1
|
Zhang X, Ferree PM. PSRs: Selfish chromosomes that manipulate reproductive development. Semin Cell Dev Biol 2024; 159-160:66-73. [PMID: 38394822 DOI: 10.1016/j.semcdb.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
B chromosomes are intriguing "selfish" genetic elements, many of which exhibit higher-than-Mendelian transmission. This perspective highlights a group of B chromosomes known as Paternal Sex Ratio chromosomes (PSRs), which are found in several insects with haplo-diploid reproduction. PSRs harshly alter the organism's reproduction to facilitate their own inheritance. A manifestation of this effect is the conversion of female destined individuals into males. Key to this conversion is the mysterious ability of PSRs to cause elimination of the sperm-inherited half of the genome during zygote formation. Here we discuss how PSRs were discovered, what is known about how they alter paternal chromatin dynamics to cause sex conversion, and how PSR-induced genome elimination is different from other forms of programmed genome elimination in different insects. PSRs also stand out because their DNA sequence compositions differ in remarkable ways from their insect's essential chromosomes, a characteristic suggestive of interspecies origins. Broadly, we also highlight poorly understood aspects of PSR dynamics that need to be investigated.
Collapse
Affiliation(s)
- Xinmi Zhang
- W. M. Keck Science Department, Pitzer and Scripps Colleges, Claremont, CA 91711, USA
| | - Patrick M Ferree
- W. M. Keck Science Department, Pitzer and Scripps Colleges, Claremont, CA 91711, USA.
| |
Collapse
|
2
|
Oliveira JIN, Cabral-de-Mello DC, Valente GT, Martins C. Transcribing the enigma: the B chromosome as a territory of uncharted RNAs. Genetics 2024; 227:iyae026. [PMID: 38513121 DOI: 10.1093/genetics/iyae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/10/2024] [Indexed: 03/23/2024] Open
Abstract
B chromosomes are supernumerary elements found in several groups of eukaryotes, including fungi, plants, and animals. Typically, these chromosomes either originate from their hosts through errors in meiosis or interspecifically through horizontal transfer. While many B chromosomes are primarily heterochromatic and possess a low number of coding genes, these additional elements are still capable of transcribing sequences and exerting influence on the expression of host genes. How B chromosomes escape elimination and which impacts can be promoted in the cell always intrigued the cytogeneticists. In pursuit of understanding the behavior and functional impacts of these extra elements, cytogenetic studies meet the advances of molecular biology, incorporating various techniques into investigating B chromosomes from a functional perspective. In this review, we present a timeline of studies investigating B chromosomes and RNAs, highlighting the advances and key findings throughout their history. Additionally, we identified which RNA classes are reported in the B chromosomes and emphasized the necessity for further investigation into new perspectives on the B chromosome functions. In this context, we present a phylogenetic tree that illustrates which branches either report B chromosome presence or have functional RNA studies related to B chromosomes. We propose investigating other unexplored RNA classes and conducting functional analysis in conjunction with cytogenetic studies to enhance our understanding of the B chromosome from an RNA perspective.
Collapse
Affiliation(s)
| | - Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro 13506-900, Brazil
| | - Guilherme T Valente
- Applied Biotechnology Laboratory, Clinical Hospital of Botucatu Medical School, Botucatu 18618-687, Brazil
| | - Cesar Martins
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| |
Collapse
|
3
|
Said M, Gaál E, Farkas A, Molnár I, Bartoš J, Doležel J, Cabrera A, Endo TR. Gametocidal genes: from a discovery to the application in wheat breeding. FRONTIERS IN PLANT SCIENCE 2024; 15:1396553. [PMID: 38711610 PMCID: PMC11070591 DOI: 10.3389/fpls.2024.1396553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 05/08/2024]
Abstract
Some species of the genus Aegilops, a wild relative of wheat, carry chromosomes that after introducing to wheat exhibit preferential transmission to progeny. Their selective retention is a result of the abortion of gametes lacking them due to induced chromosomal aberrations. These chromosomes are termed Gametocidal (Gc) and, based on their effects, they are categorized into three types: mild, intense or severe, and very strong. Gc elements within the same homoeologous chromosome groups of Aegilops (II, III, or IV) demonstrate similar Gc action. This review explores the intriguing dynamics of Gc chromosomes and encompasses comprehensive insights into their source species, behavioral aspects, mode of action, interactions, suppressions, and practical applications of the Gc system in wheat breeding. By delving into these areas, this work aims to contribute to the development of novel plant genetic resources for wheat breeding. The insights provided herein shed light on the utilization of Gc chromosomes to produce chromosomal rearrangements in wheat and its wild relatives, thereby facilitating the generation of chromosome deletions, translocations, and telosomic lines. The Gc approach has significantly advanced various aspects of wheat genetics, including the introgression of novel genes and alleles, molecular markers and gene mapping, and the exploration of homoeologous relationships within Triticeae species. The mystery lies in why gametes possessing Gc genes maintain their normality while those lacking Gc genes suffer abnormalities, highlighting an unresolved research gap necessitating deeper investigation.
