1
|
Cichos F, Xia T, Yang H, Zijlstra P. The ever-expanding optics of single-molecules and nanoparticles. J Chem Phys 2024; 161:010401. [PMID: 38949895 DOI: 10.1063/5.0221680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024] Open
Affiliation(s)
- F Cichos
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
| | - T Xia
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - H Yang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - P Zijlstra
- Department of Applied Physics and Science Education, Eindhoven University of Technology (TU/e), Eindhoven, The Netherlands
| |
Collapse
|
2
|
Albert A, Fried M, Thelakkat M, Köhler J. Emission modulation of fluorescent turn-on mode dibenzothienyl sulfonyl ethene photoswitches embedded in a polymer film. Phys Chem Chem Phys 2022; 24:29791-29800. [PMID: 36468239 DOI: 10.1039/d2cp05062e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For decades photochromic molecules have attracted attention for their potential in using light as an external stimulus to change their photophysical properties. Here we report the spectroscopic characterization of two emissive photochromic molecules that are intrinsically fluorescent and that undergo a photocyclization/cycloreversion reaction upon illumination with light in the UV and VIS spectral ranges. For appropriately adjusted illumination intensities the emission can be modulated between the high- and the low-level with a contrast ratio exceeding 80%. The data are in reasonable agreement with the predictions from a simple kinetic model.
Collapse
Affiliation(s)
- Andrea Albert
- Spectroscopy of soft Matter, University of Bayreuth, 95440, Bayreuth, Germany.
| | - Martina Fried
- Applied Functional Materials, University of Bayreuth, 95440, Bayreuth, Germany
| | - Mukundan Thelakkat
- Applied Functional Materials, University of Bayreuth, 95440, Bayreuth, Germany.,Bavarian Polymer Institute, University of Bayreuth, 95440, Bayreuth, Germany.,Bayreuther Institut für Makromolekülforschung (BIMF), 95440, Bayreuth, Germany
| | - Jürgen Köhler
- Spectroscopy of soft Matter, University of Bayreuth, 95440, Bayreuth, Germany. .,Bavarian Polymer Institute, University of Bayreuth, 95440, Bayreuth, Germany.,Bayreuther Institut für Makromolekülforschung (BIMF), 95440, Bayreuth, Germany
| |
Collapse
|
3
|
Maier J, Weller T, Thelakkat M, Köhler J. Long-term switching of single photochromic triads based on dithienylcyclopentene and fluorophores at cryogenic temperatures. J Chem Phys 2021; 155:014901. [PMID: 34241405 DOI: 10.1063/5.0056815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Photochromic molecules can be reversibly converted between two bistable forms by light. These systems have been intensively studied for applications as molecular memories, sensing devices, or super-resolution optical microscopy. Here, we study the long-term switching behavior of single photochromic triads under oxygen-free conditions at 10 K. The triads consist of a photochromic unit that is covalently linked to two strong fluorophores that were employed for monitoring the light-induced conversions of the switch via changes in the fluorescence intensity from the fluorophores. As dyes we use either perylene bisimide or boron-dipyrromethen, and as photochromic switch we use dithienylcyclopentene (DCP). Both types of triads showed high fatigue resistance allowing for up to 6000 switching cycles of a single triad corresponding to time durations in the order of 80 min without deterioration. Long-term analysis of the switching cycles reveals that the probability that an intensity change in the emission from the dyes can be assigned to an externally stimulated conversion of the DCP (rather than to stochastic blinking of the dye molecules) amounts to 0.7 ± 0.1 for both types of triads. This number is far too low for optical data storage using single triads and implications concerning the miniaturization of optical memories based on such systems will be discussed. Yet, together with the high fatigue resistance, this number is encouraging for applications in super-resolution optical microscopy on frozen biological samples.
Collapse
Affiliation(s)
- Johannes Maier
- Spectroscopy of Soft Matter, University of Bayreuth, 95440 Bayreuth, Germany
| | - Tina Weller
- Applied Functional Materials, University of Bayreuth, 95440 Bayreuth, Germany
| | - Mukundan Thelakkat
- Applied Functional Materials, University of Bayreuth, 95440 Bayreuth, Germany
| | - Jürgen Köhler
- Spectroscopy of Soft Matter, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
4
|
Siemes E, Nevskyi O, Sysoiev D, Turnhoff SK, Oppermann A, Huhn T, Richtering W, Wöll D. Nanoscopic Visualization of Cross-Linking Density in Polymer Networks with Diarylethene Photoswitches. Angew Chem Int Ed Engl 2018; 57:12280-12284. [DOI: 10.1002/anie.201807741] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/27/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Eric Siemes
- Institute for Physical Chemistry; RWTH Aachen University; Landoltweg 2 52074 Aachen Germany
| | - Oleksii Nevskyi
- Institute for Physical Chemistry; RWTH Aachen University; Landoltweg 2 52074 Aachen Germany
| | - Dmytro Sysoiev
- Department of Chemistry; University of Konstanz; Universitätsstrasse 10 78464 Konstanz Germany
| | - Sarah K. Turnhoff
- Institute for Physical Chemistry; RWTH Aachen University; Landoltweg 2 52074 Aachen Germany
| | - Alex Oppermann
- Institute for Physical Chemistry; RWTH Aachen University; Landoltweg 2 52074 Aachen Germany
| | - Thomas Huhn
- Department of Chemistry; University of Konstanz; Universitätsstrasse 10 78464 Konstanz Germany
