1
|
Cumpata AJ, Peptanariu D, Lungoci AL, Labusca L, Pinteala M, Radulescu L. Towards Regenerative Audiology: Immune Modulation of Adipose-Derived Mesenchymal Cells Preconditioned with Citric Acid-Coated Antioxidant-Functionalized Magnetic Nanoparticles. Medicina (B Aires) 2023; 59:587. [DOI: https:/doi.org/10.3390/medicina59030587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
Introduction and Background: Based on stem cells, bioactive molecules and supportive structures, regenerative medicine (RM) is promising for its potential impact on field of hearing loss by offering innovative solutions for hair cell rescue. Nanotechnology has recently been regarded as a powerful tool for accelerating the efficiency of RM therapeutic solutions. Adipose-derived mesenchymal cells (ADSCs) have already been tested in clinical trials for their regenerative and immunomodulatory potential in various medical fields; however, the advancement to bedside treatment has proven to be tedious. Innovative solutions are expected to circumvent regulatory and manufacturing issues related to living cell-based therapies. The objectives of the study were to test if human primary ADSCs preconditioned with magnetic nanoparticles coated with citric acid and functionalized with antioxidant protocatechuic acid (MNP-CA-PCA) retain their phenotypic features and if conditioned media elicit immune responses in vitro. MNP-CA-PCA was synthesized and characterized regarding size, colloidal stability as well as antioxidant release profile. Human primary ADSCs preconditioned with MNP-CA-PCA were tested for viability, surface marker expression and mesenchymal lineage differentiation potential. Conditioned media (CM) from ADSCs treated with MNP-CA-PCA were tested for Il-6 and IL-8 cytokine release using ELISA and inhibition of lectin-stimulated peripheral blood monocyte proliferation. Results: MNP-CA-PCA-preconditioned ADSCs display good viability and retain their specific mesenchymal stem cell phenotype. CM from ADSCs conditioned with MNP-CA-PCA do not display increased inflammatory cytokine release and do not induce proliferation of allergen-stimulated allogeneic peripheral blood monocytes in vitro. Conclusions: While further in vitro and in vivo tests are needed to validate these findings, the present results indicated that CM from ADSCs preconditioned with MNP-CA-PCA could be developed as possible cell-free therapies for rescuing auditory hair cells.
Collapse
Affiliation(s)
- Adeline Josephine Cumpata
- Doctoral School, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Dragos Peptanariu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers ‘‘Petru Poni’’, Institute of Macromolecular Chemistry Aleea Grigore Ghica, Voda 41A, 700487 Iasi, Romania
| | - Ana-Lacramioara Lungoci
- Centre of Advanced Research in Bionanoconjugates and Biopolymers ‘‘Petru Poni’’, Institute of Macromolecular Chemistry Aleea Grigore Ghica, Voda 41A, 700487 Iasi, Romania
| | - Luminita Labusca
- Orthopedics and Traumatology Clinic, Emergency Hospital Saint Spiridon, 1 St Independentei Boulevard, 700111 Iasi, Romania
- National Institute of Research and Development in Technical Physics Iasi Romania, 700111 Iasi, Romania
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers ‘‘Petru Poni’’, Institute of Macromolecular Chemistry Aleea Grigore Ghica, Voda 41A, 700487 Iasi, Romania
| | - Luminita Radulescu
- Doctoral School, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
- ENT Clinic Department, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| |
Collapse
|
2
|
Cumpata AJ, Peptanariu D, Lungoci AL, Labusca L, Pinteala M, Radulescu L. Towards Regenerative Audiology: Immune Modulation of Adipose-Derived Mesenchymal Cells Preconditioned with Citric Acid-Coated Antioxidant-Functionalized Magnetic Nanoparticles. Medicina (B Aires) 2023; 59:medicina59030587. [PMID: 36984588 PMCID: PMC10058393 DOI: 10.3390/medicina59030587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction and Background: Based on stem cells, bioactive molecules and supportive structures, regenerative medicine (RM) is promising for its potential impact on field of hearing loss by offering innovative solutions for hair cell rescue. Nanotechnology has recently been regarded as a powerful tool for accelerating the efficiency of RM therapeutic solutions. Adipose-derived mesenchymal cells (ADSCs) have already been tested in clinical trials for their regenerative and immunomodulatory potential in various medical fields; however, the advancement to bedside treatment has proven to be tedious. Innovative solutions are expected to circumvent regulatory and manufacturing issues related to living cell-based therapies. The objectives of the study were to test if human primary ADSCs preconditioned with magnetic nanoparticles coated with citric acid and functionalized with antioxidant protocatechuic acid (MNP-CA-PCA) retain their phenotypic features and if conditioned media elicit immune responses in vitro. MNP-CA-PCA was synthesized and characterized regarding size, colloidal stability as well as antioxidant release profile. Human primary ADSCs preconditioned with MNP-CA-PCA were tested for viability, surface marker expression and mesenchymal lineage differentiation potential. Conditioned media (CM) from ADSCs treated with MNP-CA-PCA were tested for Il-6 and IL-8 cytokine release using ELISA and inhibition of lectin-stimulated peripheral blood monocyte proliferation. Results: MNP-CA-PCA-preconditioned ADSCs display good viability and retain their specific mesenchymal stem cell phenotype. CM from ADSCs conditioned with MNP-CA-PCA do not display increased inflammatory cytokine release and do not induce proliferation of allergen-stimulated allogeneic peripheral blood monocytes in vitro. Conclusions: While further in vitro and in vivo tests are needed to validate these findings, the present results indicated that CM from ADSCs preconditioned with MNP-CA-PCA could be developed as possible cell-free therapies for rescuing auditory hair cells.
