1
|
Talotta F, Casalino L, Verde P. The nuclear oncoprotein Fra-1: a transcription factor knocking on therapeutic applications' door. Oncogene 2020; 39:4491-4506. [PMID: 32385348 DOI: 10.1038/s41388-020-1306-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/08/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022]
Abstract
Among the FOS-related members of the AP-1 dimeric complex, the transcription factor Fra-1, encoded by FOSL1, is crucially involved in human tumor progression and metastasis, thus representing a promising therapeutic target. Here we review the state of the art and discuss the emerging topics and perspectives on FOSL1 and its gene product. First, we summarize the present knowledge on the FOSL1 transcriptional and epigenetic controls, driving Fra-1 accumulation in a variety of human solid tumors. We also present a model on the regulatory interactions between Fra-1, p53, and miRNAs. Then, we outline the multiple roles of Fra-1 posttranslational modifications and transactivation mechanisms of select Fra-1 target genes. In addition to summarizing the Fra-1-dependent gene networks controlling proliferation, survival, and epithelial-mesenchymal transitions (EMT) in multiple cancer cell types, we highlight the roles played by Fra-1 in nonneoplastic cell populations recruited to the tumor microenvironment, and in mouse models of tumorigenesis. Next, we review the prognostic power of the Fra-1-associated gene signatures, and envisage potential strategies aimed at Fra-1 therapeutic inhibition. Finally, we discuss several recent reports showing the emerging roles of Fra-1 in the mechanisms of both resistance and addiction to targeted therapies.
Collapse
Affiliation(s)
- Francesco Talotta
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" CNR, Naples, Italy.,ReiThera Srl, Castel Romano, Rome, Italy
| | - Laura Casalino
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" CNR, Naples, Italy
| | - Pasquale Verde
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" CNR, Naples, Italy.
| |
Collapse
|
2
|
Expression and function of FRA1 protein in tumors. Mol Biol Rep 2019; 47:737-752. [PMID: 31612408 DOI: 10.1007/s11033-019-05123-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022]
Abstract
AP-1 is a dimeric complex that is composed of JUN, FOS, ATF and MAF protein families. FOS-related antigen 1 (FRA1) which encoded by FOSL1 gene, belongs to the FOS protein family, and mainly forms an AP-1 complex with the protein of the JUN family to exert an effect. Regulation of FRA1 occurs at levels of transcription and post-translational modification, and phosphorylation is the major post-translational modification. FRA1 is mainly regulated by the mitogen-activated protein kinases signaling pathway and is degraded by ubiquitin-independent proteasomes. FRA1 can affect biological functions, such as tumor proliferation, differentiation, invasion and apoptosis. Studies have demonstrated that FRA1 is abnormally expressed in many tumors and plays a relevant role, but the specific condition varies from the target organs. FRA1 is overexpressed in breast cancer, lung cancer, colorectal cancer, prostate cancer, nasopharyngeal cancer, thyroid cancer and other tumors. However, the expression of FRA1 is decreased in cervical cancer, and the expression of FRA1 in ovarian cancer and oral squamous cell carcinoma is still controversial. In this review, we present a detailed description of the regulatory factors and functions of FRA1, also, the expression of FRA1 in various tumors and its function in relative tumor.