Collapse
Affiliation(s)
- Mahmoud Said
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
- Field Crops Research Institute, Agricultural Research Centre, Giza, Egypt
| | - Eszter Gaál
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
| | - András Farkas
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
| | - Jan Bartoš
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Adoración Cabrera
- Genetics Department, Escuela Técnica Superior de Ingeniería Agronómica y de Montes (ETSIAM), Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| | | |
Collapse
|
4
|
Habig M, Grasse AV, Müller J, Stukenbrock EH, Leitner H, Cremer S. Frequent horizontal chromosome transfer between asexual fungal insect pathogens. Proc Natl Acad Sci U S A 2024; 121:e2316284121. [PMID: 38442176 PMCID: PMC10945790 DOI: 10.1073/pnas.2316284121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024] Open
Abstract
Entire chromosomes are typically only transmitted vertically from one generation to the next. The horizontal transfer of such chromosomes has long been considered improbable, yet gained recent support in several pathogenic fungi where it may affect the fitness or host specificity. To date, it is unknown how these transfers occur, how common they are, and whether they can occur between different species. In this study, we show multiple independent instances of horizontal transfers of the same accessory chromosome between two distinct strains of the asexual entomopathogenic fungus Metarhizium robertsii during experimental co-infection of its insect host, the Argentine ant. Notably, only the one chromosome-but no other-was transferred from the donor to the recipient strain. The recipient strain, now harboring the accessory chromosome, exhibited a competitive advantage under certain host conditions. By phylogenetic analysis, we further demonstrate that the same accessory chromosome was horizontally transferred in a natural environment between M. robertsii and another congeneric insect pathogen, Metarhizium guizhouense. Hence, horizontal chromosome transfer is not limited to the observed frequent events within species during experimental infections but also occurs naturally across species. The accessory chromosome that was transferred contains genes that may be involved in its preferential horizontal transfer or support its establishment. These genes encode putative histones and histone-modifying enzymes, as well as putative virulence factors. Our study reveals that both intra- and interspecies horizontal transfer of entire chromosomes is more frequent than previously assumed, likely representing a not uncommon mechanism for gene exchange.
Collapse
Affiliation(s)
- Michael Habig
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel24118, Germany
- Max Planck Institute for Evolutionary Biology, Plön24306, Germany
| | - Anna V. Grasse
- Institute of Science and Technology Austria (ISTA), Klosterneuburg3400, Austria
| | - Judith Müller
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel24118, Germany
- Max Planck Institute for Evolutionary Biology, Plön24306, Germany
| | - Eva H. Stukenbrock
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel24118, Germany
- Max Planck Institute for Evolutionary Biology, Plön24306, Germany
| | - Hanna Leitner
- Institute of Science and Technology Austria (ISTA), Klosterneuburg3400, Austria
| | - Sylvia Cremer
- Institute of Science and Technology Austria (ISTA), Klosterneuburg3400, Austria
| |
Collapse
|
5
|
Lee H, Seo P, Teklay S, Yuguchi E, Benetta ED, Werren JH, Ferree PM. Ability of a selfish B chromosome to evade genome elimination in the jewel wasp, Nasonia vitripennis. Heredity (Edinb) 2023; 131:230-237. [PMID: 37524915 PMCID: PMC10462710 DOI: 10.1038/s41437-023-00639-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 08/02/2023] Open
Abstract
B chromosomes are non-essential, extra chromosomes that can exhibit transmission-enhancing behaviors, including meiotic drive, mitotic drive, and induction of genome elimination, in plants and animals. A fundamental but poorly understood question is what characteristics allow B chromosomes to exhibit these extraordinary behaviors. The jewel wasp, Nasonia vitripennis, harbors a heterochromatic, paternally transmitted B chromosome known as paternal sex ratio (PSR), which causes complete elimination of the sperm-contributed half of the genome during the first mitotic division of fertilized embryos. This genome elimination event may result from specific, previously observed alterations of the paternal chromatin. Due to the haplo-diploid reproduction of the wasp, genome elimination by PSR causes female-destined embryos to develop as haploid males that transmit PSR. PSR does not undergo self-elimination despite its presence with the paternal chromatin until the elimination event. Here we performed fluorescence microscopic analyses aimed at understanding this unexplained property. Our results show that PSR, like the rest of the genome, participates in the histone-to-protamine transition, arguing that PSR does not avoid this transition to escape self-elimination. In addition, PSR partially escapes the chromatin-altering activity of the intracellular bacterium, Wolbachia, demonstrating that this ability to evade chromatin alteration is not limited to PSR's own activity. Finally, we observed that the rDNA locus and other unidentified heterochromatic regions of the wasp's genome also seem to evade chromatin disruption by PSR, suggesting that PSR's genome-eliminating activity does not affect heterochromatin. Thus, PSR may target an aspect of euchromatin to cause genome elimination.
Collapse
Affiliation(s)
- Haena Lee
- W. M. Keck Science Department, Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA, 91711, USA
| | - Pooreum Seo
- W. M. Keck Science Department, Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA, 91711, USA
| | - Salina Teklay
- W. M. Keck Science Department, Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA, 91711, USA
| | - Emily Yuguchi
- W. M. Keck Science Department, Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA, 91711, USA
| | - Elena Dalla Benetta
- W. M. Keck Science Department, Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA, 91711, USA
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Patrick M Ferree
- W. M. Keck Science Department, Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA, 91711, USA.