| | - Walter Richtering
- Institute for Physical Chemistry; RWTH Aachen University; Landoltweg 2 52074 Aachen Germany
| | - Dominik Wöll
- Institute for Physical Chemistry; RWTH Aachen University; Landoltweg 2 52074 Aachen Germany
| |
Collapse
|
5
|
Siemes E, Nevskyi O, Sysoiev D, Turnhoff SK, Oppermann A, Huhn T, Richtering W, Wöll D. Nanoskopische Bildgebung der Vernetzungsdichte in Polymernetzwerken mittels Diarylethen-Photoschaltern. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Eric Siemes
- Institut für Physikalische Chemie; RWTH Aachen; Landoltweg 2 52074 Aachen Deutschland
| | - Oleksii Nevskyi
- Institut für Physikalische Chemie; RWTH Aachen; Landoltweg 2 52074 Aachen Deutschland
| | - Dmytro Sysoiev
- Fachbereich Chemie; Universität Konstanz; Universitätsstraße 10 78464 Konstanz Deutschland
| | - Sarah K. Turnhoff
- Institut für Physikalische Chemie; RWTH Aachen; Landoltweg 2 52074 Aachen Deutschland
| | - Alex Oppermann
- Institut für Physikalische Chemie; RWTH Aachen; Landoltweg 2 52074 Aachen Deutschland
| | - Thomas Huhn
- Fachbereich Chemie; Universität Konstanz; Universitätsstraße 10 78464 Konstanz Deutschland
| | - Walter Richtering
- Institut für Physikalische Chemie; RWTH Aachen; Landoltweg 2 52074 Aachen Deutschland
| | - Dominik Wöll
- Institut für Physikalische Chemie; RWTH Aachen; Landoltweg 2 52074 Aachen Deutschland
| |
Collapse
|
6
|
Maier J, Pärs M, Gräf K, Thelakkat M, Köhler J. Light controls light: single molecules as optical switches. EPJ WEB OF CONFERENCES 2018. [DOI: 10.1051/epjconf/201819002006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In recent years much attention has been given to design multistate molecular components with functionalities that cover the range from simple switches to logic gates [1-3]. In this regard photochromic molecules, i.e., molecules that can be interconverted between two bistable forms by light, have played an important role. Promising candidates that fulfill obvious demands such as high photochemical/ photophysical stability and high fatigue resistance are compounds of the family of diarylethenes [2,3]. However, a serious drawback of this class of molecules is a low fluorescence quantum yield. Therefore we adapted the strategy developed by Irie and coworkers [2,3], to chemically synthesize complex tailor-made triads consisting of a photochromic dithienylcyclopentene (DCP) unit covalently linked to two peryline bisimide (PBI) molecules that are known as strong fluorophores, see fig.1 inset top left. This facilitates the combination of high fatigue resistance and high fluorescence quantum yield. Illumination with light in the UV spectral region induces a ring-closure reaction of the DCP and leads to a state with suppressed fluorescence from the PBIs, whereas light in the VIS spectral region yields a ring opening reaction of the DCP and restores the fluorescence from the PBI units. This allowed us to verify functionalities like optical gating and amplifying, yet where the electrons have been replaced by photons as signal carriers [4-6], see fig.1.
Collapse
|
7
|
Maier J, Pärs M, Weller T, Thelakkat M, Köhler J. Switching or blinking? – The switching behaviour of single photochromic triads. EPJ WEB OF CONFERENCES 2018. [DOI: 10.1051/epjconf/201819004014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Photochromic molecules can be interconverted between two bistable conformations by light [1–3]. Irie and coworkers described a strategy to achieve superior fluorescence characteristics and outstanding switching characteristics of a photochromic unit by linking strong fluorophores covalently to photochromic building blocks [3,4]. Accordingly, we synthesised molecular triads that consist of two perylene bisimide (PBI) fluorophores covalently linked to a dithienylcyclopentene (DCP) photochromic switch, see fig. 1. Such kinds of triads are promising candidates for super-resolution microscopy like RESOLFT and PALM [5,6], or can be used as optical transistors or memories [4,7].
Collapse
|
8
|
Thurn J, Maier J, Pärs M, Gräf K, Thelakkat M, Köhler J. Temperature dependence of the conversion efficiency of photochromic perylene bisimide dithienylcyclopentene triads embedded in a polymer. Phys Chem Chem Phys 2017; 19:26065-26071. [PMID: 28926050 DOI: 10.1039/c7cp03634e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photochromic molecules that are covalently linked to a strong fluorophore combine the requirements of external control and strong fluorescence, which will become increasingly important for super-resolution microscopy techniques based on single molecules. However, given the bulky structure of such constructs, steric hindrance might affect their photoconversion efficiencies upon immobilising them for imaging purposes. In this study the efficiencies of the photochromic conversion processes of molecular triads that are embedded in a polymer have been studied as a function of temperature. The triads consist of two perylene bisimide dye molecules that are connected via a dithienylcyclopentene photochromic bridge that undergoes a cyclization/cycloreversion reaction upon appropriate illumination. It is found that photochromic switching remains active, even at 5 K, yet with reduced but finite efficiency for the cycloreversion reaction. This might even be an advantage for the achievement of high labelling densities in super-resolution microscopy.
Collapse
Affiliation(s)
- Johann Thurn
- Experimental Physics IV, University of Bayreuth, 95440 Bayreuth, Germany.
| | | | | | | | | | | |
Collapse
|