Collapse
Affiliation(s)
- Adeline Josephine Cumpata
- Doctoral School, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania; (A.J.C.); (L.R.)
| | - Dragos Peptanariu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers ‘‘Petru Poni’’, Institute of Macromolecular Chemistry Aleea Grigore Ghica, Voda 41A, 700487 Iasi, Romania; (D.P.)
| | - Ana-Lacramioara Lungoci
- Centre of Advanced Research in Bionanoconjugates and Biopolymers ‘‘Petru Poni’’, Institute of Macromolecular Chemistry Aleea Grigore Ghica, Voda 41A, 700487 Iasi, Romania; (D.P.)
| | - Luminita Labusca
- Orthopedics and Traumatology Clinic, Emergency Hospital Saint Spiridon, 1 St Independentei Boulevard, 700111 Iasi, Romania
- National Institute of Research and Development in Technical Physics Iasi Romania, 700111 Iasi, Romania
- Correspondence:
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers ‘‘Petru Poni’’, Institute of Macromolecular Chemistry Aleea Grigore Ghica, Voda 41A, 700487 Iasi, Romania; (D.P.)
| | - Luminita Radulescu
- Doctoral School, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania; (A.J.C.); (L.R.)
- ENT Clinic Department, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| |
Collapse
|
3
|
α-Lipoic Acid-Plus Ameliorates Endothelial Injury by Inhibiting the Apoptosis Pathway Mediated by Intralysosomal Cathepsins in an In Vivo and In Vitro Endothelial Injury Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8979904. [PMID: 35450412 PMCID: PMC9018191 DOI: 10.1155/2022/8979904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/27/2022] [Accepted: 02/23/2022] [Indexed: 11/18/2022]
Abstract
α-Lipoic acid-plus (LAP), an amine derivative of α-lipoic acid, has been reported to protect cells from oxidative stress damage by reacting with lysosomal iron and is more powerful than desferrioxamine (DFO). However, the role of LAP in experimental carotid artery intimal injury (CAII) has not yet been well investigated. Therefore, we sought to uncover the role and potential endovascular protective mechanisms of LAP in endothelial injury. In vitro, oxyhemoglobin (OxyHb) stimulation of cultured human umbilical vein endothelial cells (HUVECs) simulated intimal injury. In vivo, balloon compression injury of the carotid artery was used to establish a rat CAII model. We found that the protein levels of cathepsin B/D, ferritin, transferrin receptor (TfR), cleaved caspase-3, and Bax increased in the injured endothelium and HUVECs but were rectified by DFO and LAP treatments, as revealed by western blotting and immunofluorescence staining. Additionally, DFO and LAP decreased oxidative stress levels and endothelial cell necrosis of the damaged endothelium. Moreover, DFO and LAP significantly ameliorated the increased oxidative stress, iron level, and lactic dehydrogenase activity of HUVECs and improved the reduced HUVEC viability induced by OxyHb. More importantly, DFO and LAP significantly reduced mitochondrial damage and were beneficial for maintaining lysosomal integrity, as indicated by acridine orange (AO), Lyso-Tracker Red, JC-1, and ATPB staining in HUVECs. Finally, LAP might offer more significant endovascular protective effects than DFO. Our data suggested that LAP exerted endovascular protective effects by inhibiting the apoptosis signaling pathway mediated by intralysosomal cathepsins by reacting with excessive iron in endothelial lysosomes after intimal injury.