| |
Collapse
|
6
|
Cardoso AL, Venturelli NB, da Cruz I, de Sá Patroni FM, de Moraes D, de Oliveira RA, Benavente R, Martins C. Meiotic behavior, transmission and active genes of B chromosomes in the cichlid Astatotilapia latifasciata: new clues about nature, evolution and maintenance of accessory elements. Mol Genet Genomics 2022; 297:1151-1167. [PMID: 35704117 DOI: 10.1007/s00438-022-01911-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 05/24/2022] [Indexed: 12/23/2022]
Abstract
Supernumerary B chromosomes (Bs) are dispensable genetic elements widespread in eukaryotes and are poorly understood mainly in relation to mechanisms of maintenance and transmission. The cichlid Astatotilapia latifasciata can harbor Bs in a range of 0 (named B -) and 1-2 (named B +). The B in A. latifasciata is rich in several classes of repetitive DNA sequences, contains protein coding genes, and affects hosts in diverse ways, including sex-biased effects. To advance in the knowledge about the mechanisms of maintenance and transmission of B chromosomes in A. latifasciata, here, we studied the meiotic behavior in males and transmission rates of A. latifasciata B chromosome. We also analyzed structurally and functionally the predicted B chromosome copies of the cell cycle genes separin-like, tubb1-like and kif11-like. We identified in the meiotic structure relative to the B chromosome the presence of proteins associated with Synaptonemal Complex organization (SMC3, SYCP1 and SYCP3) and found that the B performs self-pairing. These data suggest that isochromosome formation was a step during B chromosome evolution and this element is in a stage of diversification of the two arms keeping the self-pairing behavior to protect the A chromosome complement of negative effects of recombination. Moreover, we observed no occurrence of B-drive and confirmed the presence of cell cycle genes copies in the B chromosome and their transcription in encephalon, muscle and gonads, which can indicates beneficial effects to hosts and contribute to B maintenance.
Collapse
Affiliation(s)
- Adauto Lima Cardoso
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, Sao Paulo State University, UNESP, Botucatu, SP, 18618-689, Brazil
| | - Natália Bortholazzi Venturelli
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, Sao Paulo State University, UNESP, Botucatu, SP, 18618-689, Brazil
| | - Irene da Cruz
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Fábio Malta de Sá Patroni
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, Sao Paulo State University, UNESP, Botucatu, SP, 18618-689, Brazil
| | - Diogo de Moraes
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, Sao Paulo State University, UNESP, Botucatu, SP, 18618-689, Brazil
| | - Rogério Antonio de Oliveira
- Department of Biostatistics, Plant Biology, Parasitology and Zoology, Institute of Biosciences at Botucatu, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Cesar Martins
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, Sao Paulo State University, UNESP, Botucatu, SP, 18618-689, Brazil.
| |
Collapse
|
7
|
Holditch ZG, Ochoa KN, Greene S, Allred S, Baranowski J, Shuster SM. Sperm Limitation Produces Male Biased Offspring Sex Ratios in the Wasp, Nasonia vitripennis (Hymenoptera: Pteromalidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:17. [PMID: 35763315 PMCID: PMC9239221 DOI: 10.1093/jisesa/ieac032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 06/15/2023]
Abstract
Haplo-diploid sex determination in the parasitoid wasp, Nasonia vitripennis (Walker), allows females to adjust their brood sex ratios. Females influence whether ova are fertilized, producing diploid females, or remain unfertilized, producing haploid males. Females appear to adjust their brood sex ratios to minimize 'local mate competition,' i.e., competition among sons for mates. Because mating occurs between siblings, females may optimize mating opportunities for their offspring by producing only enough sons to inseminate daughters when ovipositing alone, and producing more sons when superparasitism is likely. Although widely accepted, this hypothesis makes no assumptions about gamete limitation in either sex. Because sperm are used to produce daughters, repeated oviposition could reduce sperm supplies, causing females to produce more sons. In contrast, if egg-limited females produce smaller broods, they might use fewer sperm, making sperm limitation less likely. To investigate whether repeated oviposition and female fertility influence gamete limitation within females, we created two treatments of six mated female wasps, which each received a series of six hosts at intervals of 24 or 48 h. All females produced at least one mixed-sex brood (63 total broods; 3,696 offspring). As expected, if females became sperm-limited, in both treatments, brood sex ratios became increasingly male-biased with increasing host number. Interhost interval did not affect brood size, total offspring number, or sex ratio, indicating females did not become egg limited. Our results support earlier studies showing sperm depletion affects sex allocation in N. vitripennis¸ and could limit adaptive sex ratio manipulation in these parasitoid wasps.
Collapse
Affiliation(s)
- Z G Holditch
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - K N Ochoa
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - S Greene
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - S Allred
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - J Baranowski
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | | |
Collapse
|
8
|
Dedukh D, Krasikova A. Delete and survive: strategies of programmed genetic material elimination in eukaryotes. Biol Rev Camb Philos Soc 2022; 97:195-216. [PMID: 34542224 PMCID: PMC9292451 DOI: 10.1111/brv.12796] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023]
Abstract
Genome stability is a crucial feature of eukaryotic organisms because its alteration drastically affects the normal development and survival of cells and the organism as a whole. Nevertheless, some organisms can selectively eliminate part of their genomes from certain cell types during specific stages of ontogenesis. This review aims to describe the phenomenon of programmed DNA elimination, which includes chromatin diminution (together with programmed genome rearrangement or DNA rearrangements), B and sex chromosome elimination, paternal genome elimination, parasitically induced genome elimination, and genome elimination in animal and plant hybrids. During programmed DNA elimination, individual chromosomal fragments, whole chromosomes, and even entire parental genomes can be selectively removed. Programmed DNA elimination occurs independently in different organisms, ranging from ciliate protozoa to mammals. Depending on the sequences destined for exclusion, programmed DNA elimination may serve as a radical mechanism of dosage compensation and inactivation of unnecessary or dangerous genetic entities. In hybrids, genome elimination results from competition between parental genomes. Despite the different consequences of DNA elimination, all genetic material destined for elimination must be first recognised, epigenetically marked, separated, and then removed and degraded.
