1
|
Romagnano V, Kubon J, Sokolov AN, Fallgatter AJ, Braun C, Pavlova MA. Dynamic brain communication underwriting face pareidolia. Proc Natl Acad Sci U S A 2024; 121:e2401196121. [PMID: 38588422 PMCID: PMC11032489 DOI: 10.1073/pnas.2401196121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
Face pareidolia is a tendency to seeing faces in nonface images that reflects high tuning to a face scheme. Yet, studies of the brain networks underwriting face pareidolia are scarce. Here, we examined the time course and dynamic topography of gamma oscillatory neuromagnetic activity while administering a task with nonface images resembling a face. Images were presented either with canonical orientation or with display inversion that heavily impedes face pareidolia. At early processing stages, the peaks in gamma activity (40 to 45 Hz) to images either triggering or not face pareidolia originate mainly from the right medioventral and lateral occipital cortices, rostral and caudal cuneus gyri, and medial superior occipital gyrus. Yet, the difference occurred at later processing stages in the high-frequency range of 80 to 85 Hz over a set of the areas constituting the social brain. The findings speak rather for a relatively late neural network playing a key role in face pareidolia. Strikingly, a cutting-edge analysis of brain connectivity unfolding over time reveals mutual feedforward and feedback intra- and interhemispheric communication not only within the social brain but also within the extended large-scale network of down- and upstream regions. In particular, the superior temporal sulcus and insula strongly engage in communication with other brain regions either as signal transmitters or recipients throughout the whole processing of face-pareidolia images.
Collapse
Affiliation(s)
- Valentina Romagnano
- Social Neuroscience Unit, Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen72076, Germany
| | - Julian Kubon
- Social Neuroscience Unit, Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen72076, Germany
| | - Alexander N. Sokolov
- Social Neuroscience Unit, Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen72076, Germany
| | - Andreas J. Fallgatter
- Social Neuroscience Unit, Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen72076, Germany
| | - Christoph Braun
- Magnetoencephalography Center, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen72076, Germany
- Hertie Institute for Clinical Brain Research, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen72076, Germany
| | - Marina A. Pavlova
- Social Neuroscience Unit, Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen72076, Germany
| |
Collapse
|
2
|
Kubon J, Romagnano V, Sokolov AN, Fallgatter AJ, Braun C, Pavlova MA. Neural circuits underpinning face tuning in male depression. Cereb Cortex 2022; 33:3827-3839. [PMID: 35989312 DOI: 10.1093/cercor/bhac310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Reading bodies and faces is essential for efficient social interactions, though it may be thought-provoking for individuals with depression. Yet aberrations in the face sensitivity and underwriting neural circuits are not well understood, in particular, in male depression. Here, we use cutting-edge analyses of time course and dynamic topography of gamma oscillatory neuromagnetic cortical activity during administration of a task with Arcimboldo-like images. No difference in face tuning was found between individuals with depression and their neurotypical peers. Furthermore, this behavioral outcome nicely dovetails with magnetoencephalographic data: at early processing stages, the gamma oscillatory response to images resembling a face was rather similar in patients and controls. These bursts originated primarily from the right medioventral occipital cortex and lateral occipital cortex. At later processing stages, however, its topography altered remarkably in depression with profound engagement of the frontal circuits. Yet the primary difference in depressive individuals as compared with their neurotypical peers occurred over the left middle temporal cortices, a part of the social brain, engaged in feature integration and meaning retrieval. The outcome suggests compensatory recruitment of neural resources in male depression.
Collapse
Affiliation(s)
- Julian Kubon
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Calwerstr. 14, 72076 Tübingen, Germany
| | - Valentina Romagnano
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Calwerstr. 14, 72076 Tübingen, Germany
| | - Alexander N Sokolov
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Calwerstr. 14, 72076 Tübingen, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Calwerstr. 14, 72076 Tübingen, Germany
| | - Christoph Braun
- MEG Center, Medical School and University Hospital, Eberhard Karls University of Tübingen, Otfried Müller Str. 47, 72076 Tübingen, Germany
| | - Marina A Pavlova
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Calwerstr. 14, 72076 Tübingen, Germany
| |
Collapse
|
3
|
Beppi C, Ribeiro Violante I, Scott G, Sandrone S. EEG, MEG and neuromodulatory approaches to explore cognition: Current status and future directions. Brain Cogn 2021; 148:105677. [PMID: 33486194 DOI: 10.1016/j.bandc.2020.105677] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 01/04/2023]
Abstract
Neural oscillations and their association with brain states and cognitive functions have been object of extensive investigation over the last decades. Several electroencephalography (EEG) and magnetoencephalography (MEG) analysis approaches have been explored and oscillatory properties have been identified, in parallel with the technical and computational advancement. This review provides an up-to-date account of how EEG/MEG oscillations have contributed to the understanding of cognition. Methodological challenges, recent developments and translational potential, along with future research avenues, are discussed.
Collapse
Affiliation(s)
- Carolina Beppi
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| | - Inês Ribeiro Violante
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom; School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.
| | - Gregory Scott
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom.
| | - Stefano Sandrone
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
4
|
Measurement and Modulation of Working Memory-Related Oscillatory Abnormalities. J Int Neuropsychol Soc 2019; 25:1076-1081. [PMID: 31358081 DOI: 10.1017/s1355617719000845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Despite the critical role of working memory (WM) in neuropsychiatric conditions, there remains a dearth of available WM-targeted interventions. Gamma and theta oscillations as measured with electroencephalography (EEG) or magnetoencephalography (MEG) reflect the neural underpinnings of WM. The WM processes that fluctuate in conjunction with WM demands are closely correlated with WM test performance, and their EEG signatures are abnormal in several clinical populations. Novel interventions such as transcranial magnetic stimulation (TMS) have been shown to modulate these oscillations and subsequently improve WM performance and clinical symptoms. Systematically identifying pathological WM-related gamma/theta oscillatory patterns with EEG/MEG and developing ways to target them with interventions such as TMS is an active area of clinical research. Results hold promise for enhancing the outcomes of our patients with WM deficits and for moving the field of clinical neuropsychology towards a mechanism-based approach.
Collapse
|