Collapse
|
4
|
Chen Y, Hou S. Application of magnetic nanoparticles in cell therapy. Stem Cell Res Ther 2022; 13:135. [PMID: 35365206 PMCID: PMC8972776 DOI: 10.1186/s13287-022-02808-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/09/2022] [Indexed: 02/08/2023] Open
Abstract
Fe3O4 magnetic nanoparticles (MNPs) are biomedical materials that have been approved by the FDA. To date, MNPs have been developed rapidly in nanomedicine and are of great significance. Stem cells and secretory vesicles can be used for tissue regeneration and repair. In cell therapy, MNPs which interact with external magnetic field are introduced to achieve the purpose of cell directional enrichment, while MRI to monitor cell distribution and drug delivery. This paper reviews the size optimization, response in external magnetic field and biomedical application of MNPs in cell therapy and provides a comprehensive view.
Collapse
Affiliation(s)
- Yuling Chen
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China. .,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| |
Collapse
|
5
|
Dasari A, Xue J, Deb S. Magnetic Nanoparticles in Bone Tissue Engineering. NANOMATERIALS 2022; 12:nano12050757. [PMID: 35269245 PMCID: PMC8911835 DOI: 10.3390/nano12050757] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 12/25/2022]
Abstract
Large bone defects with limited intrinsic regenerative potential represent a major surgical challenge and are associated with a high socio-economic burden and severe reduction in the quality of life. Tissue engineering approaches offer the possibility to induce new functional bone regeneration, with the biomimetic scaffold serving as a bridge to create a microenvironment that enables a regenerative niche at the site of damage. Magnetic nanoparticles have emerged as a potential tool in bone tissue engineering that leverages the inherent magnetism of magnetic nano particles in cellular microenvironments providing direction in enhancing the osteoinductive, osteoconductive and angiogenic properties in the design of scaffolds. There are conflicting opinions and reports on the role of MNPs on these scaffolds, such as the true role of magnetism, the application of external magnetic fields in combination with MNPs, remote delivery of biomechanical stimuli in-vivo and magnetically controlled cell retention or bioactive agent delivery in promoting osteogenesis and angiogenesis. In this review, we focus on the role of magnetic nanoparticles for bone-tissue-engineering applications in both disease modelling and treatment of injuries and disease. We highlight the materials-design pathway from implementation strategy through the selection of materials and fabrication methods to evaluation. We discuss the advances in this field and unmet needs, current challenges in the development of ideal materials for bone-tissue regeneration and emerging strategies in the field.
Collapse
Affiliation(s)
- Akshith Dasari
- Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Floor 17 Tower Wing, Guy’s Hospital, London Bridge, London SE19RT, UK; (A.D.); (J.X.)
- Faculty of Life Sciences & Medicine, King’s College London, Guy’s Campus, London SE11UL, UK
| | - Jingyi Xue
- Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Floor 17 Tower Wing, Guy’s Hospital, London Bridge, London SE19RT, UK; (A.D.); (J.X.)
| | - Sanjukta Deb
- Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Floor 17 Tower Wing, Guy’s Hospital, London Bridge, London SE19RT, UK; (A.D.); (J.X.)
- Correspondence:
| |
Collapse
|
6
|
Zhang W, Gaikwad H, Groman EV, Purev E, Simberg D, Wang G. Highly aminated iron oxide nanoworms for simultaneous manufacturing and labeling of chimeric antigen receptor T cells. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 2022; 541:168480. [PMID: 34720339 PMCID: PMC8553019 DOI: 10.1016/j.jmmm.2021.168480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cell based therapies including chimeric antigen receptor (CAR) T cells are promising for treating leukemias and solid cancers. At the same time, there is interest in enhancing the functionality of these cells via surface decoration with nanoparticles (backpacking). Magnetic nanoparticle cell labeling is of particular interest due to opportunities for magnetic separation, in vivo manipulation, drug delivery and magnetic resonance imaging (MRI). While modification of T cells with magnetic nanoparticles (MNPs) was explored before, we questioned whether MNPs are compatible with CAR-T cells when introduced during the manufacturing process. We chose highly aminated 120 nm crosslinked iron oxide nanoworms (CLIO NWs, ~36,000 amines per NW) that could efficiently label different adherent cell lines and we used CD123 CAR-T cells as the labeling model. The CD123 CAR-T cells were produced in the presence of CLIO NWs, CLIO NWs plus protamine sulfate (PS), or PS only. The transduction efficiency of lentiviral CD123 CAR with only NWs was ~23% lower than NW+PS and PS groups (~33% and 35%, respectively). The cell viability from these three transduction conditions was not reduced within CAR-T cell groups, though lower compared to non-transduced T cells (mock T). Use of CLIO NWs instead of, or together with cationic protamine sulfate for enhancement of lentiviral transduction resulted in comparable levels of CAR expression and viability but decreased the proportion of CD8+ cells and increased the proportion of CD4+ cells. CD123 CAR-T transduced in the presence of CLIO NWs, CLIO NWs plus PS, or PS only, showed similar level of cytotoxicity against leukemic cell lines. Furthermore, fluorescence microscopy imaging demonstrated that CD123 CAR-T cells labeled with CLIO NW formed rosettes with CD123+ leukemic cells as the non-labeled CAR-T cells, indicating that the CAR-T targeting to tumor cells has maintained after CLIO NW labeling. The in vivo trafficking of the NW labeled CAR-T cells showed the accumulation of CAR-T labeled with NWs primarily in the bone marrow and spleen. CAR-T cells can be magnetically labeled during their production while maintaining functionality using the positively charged iron oxide NWs, which enable the in vivo biodistribution and tracking of CAR-T cells.