Collapse
Affiliation(s)
- Dmitrij Dedukh
- Saint‐Petersburg State University7/9 Universitetskaya EmbankmentSaint‐Petersburg199034Russia
| | - Alla Krasikova
- Saint‐Petersburg State University7/9 Universitetskaya EmbankmentSaint‐Petersburg199034Russia
| |
Collapse
|
9
|
Lagunas-Robles G, Purcell J, Brelsford A. Linked supergenes underlie split sex ratio and social organization in an ant. Proc Natl Acad Sci U S A 2021; 118:e2101427118. [PMID: 34772805 PMCID: PMC8609651 DOI: 10.1073/pnas.2101427118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 12/19/2022] Open
Abstract
Sexually reproducing organisms usually invest equally in male and female offspring. Deviations from this pattern have led researchers to new discoveries in the study of parent-offspring conflict, genomic conflict, and cooperative breeding. Some social insect species exhibit the unusual population-level pattern of split sex ratio, wherein some colonies specialize in the production of future queens and others specialize in the production of males. Theoretical work predicted that worker control of sex ratio and variation in relatedness asymmetry among colonies would cause each colony to specialize in the production of one sex. While some empirical tests supported theoretical predictions, others deviated from them, leaving many questions about how split sex ratio emerges. One factor yet to be investigated is whether colony sex ratio may be influenced by the genotypes of queens or workers. Here, we sequence the genomes of 138 Formica glacialis workers from 34 male-producing and 34 gyne-producing colonies to determine whether split sex ratio is under genetic control. We identify a supergene spanning 5.5 Mbp that is closely associated with sex allocation in this system. Strikingly, this supergene is adjacent to another supergene spanning 5 Mbp that is associated with variation in colony queen number. We identify a similar pattern in a second related species, Formica podzolica. The discovery that split sex ratio is determined, at least in part, by a supergene in two species opens future research on the evolutionary drivers of split sex ratio.
Collapse
Affiliation(s)
- German Lagunas-Robles
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA 92521
| | - Jessica Purcell
- Department of Entomology, University of California, Riverside, CA 92521
| | - Alan Brelsford
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA 92521;
| |
Collapse
|
10
|
Dalla Benetta E, Akbari OS, Ferree PM. Mechanistically comparing reproductive manipulations caused by selfish chromosomes and bacterial symbionts. Heredity (Edinb) 2021; 126:707-716. [PMID: 33649572 PMCID: PMC8102561 DOI: 10.1038/s41437-021-00410-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 01/30/2023] Open
Abstract
Insects naturally harbor a broad range of selfish agents that can manipulate their reproduction and development, often leading to host sex ratio distortion. Such effects directly benefit the spread of the selfish agents. These agents include two broad groups: bacterial symbionts and selfish chromosomes. Recent studies have made steady progress in uncovering the cellular targets of these agents and their effector genes. Here we highlight what is known about the targeted developmental processes, developmental timing, and effector genes expressed by several selfish agents. It is now becoming apparent that: (1) the genetic toolkits used by these agents to induce a given reproductive manipulation are simple, (2) these agents target sex-specific cellular processes very early in development, and (3) in some cases, similar processes are targeted. Knowledge of the molecular underpinnings of these systems will help to solve long-standing puzzles and provide new tools for controlling insect pests.
Collapse
Affiliation(s)
- Elena Dalla Benetta
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711 USA ,grid.266100.30000 0001 2107 4242Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, CA 92093 USA
| | - Omar S. Akbari
- grid.266100.30000 0001 2107 4242Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, CA 92093 USA
| | - Patrick M. Ferree
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711 USA
| |
Collapse
|
11
|
Chaverra-Rodriguez D, Dalla Benetta E, Heu CC, Rasgon JL, Ferree PM, Akbari OS. Germline mutagenesis of Nasonia vitripennis through ovarian delivery of CRISPR-Cas9 ribonucleoprotein. INSECT MOLECULAR BIOLOGY 2020; 29:569-577. [PMID: 32715554 DOI: 10.1111/imb.12663] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
CRISPR/Cas9 gene editing is a powerful technology to study the genetics of rising model organisms, such as the jewel wasp Nasonia vitripennis. However, current methods involving embryonic microinjection of CRISPR reagents are challenging. Delivery of Cas9 ribonucleoprotein into female ovaries is an alternative that has only been explored in a small handful of insects, such as mosquitoes, whiteflies and beetles. Here, we developed a simple protocol for germline gene editing by injecting Cas9 ribonucleoprotein in adult N. vitripennis females using either ReMOT control (Receptor-Mediated Ovary Transduction of Cargo) or BAPC (Branched Amphiphilic Peptide Capsules) as ovary delivery methods. For ReMOT Control we used the Drosophila melanogaster-derived peptide 'P2C' fused to EGFP to visualize the ovary delivery, and fused to Cas9 protein for gene editing of the cinnabar gene using saponin as an endosomal escape reagent. For BAPC we optimized the concentrations of protein, sgRNA and the transfection reagent. We demonstrate delivery of protein cargo such as EGFP and Cas9 into developing oocytes via P2C peptide and BAPC. Additionally, somatic and germline gene editing were demonstrated. This approach will greatly facilitate CRISPR-applied genetic manipulation in this and other rising model organisms.
