and University Health Network, 610 University Ave., Toronto, Ontario, M5G 2M9, Canada
| |
Collapse
|
26
|
Orlova A, Sirotkina M, Smolina E, Elagin V, Kovalchuk A, Turchin I, Subochev P. Raster-scan optoacoustic angiography of blood vessel development in colon cancer models. PHOTOACOUSTICS 2019; 13:25-32. [PMID: 30555784 PMCID: PMC6275215 DOI: 10.1016/j.pacs.2018.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/19/2018] [Accepted: 11/13/2018] [Indexed: 05/03/2023]
Abstract
Raster-scan optoacoustic angiography at 532 nm wavelength with 50 μm lateral resolution at 2 mm diagnostic depth was used for quantitative characterization of neoangiogenesis in colon cancer models. Two tumor models of human colon adenocarcinoma (HT-29) and murine colon carcinoma (CT26) different in their histology and vascularization were compared. Tumors of both origins showed an inhomogeneous distribution of areas with high and low vascularization. Rapidly growing CT26 tumor demonstrated a higher rate of vessel growth from the periphery to the center. Peculiarities of the vascularity of tumor models revealed by optoacoustic imaging were confirmed by fluorescent microscopy with FITC-dextran and morphological analysis. The obtained results may be important for the investigation of tumor development and for improvement of colon cancer treatment strategies.
Collapse
Affiliation(s)
- Anna Orlova
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
- Corresponding author.
| | - Marina Sirotkina
- Privolzhsky Medical Research University, 10/1 Minin & Pozharsky sq., Nizhny Novgorod 603950, Russia
| | - Ekaterina Smolina
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Vadim Elagin
- Privolzhsky Medical Research University, 10/1 Minin & Pozharsky sq., Nizhny Novgorod 603950, Russia
| | - Andrey Kovalchuk
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Ilya Turchin
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Pavel Subochev
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| |
Collapse
|
27
|
Parmeggiani F, Gallenga CE, Costagliola C, Semeraro F, Romano MR, Dell'Omo R, Russo A, De Nadai K, Gemmati D, D'Angelo S, Bolletta E, Sorrentino FS. Impact of methylenetetrahydrofolate reductase C677T polymorphism on the efficacy of photodynamic therapy in patients with neovascular age-related macular degeneration. Sci Rep 2019; 9:2614. [PMID: 30796269 PMCID: PMC6385217 DOI: 10.1038/s41598-019-38919-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023] Open
Abstract
The most severe visual impairments due to age-related macular degeneration (AMD) are frequently caused by the occurrence of choroidal neovascularization (CNV). Although photodynamic therapy with verteporfin (PDT-V) is currently a second-line treatment for neovascular AMD, it can be conveniently combined with drugs acting against vascular endothelial growth factor (anti-VEGF) to reduce the healthcare burden associated with the growing necessity of anti-VEGF intravitreal re-injection. Because the common 677 C > T polymorphism of the methylenetetrahydrofolate reductase gene (MTHFR-C677T; rs1801133) has been described as predictor of satisfactory short-term responsiveness of AMD-related CNV to PDT-V, we retrospectively examined the outcomes of 371 Caucasian patients treated with standardized, pro-re-nata, photodynamic regimen for 24 months. Responder (R) and non-responder (NR) patients were distinguished on the basis of the total number of scheduled PDT-V (TN-PDT-V) and change of best-corrected visual acuity (∆-BCVA). The risk for both TN-PDT-V and ∆-BCVA to pass from R to NR group was strongly correlated with CT and TT genotypes of MTHFR-C677T variant resulting, respectively, in odd ratios of 0.19 [95% CI, 0.12-0.32] and 0.09 [95% CI, 0.04-0.21] (P < 0.001), and odd ratios of 0.24 [95% CI, 0.15-0.39] and 0.03 [95% CI, 0.01-0.11] (P < 0.001). These pharmacogenetic findings indicate a rational basis to optimize the future clinical application of PDT-V during the combined treatments of AMD-related CNV, highlighting the role of thrombophilia to be aware of the efficacy profile of photodynamic therapy.
Collapse
Affiliation(s)
- Francesco Parmeggiani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, 44121, Italy. .,Center for the Study of Inflammation of the University of Ferrara, Ferrara, 44121, Italy.
| | - Carla Enrica Gallenga
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, 44121, Italy
| | - Ciro Costagliola
- Department of Medicine and Health Sciences, University of Molise, Campobasso, 86100, Italy
| | - Francesco Semeraro
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, 25121, Italy
| | - Mario R Romano
- Department of Biomedical Sciences, Humanitas University, Milan, 20090, Italy
| | - Roberto Dell'Omo
- Department of Medicine and Health Sciences, University of Molise, Campobasso, 86100, Italy
| | - Andrea Russo
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, 25121, Italy
| | - Katia De Nadai
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, 44121, Italy.,Center for Retinitis Pigmentosa of Veneto Region, Camposampiero Hospital, Azienda ULSS 6 Euganea, Padova, 35131, Italy
| | - Donato Gemmati
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, 44121, Italy
| | - Sergio D'Angelo
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, 44121, Italy
| | - Elena Bolletta
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, 44121, Italy
| | | |
Collapse
|
28
|
Shakhova M, Loginova D, Meller A, Sapunov D, Orlinskaya N, Shakhov A, Khilov A, Kirillin M. Photodynamic therapy with chlorin-based photosensitizer at 405 nm: numerical, morphological, and clinical study. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-9. [PMID: 29956507 DOI: 10.1117/1.jbo.23.9.091412] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/31/2018] [Indexed: 05/12/2023]
Abstract
Employment of chlorin-based photosensitizers (PSs) provides additional advantages to photodynamic therapy (PDT) due to absorption peak around 405 nm allowing for superficial impact and efficient antimicrobial therapy. We report on the morphological and clinical study of the efficiency of PDT at 405 nm employing chlorin-based PS. Numerical studies demonstrated difference in the distribution of absorbed dose at 405 nm in comparison with traditionally employed wavelength of 660 nm and difference in the in-depth absorbed dose distribution for skin and mucous tissues. Morphological study was performed at the inner surface of rabbit ear with histological examinations at different periods after PDT procedure. Animal study revealed tissue reaction to PDT consisting in edema manifested most in 3 days after the procedure and neoangiogenesis. OCT diagnostics was confirmed by histological examination. Clinical study included antimicrobial PDT of pharynx chronic inflammatory diseases. It revealed no side effects or complications of the PDT procedure. Pharyngoscopy indicated reduction of inflammatory manifestations, and, in particular cases, hypervascularization was observed. Morphological changes were also detected in the course of monitoring, which are in agreement with pharyngoscopy results. Microbiologic study after PDT revealed no pathogenic bacteria; however, in particular cases, saprophytic flora was detected.
Collapse
Affiliation(s)
- Maria Shakhova
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
| | - Daria Loginova
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
- N.I. Lobachevsky State University of Nizhny Novgorod, Advanced School of General and Applied Physics, Russia
| | - Alina Meller
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
| | - Dmitry Sapunov
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
| | - Natalia Orlinskaya
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
| | - Andrey Shakhov
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
| | | | | |
Collapse
|
29
|
Gavrina AI, Shirmanova MV, Aksenova NA, Yuzhakova DV, Snopova LB, Solovieva AB, Тimashev PS, Dudenkova VV, Zagaynova EV. Photodynamic therapy of mouse tumor model using chlorin e6- polyvinyl alcohol complex. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 178:614-622. [DOI: 10.1016/j.jphotobiol.2017.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 01/25/2023]
|