Collapse
Affiliation(s)
- Wei Zhang
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Hanmant Gaikwad
- Translational Bio-Nanosciences Laboratory, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ernest V. Groman
- Translational Bio-Nanosciences Laboratory, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Enkhtsetseg Purev
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Corresponding Authors: (Dmitri Simberg), (Guankui Wang)
| | - Guankui Wang
- Translational Bio-Nanosciences Laboratory, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Corresponding Authors: (Dmitri Simberg), (Guankui Wang)
| |
Collapse
|
7
|
Cheng JH, Hsu CC, Hsu SL, Chou WY, Wu YN, Kuo CEA, Hsu TC, Shiu LY, Jhan SW. Adipose-Derived Mesenchymal Stem Cells-Conditioned Medium Modulates the Expression of Inflammation Induced Bone Morphogenetic Protein-2, -5 and -6 as Well as Compared with Shockwave Therapy on Rat Knee Osteoarthritis. Biomedicines 2021; 9:biomedicines9101399. [PMID: 34680516 PMCID: PMC8533238 DOI: 10.3390/biomedicines9101399] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/24/2022] Open
Abstract
The dose-dependent effects of adipose-derived mesenchymal stem cell-conditioned medium (ADSC-CM) were compared with those of shockwave (SW) therapy in the treatment of early osteoarthritis (OA). Anterior cruciate ligament transaction (ACLT) with medial meniscectomy (MMx) was performed in rats divided into sham, OA, SW, CM1 (intra-articular injection of 100 μL ADSC-CM into knee OA), and CM2 (intra-articular injection of 200 μL ADSC-CM) groups. Cartilage grading, grading of synovium changes, and specific molecular analysis by immunohistochemistry staining were performed. The OARSI and synovitis scores of CM2 and SW group were significantly decreased compared with those of the OA group (p < 0.05). The inflammatory markers interleukin 1β, terminal deoxynucleotidyl transferase dUTP nick end labeling and matrix metalloproteinase 13 were significantly reduced in the CM2 group compared to those in the SW and CM1 groups (p < 0.001). Cartilage repair markers (type II collagen and SRY-box transcription factor 9, SOX9) expression were significantly higher in the CM2 group than in the other treatment groups (p < 0.001; p < 0.05). Furthermore, inflammation-induced growth factors such as bone morphogenetic protein 2 (BMP2), BMP5, and BMP6 were significantly reduced in the treatment groups, and the CM2 group showed the best results among the treatments (p < 0.05). In conclusion, ADSC-CM and SW ameliorated the expression of inflammatory cytokines and inflammation-induced BMPs to protect the articular cartilage of the OA joint.
Collapse
Affiliation(s)
- Jai-Hong Cheng
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (J.-H.C.); (C.-C.H.); (S.-L.H.); (W.-Y.C.); (T.-C.H.)
- Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Leisure and Sports Management, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Chieh-Cheng Hsu
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (J.-H.C.); (C.-C.H.); (S.-L.H.); (W.-Y.C.); (T.-C.H.)
- Department of Orthopedic Surgery, Sports Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Shan-Ling Hsu
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (J.-H.C.); (C.-C.H.); (S.-L.H.); (W.-Y.C.); (T.-C.H.)
- Department of Orthopedic Surgery, Sports Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- School of Nursing, Fooyin University, Kaohsiung 831, Taiwan
| | - Wen-Yi Chou
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (J.-H.C.); (C.-C.H.); (S.-L.H.); (W.-Y.C.); (T.-C.H.)