Collapse
Affiliation(s)
- D Chaverra-Rodriguez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA, USA
| | - E Dalla Benetta
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA, USA
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, USA
| | - C C Heu
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - J L Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - P M Ferree
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, USA
| | - O S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA, USA
| |
Collapse
|
12
|
Ahmad SF, Jehangir M, Cardoso AL, Wolf IR, Margarido VP, Cabral-de-Mello DC, O'Neill R, Valente GT, Martins C. B chromosomes of multiple species have intense evolutionary dynamics and accumulated genes related to important biological processes. BMC Genomics 2020; 21:656. [PMID: 32967626 PMCID: PMC7509943 DOI: 10.1186/s12864-020-07072-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/14/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND One of the biggest challenges in chromosome biology is to understand the occurrence and complex genetics of the extra, non-essential karyotype elements, commonly known as supernumerary or B chromosomes (Bs). The non-Mendelian inheritance and non-pairing abilities of B chromosomes make them an interesting model for genomics studies, thus bringing to bear different questions about their genetic composition, evolutionary survival, maintenance and functional role inside the cell. This study uncovers these phenomena in multiple species that we considered as representative organisms of both vertebrate and invertebrate models for B chromosome analysis. RESULTS We sequenced the genomes of three animal species including two fishes Astyanax mexicanus and Astyanax correntinus, and a grasshopper Abracris flavolineata, each with and without Bs, and identified their B-localized genes and repeat contents. We detected unique sequences occurring exclusively on Bs and discovered various evolutionary patterns of genomic rearrangements associated to Bs. In situ hybridization and quantitative polymerase chain reactions further validated our genomic approach confirming detection of sequences on Bs. The functional annotation of B sequences showed that the B chromosome comprises regions of gene fragments, novel genes, and intact genes, which encode a diverse set of functions related to important biological processes such as metabolism, morphogenesis, reproduction, transposition, recombination, cell cycle and chromosomes functions which might be important for their evolutionary success. CONCLUSIONS This study reveals the genomic structure, composition and function of Bs, which provide new insights for theories of B chromosome evolution. The selfish behavior of Bs seems to be favored by gained genes/sequences.
Collapse
Affiliation(s)
- Syed F Ahmad
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Maryam Jehangir
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Adauto L Cardoso
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Ivan R Wolf
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Vladimir P Margarido
- Western Paraná State University (UNIOESTE), Center for Biology Science and Health, Cascavel, PR, Brazil
| | - Diogo C Cabral-de-Mello
- Department of General and Applied Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Rachel O'Neill
- Department of Molecular and Cell Biology, University of Connecticut (UCONN), Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut (UCONN), Storrs, CT, USA
| | - Guilherme T Valente
- Bioprocess and Biotechnology Department, Agronomical Science Faculty, Sao Paulo State University - UNESP, Botucatu, SP, Brazil
| | - Cesar Martins
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil.
| |
Collapse
|
13
|
Li M, Tong H, Wang S, Ye W, Li Z, Omar MAA, Ao Y, Ding S, Li Z, Wang Y, Yin C, Zhao X, He K, Liu F, Chen X, Mei Y, Walters JR, Jiang M, Li F. A chromosome-level genome assembly provides new insights into paternal genome elimination in the cotton mealybug Phenacoccus solenopsis. Mol Ecol Resour 2020; 20:1733-1747. [PMID: 33460249 DOI: 10.1111/1755-0998.13232] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 11/30/2022]
Abstract
Mealybugs (Hemiptera: Pseudococcidae) are economically important agricultural pests with several compelling biological phenomena including paternal genome elimination (PGE). However, limited high-quality genome assemblies of mealybugs hinder a full understanding of this striking and unusual biological phenomenon. Here, we generated a chromosome-level genome assembly of cotton mealybug, Phenacoccus solenopsis, by combining Illumina short reads, PacBio long reads and Hi-C scaffolding. The assembled genome was 292.54 Mb with a contig N50 of 489.8 kb and a scaffold N50 of 49.0 Mb. Hi-C scaffolding assigned 84.42% of the bases to five chromosomes. A total of 110.75 Mb (37.9%) repeat sequences and 11,880 protein-coding genes were predicted. The completeness of the genome assembly was estimated to be 95.5% based on BUSCO genes. In addition, 27,086 (95.3%) full-length PacBio transcripts were uniquely mapped to the assembled scaffolds, suggesting the high quality of the genome assembly. We showed that cotton mealybugs lack differentiated sex chromosomes by analysing genome resequencing data of males and females. DAPI staining confirmed that one chromosome set in males becomes heterochromatin at an early embryo stage. Chromatin immunoprecipitation assays with sequencing analysis demonstrated that the epigenetic modifications H3K9me3 and H3K27me3 are distributed across the whole genome in males, suggesting that these two modifications might be involved in maintaining heterochromatin status. Both markers were more likely to be distributed in repeat regions, while H3K27me3 had higher overall enrichment. Our results provide a valuable genomic resource and shed new light on the genomic and epigenetic basis of PGE in cotton mealybugs.
Collapse
Affiliation(s)
- Meizhen Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Haojie Tong
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuping Wang
- Technical Centre for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai, China
| | - Wanyi Ye
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zicheng Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mohamed A A Omar
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Department of Plant Protection, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Yan Ao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Simin Ding
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zihao Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ying Wang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chuanlin Yin
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xianxin Zhao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Kang He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Feiling Liu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xi Chen
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yang Mei
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - James R Walters
- Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - Mingxing Jiang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fei Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Wedell N. Selfish genes and sexual selection: the impact of genomic parasites on host reproduction. J Zool (1987) 2020. [DOI: 10.1111/jzo.12780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- N. Wedell
- Biosciences University of Exeter, Penryn Campus Penryn UK
| |
Collapse
|
15
|
Dalla Benetta E, Antoshechkin I, Yang T, Nguyen HQM, Ferree PM, Akbari OS. Genome elimination mediated by gene expression from a selfish chromosome. SCIENCE ADVANCES 2020; 6:eaaz9808. [PMID: 32284986 PMCID: PMC7124933 DOI: 10.1126/sciadv.aaz9808] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/14/2020] [Indexed: 05/16/2023]
Abstract
Numerous plants and animals harbor selfish B chromosomes that "drive" or transmit themselves at super-Mendelian frequencies, despite long-term fitness costs to the organism. Currently, it is unknown how B chromosome drive is mediated, and whether B-gene expression plays a role. We used modern sequencing technologies to analyze the fine-scale sequence composition and expression of paternal sex ratio (PSR), a B chromosome in the jewel wasp Nasonia vitripennis. PSR causes female-to-male conversion by destroying the sperm's hereditary material in young embryos to drive. Using RNA interference, we demonstrate that testis-specific expression of a PSR-linked gene, named haploidizer, facilitates this genome elimination-and-sex conversion effect. haploidizer encodes a putative protein with a DNA binding domain, suggesting a functional link with the sperm-derived chromatin.