Collapse
|
4
|
Chen W, Zhou C, Zhang W, Atyah M, Yin Y, Guo L, Tang W, Dong Q, Ye Q, Ren N. Association of WWOX rs9926344 polymorphism with poor prognosis of hepatocellular carcinoma. J Cancer 2018; 9:1239-1247. [PMID: 29675105 PMCID: PMC5907672 DOI: 10.7150/jca.23808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 02/28/2018] [Indexed: 02/07/2023] Open
Abstract
Introduction: The WW domain-containing oxidoreductase (WWOX), widely expressed in human tissues, is considered as a tumor suppressor gene and plays an important role in the incidence and progression of human cancer, HCC included. This study was to investigate the correlation between single nucleotide polymorphisms (SNPs) of the WWOX gene and the prognosis of hepatocellular carcinoma (HCC) patients. Materials and Methods: After a total of 152 HCC patients were recruited, 8 cases with tumor recurrence within 2-years after operation and 8 cases without recurrence were selected randomly for SNP genotyping and screening using Affymetrix Array 6.0. And then we confirmed candidate SNPs in the remaining 136 patients by time-of-flight mass spectrometry (TOF-MS). Results: In total, 32 SNPs were screened and identified as candidate SNPs with one SNP in particular, (rs9926344), being further verified to be valuable. We found that AA+AG genotype and A allele of WWOX rs9926344 were significantly associated with recurrent risk of HCC (p=0.002 and p=0.001, respectively). The Kaplan-Meier curve showed that patients carrying rs9926344 AA +AG genotype had poor RFS (P=0.004) and OS (P=0.005) compared to those carrying GG genotypes. The multivariate COX regression analysis showed that the AA+AG genotype were an independent prognostic factor for tumor recurrence (HR 1.787, 95% CI 1.042-3.064, P=0.035). Furthermore, IHC analysis showed that the WWOX protein down-regulation is more frequent in patients with AG genotype compared to those with GG genotype (P=0.023). Conclusion: Our findings indicate that WWOX rs9926344 polymorphism is positively correlated with tumor recurrence and can be used as an independent prognostic marker for HCC patients after operation.
Collapse
Affiliation(s)
- Wanyong Chen
- Department of Liver Surgery, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, 200032, China.,Department of Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, 201199, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Zhongshan Hospital, Fudan University, Shanghai, 201199, China
| | - Chenhao Zhou
- Department of Liver Surgery, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wentao Zhang
- Department of Liver Surgery, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Manar Atyah
- Department of Liver Surgery, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yirui Yin
- Department of Liver Surgery, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Lei Guo
- Department of Liver Surgery, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Weiguo Tang
- Department of Liver Surgery, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, 200032, China.,Department of Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, 201199, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Zhongshan Hospital, Fudan University, Shanghai, 201199, China
| | - Qiongzhu Dong
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Zhongshan Hospital, Fudan University, Shanghai, 201199, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Qinghai Ye
- Department of Liver Surgery, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Ning Ren
- Department of Liver Surgery, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, 200032, China.,Department of Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, 201199, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Zhongshan Hospital, Fudan University, Shanghai, 201199, China
| |
Collapse
|
5
|
Zhang L, Huang Y, Yu Z, Shao M, Luo Y, Zhu Y. Identification of key genes and pathways and therapeutic agents in cadmium-treated liver cells: A bioinformatics study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:145-150. [PMID: 28934692 DOI: 10.1016/j.etap.2017.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
Evidence indicates that Cadmium (Cd) can accumulate in liver, which results in acute or chronic cell damage with unclear complex mechanisms. Thus, we aimed to explore the possible molecules and pathways by using bioinformatics methods Consequently, two datasets (GSE8865 and GSE31286) were retrieved and the differentially expressed genes (DEGs) were screened out. The intersection of the DEGs included seven up-regulated and forty-three down-regulated genes, which were mainly enriched in biological cell proliferation items, and were enriched in several metabolism-related pathways. Among the DEGs, several hub genes such as EGR1, FOSL1, ITGA2, EDN1, and IER3 were screened out through protein-protein interaction analysis. Interestingly, BW-B70C was predicted to be a potential agent for attenuating Cd-induced liver cell damage. The present study gave a novel insight into the mechanisms of Cd-induced liver cell damage or malignant transformation and identified several small agents that might be critical for Cd toxicity prevention and treatment.
Collapse
Affiliation(s)
- Liang Zhang
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing, China; Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yi Huang
- Department of Internal Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhen Yu
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing, China
| | - Mengmeng Shao
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing, China
| | - Yunbo Luo
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing, China
| | - Yi Zhu
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing, China.
| |
Collapse
|