- Department of Leisure and Sports Management, Cheng Shiu University, Kaohsiung 833, Taiwan
- Department of Orthopedic Surgery, Sports Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Yi-No Wu
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Chun-En Aurea Kuo
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - Tsai-Chin Hsu
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (J.-H.C.); (C.-C.H.); (S.-L.H.); (W.-Y.C.); (T.-C.H.)
- Department of Orthopedic Surgery, Sports Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Li-Yen Shiu
- Cell Therapy Center, E-Da Hospital, Kaohsiung 824, Taiwan
- Correspondence: (L.-Y.S.); (S.-W.J.)
| | - Shun-Wun Jhan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (J.-H.C.); (C.-C.H.); (S.-L.H.); (W.-Y.C.); (T.-C.H.)
- Department of Orthopedic Surgery, Sports Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Correspondence: (L.-Y.S.); (S.-W.J.)
| |
Collapse
|
8
|
Sanchez-Diaz M, Quiñones-Vico MI, Sanabria de la Torre R, Montero-Vílchez T, Sierra-Sánchez A, Molina-Leyva A, Arias-Santiago S. Biodistribution of Mesenchymal Stromal Cells after Administration in Animal Models and Humans: A Systematic Review. J Clin Med 2021; 10:jcm10132925. [PMID: 34210026 PMCID: PMC8268414 DOI: 10.3390/jcm10132925] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal Stromal Cells (MSCs) are of great interest in cellular therapy. Different routes of administration of MSCs have been described both in pre-clinical and clinical reports. Knowledge about the fate of the administered cells is critical for developing MSC-based therapies. The aim of this review is to describe how MSCs are distributed after injection, using different administration routes in animal models and humans. A literature search was performed in order to consider how MSCs distribute after intravenous, intraarterial, intramuscular, intraarticular and intralesional injection into both animal models and humans. Studies addressing the biodistribution of MSCs in “in vivo” animal models and humans were included. After the search, 109 articles were included in the review. Intravenous administration of MSCs is widely used; it leads to an initial accumulation of cells in the lungs with later redistribution to the liver, spleen and kidneys. Intraarterial infusion bypasses the lungs, so MSCs distribute widely throughout the rest of the body. Intramuscular, intraarticular and intradermal administration lack systemic biodistribution. Injection into various specific organs is also described. Biodistribution of MSCs in animal models and humans appears to be similar and depends on the route of administration. More studies with standardized protocols of MSC administration could be useful in order to make results homogeneous and more comparable.
Collapse
Affiliation(s)
- Manuel Sanchez-Diaz
- Dermatology Department, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (M.S.-D.); (T.M.-V.); (A.M.-L.); (S.A.-S.)
| | - Maria I. Quiñones-Vico
- Cellular Production Unit, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (R.S.d.l.T.); (A.S.-S.)
- Correspondence:
| | - Raquel Sanabria de la Torre
- Cellular Production Unit, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (R.S.d.l.T.); (A.S.-S.)
| | - Trinidad Montero-Vílchez
- Dermatology Department, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (M.S.-D.); (T.M.-V.); (A.M.-L.); (S.A.-S.)
| | - Alvaro Sierra-Sánchez
- Cellular Production Unit, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (R.S.d.l.T.); (A.S.-S.)
| | - Alejandro Molina-Leyva
- Dermatology Department, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (M.S.-D.); (T.M.-V.); (A.M.-L.); (S.A.-S.)
| | - Salvador Arias-Santiago
- Dermatology Department, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (M.S.-D.); (T.M.-V.); (A.M.-L.); (S.A.-S.)
- Cellular Production Unit, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (R.S.d.l.T.); (A.S.-S.)
- School of Medicine, University of Granada, 18014 Granada, Spain
| |
Collapse
|
9
|
Magnetic targeting of super-paramagnetic iron oxide nanoparticle labeled myogenic-induced adipose-derived stem cells in a rat model of stress urinary incontinence. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 30:102281. [PMID: 32763385 DOI: 10.1016/j.nano.2020.102281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 06/23/2020] [Accepted: 07/26/2020] [Indexed: 12/31/2022]
Abstract
Cell-based injectable therapy utilizing stem cells is a promising approach for the treatment of stress urinary incontinence (SUI). Applying a magnetically controlled cell delivery approach has enormous potential to enhance cell retention capability within the specified site. To assess the therapeutic efficacy of cellular magnetic targeting, we applied an external magnetic force to target an adipose-derived stem cell based therapy in a rat model of SUI. The results revealed that magnetic attraction of transplanted cells under the magnetic field was generated by cell uptake of superparamagnetic iron oxide nanoparticles in vitro. More importantly, magnetic targeting improved the retention rate of transplanted cells and facilitated the restoration of sphincter structure and function in a rat SUI model according to the results of histological examination and urodynamic testing. Therefore, magnetically guided targeting strategy might be a potential therapy method for treatment of SUI.