Collapse
Affiliation(s)
- Elena Dalla Benetta
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, CA 91125, USA
| | - Ting Yang
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hoa Quang My Nguyen
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Patrick M. Ferree
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA
| | - Omar S. Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
- Tata Institute for Genetics and Society–UCSD, La Jolla, CA 92093, USA
| |
Collapse
|
16
|
Lamelza P, Young JM, Noble LM, Caro L, Isakharov A, Palanisamy M, Rockman MV, Malik HS, Ailion M. Hybridization promotes asexual reproduction in Caenorhabditis nematodes. PLoS Genet 2019; 15:e1008520. [PMID: 31841515 PMCID: PMC6946170 DOI: 10.1371/journal.pgen.1008520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 01/07/2020] [Accepted: 11/15/2019] [Indexed: 02/04/2023] Open
Abstract
Although most unicellular organisms reproduce asexually, most multicellular eukaryotes are obligately sexual. This implies that there are strong barriers that prevent the origin or maintenance of asexuality arising from an obligately sexual ancestor. By studying rare asexual animal species we can gain a better understanding of the circumstances that facilitate their evolution from a sexual ancestor. Of the known asexual animal species, many originated by hybridization between two ancestral sexual species. The balance hypothesis predicts that genetic incompatibilities between the divergent genomes in hybrids can modify meiosis and facilitate asexual reproduction, but there are few instances where this has been shown. Here we report that hybridizing two sexual Caenorhabditis nematode species (C. nouraguensis females and C. becei males) alters the normal inheritance of the maternal and paternal genomes during the formation of hybrid zygotes. Most offspring of this interspecies cross die during embryogenesis, exhibiting inheritance of a diploid C. nouraguensis maternal genome and incomplete inheritance of C. becei paternal DNA. However, a small fraction of offspring develop into viable adults that can be either fertile or sterile. Fertile offspring are produced asexually by sperm-dependent parthenogenesis (also called gynogenesis or pseudogamy); these progeny inherit a diploid maternal genome but fail to inherit a paternal genome. Sterile offspring are hybrids that inherit both a diploid maternal genome and a haploid paternal genome. Whole-genome sequencing of individual viable worms shows that diploid maternal inheritance in both fertile and sterile offspring results from an altered meiosis in C. nouraguensis oocytes and the inheritance of two randomly selected homologous chromatids. We hypothesize that hybrid incompatibility between C. nouraguensis and C. becei modifies maternal and paternal genome inheritance and indirectly induces gynogenetic reproduction. This system can be used to dissect the molecular mechanisms by which hybrid incompatibilities can facilitate the emergence of asexual reproduction.
Collapse
Affiliation(s)
- Piero Lamelza
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Janet M. Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Luke M. Noble
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
| | - Lews Caro
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Arielle Isakharov
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Meenakshi Palanisamy
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Matthew V. Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
| | - Harmit S. Malik
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Michael Ailion
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
17
|
Ferree PM, Aldrich JC, Jing XA, Norwood CT, Van Schaick MR, Cheema MS, Ausió J, Gowen BE. Spermatogenesis in haploid males of the jewel wasp Nasonia vitripennis. Sci Rep 2019; 9:12194. [PMID: 31434920 PMCID: PMC6704150 DOI: 10.1038/s41598-019-48332-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/29/2019] [Indexed: 01/11/2023] Open
Abstract
Males of hymenopteran insects, which include ants, bees and wasps, develop as haploids from unfertilized eggs. In order to accommodate their lack of homologous chromosome pairs, some hymenopterans such as the honeybee have been shown to produce haploid sperm through an abortive meiosis. We employed microscopic approaches to visualize landmark aspects of spermatogenesis in the jewel wasp Nasonia vitripennis, a model for hymenopteran reproduction and development. Our work demonstrates that N. vitripennis, like other examined hymenopterans, exhibits characteristics indicative of an abortive meiosis, including slight enlargement of spermatocytes preceding meiotic initiation. However, we saw no evidence of cytoplasmic buds containing centrioles that are produced from the first abortive meiotic division, which occurs in the honeybee. In contrast to other previously studied hymenopterans, N. vitripennis males produce sperm in bundles that vary widely from 16 to over 200, thus reflecting a range of cellular divisions. Our results highlight interesting variations in spermatogenesis among the hymenopteran insects, and together with previous studies, they suggest a pattern of progression from meiosis to a more mitotic state in producing sperm.