Collapse
|
10
|
Farcas CG, Macasoi I, Pinzaru I, Chirita M, Chirita Mihaila MC, Dehelean C, Avram S, Loghin F, Mocanu L, Rotaru V, Ieta A, Ercuta A, Coricovac D. Controlled Synthesis and Characterization of Micrometric Single Crystalline Magnetite With Superparamagnetic Behavior and Cytocompatibility/Cytotoxicity Assessments. Front Pharmacol 2020; 11:410. [PMID: 32317973 PMCID: PMC7147350 DOI: 10.3389/fphar.2020.00410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
A new class of magnetite (Fe3O4) particles, coined as “Single Crystalline Micrometric Iron Oxide Particles” (SCMIOPs), were obtained by hydrothermal synthesis. Both the single Fe3O4 phase content and the particle sizes range, from 1 µm to 30 µm, can be controlled by synthesis. The notable finding states that these particles exhibit vanishing remanent magnetization (σr=0.28 emu/g) and coercive force (Hc=1.5 Oe), which indicate a superparamagnetic-like behavior (unexpected at micrometric particles size), and remarkably high saturation magnetization (σs=95.5 emu/g), what ensures strong magnetic response, and the lack of agglomeration after the magnetic field removal. These qualities make such particles candidates for biomedical applications, to be used instead of magnetic nanoparticles which inevitably involve some drawbacks like aglommeration and insufficient magnetic response. In this sense, cytocompatibility/cytotoxicity tests were performed on human cells, and the results have clearly indicated that SCMIOPs are cytocompatible for healthy cell lines HaCaT (human keratinocytes) and HEMa (primary epidermal melanocytes) and cytotoxic for neoplastic cell lines A375 (human melanoma) and B164A5 (murine melanoma) in a dose-dependent manner.
Collapse
Affiliation(s)
- Claudia Geanina Farcas
- Department of Toxicology, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Ioana Macasoi
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Iulia Pinzaru
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Marius Chirita
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Marius Constantin Chirita Mihaila
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania.,Max F. Prutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Vienna, Austria.,Quantum Optics, Quantum Nanophysics and Quantum Information, Faculty of Physics, University of Vienna, Vienna, Austria
| | - Cristina Dehelean
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Stefana Avram
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Felicia Loghin
- Department of Toxicology, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Liviu Mocanu
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Virgil Rotaru
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Adrian Ieta
- Electrical and Computer Science Department SUNY Oswego, Oswego, NY, United States
| | - Aurel Ercuta
- Faculty of Physics, West University of Timisoara, Timisoara, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
11
|
Palmroth A, Pitkänen S, Hannula M, Paakinaho K, Hyttinen J, Miettinen S, Kellomäki M. Evaluation of scaffold microstructure and comparison of cell seeding methods using micro-computed tomography-based tools. J R Soc Interface 2020; 17:20200102. [PMID: 32228403 PMCID: PMC7211473 DOI: 10.1098/rsif.2020.0102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/16/2020] [Indexed: 12/24/2022] Open
Abstract
Micro-computed tomography (micro-CT) provides a means to analyse and model three-dimensional (3D) tissue engineering scaffolds. This study proposes a set of micro-CT-based tools firstly for evaluating the microstructure of scaffolds and secondly for comparing different cell seeding methods. The pore size, porosity and pore interconnectivity of supercritical CO2 processed poly(l-lactide-co-ɛ-caprolactone) (PLCL) and PLCL/β-tricalcium phosphate scaffolds were analysed using computational micro-CT models. The models were supplemented with an experimental method, where iron-labelled microspheres were seeded into the scaffolds and micro-CT imaged to assess their infiltration into the scaffolds. After examining the scaffold architecture, human adipose-derived stem cells (hASCs) were seeded into the scaffolds using five different cell seeding methods. Cell viability, number and 3D distribution were evaluated. The distribution of the cells was analysed using micro-CT by labelling the hASCs with ultrasmall paramagnetic iron oxide nanoparticles. Among the tested seeding methods, a forced fluid flow-based technique resulted in an enhanced cell infiltration throughout the scaffolds compared with static seeding. The current study provides an excellent set of tools for the development of scaffolds and for the design of 3D cell culture experiments.
Collapse
Affiliation(s)
- Aleksi Palmroth
- Biomaterials and Tissue Engineering Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland
| | - Sanna Pitkänen
- Adult Stem Cell Group, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Markus Hannula
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kaarlo Paakinaho
- Adult Stem Cell Group, Tampere University, Tampere, Finland
- Orton Orthopaedic Hospital, Helsinki, Finland
| | - Jari Hyttinen
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Minna Kellomäki
- Biomaterials and Tissue Engineering Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland
| |
Collapse
|
12
|
Anna IM, Sathy BN, Ashokan A, Gowd GS, Ramachandran R, Kochugovindan Unni AK, Manohar M, Chulliyath D, Nair S, Bhakoo K, Koyakutty M. nCP:Fe—A Biomineral Magnetic Nanocontrast Agent for Tracking Implanted Stem Cells in Brain Using MRI. ACS APPLIED BIO MATERIALS 2019; 2:5390-5403. [DOI: 10.1021/acsabm.9b00709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ida M. Anna
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham University, Kochi, Kerala 682041, India
| | - Binulal N. Sathy
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham University, Kochi, Kerala 682041, India
| | - Anusha Ashokan
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham University, Kochi, Kerala 682041, India
| | - Genekehal Siddaramana Gowd
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham University, Kochi, Kerala 682041, India
| | - Ranjith Ramachandran
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham University, Kochi, Kerala 682041, India
| | | | - Maneesh Manohar
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham University, Kochi, Kerala 682041, India
| | - DeepthiMol Chulliyath
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham University, Kochi, Kerala 682041, India
| | - Shantikumar Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham University, Kochi, Kerala 682041, India
| | - Kishore Bhakoo
- Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), Helios, Singapore 138667, Singapore
| | - Manzoor Koyakutty
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham University, Kochi, Kerala 682041, India
| |
Collapse
|
13
|
Nandwana V, Ryoo SR, Zheng T, You MM, Dravid VP. Magnetic Nanostructure-Coated Thermoresponsive Hydrogel Nanoconstruct As a Smart Multimodal Theranostic Platform. ACS Biomater Sci Eng 2019; 5:3049-3059. [DOI: 10.1021/acsbiomaterials.9b00361] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Duan M, Shapter JG, Qi W, Yang S, Gao G. Recent progress in magnetic nanoparticles: synthesis, properties, and applications. NANOTECHNOLOGY 2018; 29:452001. [PMID: 30142088 DOI: 10.1088/1361-6528/aadcec] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The rapid development of advanced nanotechnology has continuously changed many aspects of society. One important nanostructured material, magnetic nanoparticles (NPs), has applications in many areas including clean energy, biology and engineering because of their special magnetic properties. The synthesis of magnetic nanomaterials with desired sizes and morphology has attracted great attention. Nanomaterials with different properties can be combined to construct multifunctional nanoplatforms through systematic surface engineering. The surface modification of magnetic NPs presents the opportunity for them to be used in many practical applications. Functionalized magnetic NPs have been successfully applied in catalysis, as thermoelectric materials, for drug delivery, as imaging agents in nuclear magnetic resonance and in biosensors. In this review, synthetic methods for magnetic NPs and some of their important properties are described. Then the latest progress of the application of magnetic NPs in energy and biology has been summarized and discussed. Finally, we discuss some issues that still need to be solved and the prospects for magnetic NPs.
Collapse
Affiliation(s)
- Meng Duan
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | | | | | | | | |
Collapse
|
15
|
Park HS, Kim J, Cho MY, Lee H, Nam SH, Suh YD, Hong KS. Convenient and effective ICGylation of magnetic nanoparticles for biomedical applications. Sci Rep 2017; 7:8831. [PMID: 28821875 PMCID: PMC5562755 DOI: 10.1038/s41598-017-09627-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/27/2017] [Indexed: 01/25/2023] Open
Abstract
Nanoprobes used for biomedical applications usually require surface modifications with amphiphilic surfactants or inorganic coating materials to enhance their biocompatibility. We proposed a facile synthetic approach for the phase transfer of hydrophobic magnetic nanoparticles by the direct adherence of fluorescent probes, without any chemical modifications, for use as a magnetic resonance (MR)/near-infrared (NIR) fluorescence bimodal imaging contrast agent. Indocyanine green (ICG) was used not only as an optical component for NIR imaging, but also as a surfactant for phase transfer with no superfluous moiety: we therefore called the process "ICGylation". Cell labeling and tracking in vivo with ICGylated magnetic nanoparticles were successfully performed by MR/NIR dual-mode imaging for three days, which showed remarkable biostability without any additional surface functionalization. We expect that this novel MR/NIR contrast agent demonstrating sensitive detection and simultaneous imaging capability can be used in diverse fields, such as the imaging and tracking of immune cells to confirm immunotherapeutic efficacy. The approach used could also be applied to other kinds of nanoparticles, and it would promote the development of advanced functional multimodal nanobioprobes.