Collapse
Affiliation(s)
- Patrick M Ferree
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA.
| | - John C Aldrich
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Xueyuan A Jing
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Christopher T Norwood
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Mary R Van Schaick
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Manjinder S Cheema
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W-3P6, Canada
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W-3P6, Canada
| | - Brent E Gowen
- Department of Biology, University of Victoria, Victoria, BC, V8W-3P6, Canada
| |
Collapse
|
18
|
Said M, Kubaláková M, Karafiátová M, Molnár I, Doležel J, Vrána J. Dissecting the Complex Genome of Crested Wheatgrass by Chromosome Flow Sorting. THE PLANT GENOME 2019; 12:180096. [PMID: 31290923 DOI: 10.3835/plantgenome2018.12.0096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Wheatgrass (Agropyron sp.) is a potential source of beneficial traits for wheat improvement. Among them, crested wheatgrass [A. cristatum (L.) Gaertn.] comprises a complex of diploid, tetraploid, and hexaploid forms with the basic genome P, with some accessions carrying supernumerary B chromosomes (Bs). In this work, we applied flow cytometry to dissect the complex genome of crested wheatgrass into individual chromosomes to facilitate its analysis. Flow karyotypes obtained after the analysis of 4',6-diamidino-2-phenylindole (DAPI)-stained mitotic chromosomes of diploid and tetraploid accessions consisted of three peaks, each corresponding to a group of two or three chromosomes. To improve the resolution, bivariate flow karyotyping after fluorescent labeling of chromosomes with fluorescein isothiocyanate (FITC)-conjugated probe (GAA) microsatellite was applied and allowed discrimination and sorting of P genome chromosomes from wheat-crested wheatgrass addition lines. Chromosomes 1P-6P and seven telomeric chromosomes could be sorted at purities ranging from 81.7 to 98.2% in disomics and from 44.8 to 87.3% in telosomics. Chromosome 7P was sorted at purities reaching 50.0 and 39.5% in diploid and tetraploid crested wheatgrass, respectively. In addition to the whole complement chromosomes (A), Bs could be easily discriminated and sorted from a diploid accession at 95.4% purity. The sorted chromosomes will streamline genome analysis of crested wheatgrass, facilitating gene cloning and development of molecular tools to support alien introgression into wheat.
Collapse
|
19
|
Dalla Benetta E, Akbari OS, Ferree PM. Sequence Expression of Supernumerary B Chromosomes: Function or Fluff? Genes (Basel) 2019; 10:E123. [PMID: 30744010 PMCID: PMC6409846 DOI: 10.3390/genes10020123] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 12/25/2022] Open
Abstract
B chromosomes are enigmatic heritable elements found in the genomes of numerous plant and animal species. Contrary to their broad distribution, most B chromosomes are non-essential. For this reason, they are regarded as genome parasites. In order to be stably transmitted through generations, many B chromosomes exhibit the ability to "drive", i.e., they transmit themselves at super-Mendelian frequencies to progeny through directed interactions with the cell division apparatus. To date, very little is understood mechanistically about how B chromosomes drive, although a likely scenario is that expression of B chromosome sequences plays a role. Here, we highlight a handful of previously identified B chromosome sequences, many of which are repetitive and non-coding in nature, that have been shown to be expressed at the transcriptional level. We speculate on how each type of expressed sequence could participate in B chromosome drive based on known functions of RNA in general chromatin- and chromosome-related processes. We also raise some challenges to functionally testing these possible roles, a goal that will be required to more fully understand whether and how B chromosomes interact with components of the cell for drive and transmission.
Collapse
Affiliation(s)
- Elena Dalla Benetta
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA.
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Patrick M Ferree
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA.
| |
Collapse
|
20
|
Hanlon SL, Miller DE, Eche S, Hawley RS. Origin, Composition, and Structure of the Supernumerary B Chromosome of Drosophila melanogaster. Genetics 2018; 210:1197-1212. [PMID: 30249684 PMCID: PMC6283169 DOI: 10.1534/genetics.118.301478] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/23/2018] [Indexed: 01/18/2023] Open
Abstract
The number of chromosomes carried by an individual species is one of its defining characteristics. Some species, however, can also carry supernumerary chromosomes referred to as B chromosomes. B chromosomes were recently identified in a laboratory stock of Drosophila melanogaster-an established model organism with a wealth of genetic and genomic resources-enabling us to subject them to extensive molecular analysis. We isolated the B chromosomes by pulsed-field gel electrophoresis and determined their composition through next-generation sequencing. Although these B chromosomes carry no known euchromatic sequence, they are rich in transposable elements and long arrays of short nucleotide repeats, the most abundant being the uncharacterized AAGAT satellite repeat. Fluorescent in situ hybridization on metaphase chromosome spreads revealed this repeat is located on chromosome 4, strongly suggesting the origin of the B chromosomes is chromosome 4 Cytological and quantitative comparisons of signal intensity between chromosome 4 and the B chromosomes supports the hypothesis that the structure of the B chromosome is an isochromosome. We also report the identification of a new B chromosome variant in a related laboratory stock. This B chromosome has a similar repeat signature as the original but is smaller and much less prevalent. We examined additional stocks with similar genotypes and did not find B chromosomes, but did find these stocks lacked the AAGAT satellite repeat. Our molecular characterization of D. melanogaster B chromosomes is the first step toward understanding how supernumerary chromosomes arise from essential chromosomes and what may be necessary for their stable inheritance.
Collapse
Affiliation(s)
- Stacey L Hanlon
- Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Danny E Miller
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington 98105
| | - Salam Eche
- Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - R Scott Hawley
- Stowers Institute for Medical Research, Kansas City, Missouri 64110
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
21
|
Li M, Bui M, Akbari OS. Embryo Microinjection and Transplantation Technique for Nasonia vitripennis Genome Manipulation. J Vis Exp 2017. [PMID: 29364231 PMCID: PMC5908372 DOI: 10.3791/56990] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The jewel wasp Nasonia vitripennis has emerged as an effective model system for the study of processes including sex determination, haplo-diploid sex determination, venom synthesis, and host-symbiont interactions, among others. A major limitation of working with this organism is the lack of effective protocols to perform directed genome modifications. An important part of genome modification is delivery of editing reagents, including CRISPR/Cas9 molecules, into embryos through microinjection. While microinjection is well established in many model organisms, this technique is particularly challenging to perform in N. vitripennis primarily due to its small embryo size, and the fact that embryonic development occurs entirely within a parasitized blowfly pupa. The following procedure overcomes these significant challenges while demonstrating a streamlined, visual procedure for effectively removing wasp embryos from parasitized host pupae, microinjecting them, and carefully transplanting them back into the host for continuation and completion of development. This protocol will strongly enhance the capability of research groups to perform advanced genome modifications in this organism.