Collapse
Affiliation(s)
- Hye Sun Park
- Bioimaging Research Team, Korea Basic Science Institute, Cheongju, 28119, Korea
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Jongwoo Kim
- Laboratory for Advanced Molecular Probing (LAMP), Research Center for Convergence NanoRaman Technology, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Mi Young Cho
- Bioimaging Research Team, Korea Basic Science Institute, Cheongju, 28119, Korea
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Hyunseung Lee
- Bioimaging Research Team, Korea Basic Science Institute, Cheongju, 28119, Korea
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Sang Hwan Nam
- Laboratory for Advanced Molecular Probing (LAMP), Research Center for Convergence NanoRaman Technology, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Yung Doug Suh
- Laboratory for Advanced Molecular Probing (LAMP), Research Center for Convergence NanoRaman Technology, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea.
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Korea.
| | - Kwan Soo Hong
- Bioimaging Research Team, Korea Basic Science Institute, Cheongju, 28119, Korea.
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea.
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Korea.
| |
Collapse
|
16
|
Zhou S, Yang R, Zou Q, Zhang K, Yin T, Zhao W, Shapter JG, Gao G, Fu Q. Fabrication of Tissue-Engineered Bionic Urethra Using Cell Sheet Technology and Labeling By Ultrasmall Superparamagnetic Iron Oxide for Full-Thickness Urethral Reconstruction. Theranostics 2017; 7:2509-2523. [PMID: 28744331 PMCID: PMC5525753 DOI: 10.7150/thno.18833] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/21/2017] [Indexed: 01/18/2023] Open
Abstract
Urethral strictures remain a reconstructive challenge, due to less than satisfactory outcomes and high incidence of stricture recurrence. An “ideal” urethral reconstruction should establish similar architecture and function as the original urethral wall. We fabricated a novel tissue-engineered bionic urethras using cell sheet technology and report their viability in a canine model. Small amounts of oral and adipose tissues were harvested, and adipose-derived stem cells, oral mucosal epithelial cells, and oral mucosal fibroblasts were isolated and used to prepare cell sheets. The cell sheets were hierarchically tubularized to form 3-layer tissue-engineered urethras and labeled by ultrasmall super-paramagnetic iron oxide (USPIO). The constructed tissue-engineered urethras were transplanted subcutaneously for 3 weeks to promote the revascularization and biomechanical strength of the implant. Then, 2 cm length of the tubularized penile urethra was replaced by tissue-engineered bionic urethra. At 3 months of urethral replacement, USPIO-labeled tissue-engineered bionic urethra can be effectively detected by MRI at the transplant site. Histologically, the retrieved bionic urethras still displayed 3 layers, including an epithelial layer, a fibrous layer, and a myoblast layer. Three weeks after subcutaneous transplantation, immunofluorescence analysis showed the density of blood vessels in bionic urethra was significantly increased following the initial establishment of the constructs and was further up-regulated at 3 months after urethral replacement and was close to normal level in urethral tissue. Our study is the first to experimentally demonstrate 3-layer tissue-engineered urethras can be established using cell sheet technology and can promote the regeneration of structural and functional urethras similar to normal urethra.
Collapse
|
17
|
Yi DK, Nanda SS, Kim K, Tamil Selvan S. Recent progress in nanotechnology for stem cell differentiation, labeling, tracking and therapy. J Mater Chem B 2017; 5:9429-9451. [DOI: 10.1039/c7tb02532g] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanotechnology advancements for stem cell differentiation, labeling, tracking and therapeutic applications in cardiac repair, bone, and liver regeneration are delineated.
Collapse
Affiliation(s)
- Dong Kee Yi
- Department of Chemistry
- Myongji University
- Yongin 449-728
- South Korea
| | | | - Kwangmeyung Kim
- Center for Theragnosis
- Biomedical Research Institute
- Korea Institute of Science and Technology (KIST)
- Seoul
- South Korea
| | | |
Collapse
|