Collapse
Affiliation(s)
- Ming Li
- Department of Entomology and Riverside Center of Disease Vector Research, Institute for Integrative Genome Biology, University of California, Riverside; Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego
| | - Michelle Bui
- Department of Entomology and Riverside Center of Disease Vector Research, Institute for Integrative Genome Biology, University of California, Riverside; Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego
| | - Omar S Akbari
- Department of Entomology and Riverside Center of Disease Vector Research, Institute for Integrative Genome Biology, University of California, Riverside; Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego;
| |
Collapse
|
22
|
Ruban A, Schmutzer T, Scholz U, Houben A. How Next-Generation Sequencing Has Aided Our Understanding of the Sequence Composition and Origin of B Chromosomes. Genes (Basel) 2017; 8:E294. [PMID: 29068386 PMCID: PMC5704207 DOI: 10.3390/genes8110294] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 12/21/2022] Open
Abstract
Accessory, supernumerary, or-most simply-B chromosomes, are found in many eukaryotic karyotypes. These small chromosomes do not follow the usual pattern of segregation, but rather are transmitted in a higher than expected frequency. As increasingly being demonstrated by next-generation sequencing (NGS), their structure comprises fragments of standard (A) chromosomes, although in some plant species, their sequence also includes contributions from organellar genomes. Transcriptomic analyses of various animal and plant species have revealed that, contrary to what used to be the common belief, some of the B chromosome DNA is protein-encoding. This review summarizes the progress in understanding B chromosome biology enabled by the application of next-generation sequencing technology and state-of-the-art bioinformatics. In particular, a contrast is drawn between a direct sequencing approach and a strategy based on a comparative genomics as alternative routes that can be taken towards the identification of B chromosome sequences.
Collapse
Affiliation(s)
- Alevtina Ruban
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, 06466 Seeland, Germany.
| | - Thomas Schmutzer
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, 06466 Seeland, Germany.
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, 06466 Seeland, Germany.
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, 06466 Seeland, Germany.
| |
Collapse
|
23
|
Unique sequence organization and small RNA expression of a "selfish" B chromosome. Chromosoma 2017; 126:753-768. [PMID: 28780664 DOI: 10.1007/s00412-017-0641-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
Abstract
B chromosomes are found in numerous plants and animals. These nonessential, supernumerary chromosomes are often composed primarily of noncoding DNA repeats similar to those found within transcriptionally "silenced" heterochromatin. In order to persist within their resident genomes, many B chromosomes exhibit exceptional cellular behaviors, including asymmetric segregation into gametes and induction of genome elimination during early development. An important goal in understanding these behaviors is to identify unique B chromosome sequences and characterize their transcriptional contributions. We investigated these properties by examining a paternally transmitted B chromosome known as paternal sex ratio (PSR), which is present in natural populations of the jewel wasp Nasonia vitripennis. To facilitate its own transmission, PSR severely biases the sex ratio by disrupting early chromatin remodeling processes. Through cytological mapping and other approaches, we identified multiple DNA repeats unique to PSR, as well as those found on the A chromosomes, suggesting that PSR arose through a merger of sequences from both within and outside the N. vitripennis genome. The majority of PSR-specific repeats are interspersed among each other across PSR's long arm, in contrast with the distinct "blocks" observed in other organisms' heterochromatin. Through transcriptional profiling, we identified a subset of repeat-associated, small RNAs expressed by PSR, most of which map to a single PSR-specific repeat. These RNAs are expressed at much higher levels than those arising from A chromosome-linked repeats, suggesting that in addition to its sequence organization, PSR's transcriptional properties differ substantially from the pericentromeric regions of the normal chromosomes.
Collapse
|
24
|
Aldrich JC, Ferree PM. Genome Silencing and Elimination: Insights from a "Selfish" B Chromosome. Front Genet 2017; 8:50. [PMID: 28487723 PMCID: PMC5403880 DOI: 10.3389/fgene.2017.00050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/10/2017] [Indexed: 02/04/2023] Open
Abstract
B chromosomes are non-essential components of numerous plant and animal genomes. Because many of these "extra" chromosomes enhance their own transmission in ways that are detrimental to the rest of the genome, they can be thought of as genome parasites. An extreme example is a paternally inherited B chromosome known as paternal sex ratio (PSR), which is found in natural populations of the jewel wasp Nasonia vitripennis. In order to ensure its own propagation, PSR severely biases the wasp sex ratio by converting diploid female-destined embryos into transmitting haploid males. This action occurs at the expense of the other paternally inherited chromosomes, which fail to resolve during the first round of division and are thus eliminated. Recent work has revealed that paternal genome elimination by PSR occurs through the disruption of a number of specific histone post-translational modifications, suggesting a central role for chromatin regulation in this phenomenon. In this review, we describe these recent advances in the light of older ones and in the context of what is currently understood about the molecular mechanisms of targeted genome silencing and elimination in other systems.
Collapse
Affiliation(s)
| | - Patrick M. Ferree
- W.M. Keck Science Department, Claremont McKenna College, Pitzer College and Scripps College, ClaremontCA, USA
| |
Collapse
|