1
|
Kausar S, Abbas MN, Gul I, Liu R, Li Q, Zhao E, Lv M, Cui H. Molecular Identification of Two DNA Methyltransferase Genes and Their Functional Characterization in the Anti-Bacterial Immunity of Antheraea pernyi. Front Immunol 2022; 13:855888. [PMID: 35651618 PMCID: PMC9149099 DOI: 10.3389/fimmu.2022.855888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/11/2022] [Indexed: 12/29/2022] Open
Abstract
Under different physiological conditions, such as microbial infection, epigenetic mechanisms regulate genes at the transcription level in living organisms. DNA methylation is a type of epigenetic mechanism in which DNA methyltransferases modify the expression of target genes. Here, we identified a full-length sequence of DNMT-1 and DNMT-2 from the Chinese oak silkworm, A. pernyi, which was highly similar to the homologous sequences of Bombyx mori. ApDNMT-1 and ApDNMT-2 have unique domain architectures of insect DNMTs, highlighting their conserved functions in A. pernyi. ApDNMT-1 and ApDNMT-2 were found to be widely expressed in various tissues, with the highest levels of expression in hemocytes, the ovary, testis, and fat bodies. To understand the biological role of these genes in microbial resistance, we challenged the fifth instar larvae of A. pernyi by administrating Gram-positive and Gram-negative bacteria and fungi. The results revealed that transcript levels of ApDNMT-1 and ApDNMT-2 were increased compared to the control group. The inhibition of these genes by a DNMTs inhibitor [5-azacytidine (5-AZA)] significantly reduced bacterial replication and larvae mortality. In addition, 5-AZA treatment modified the expression patterns of antimicrobial peptides (AMPs) in the A. pernyi larvae. Our results suggest that ApDNMT-1 and ApDNMT-2 seem to have a crucial role in innate immunity, mediating antimicrobial peptide responses against bacterial infection in A. pernyi.
Collapse
Affiliation(s)
- Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Isma Gul
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Ruochen Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Qianqian Li
- Department of Psychology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Erhu Zhao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Muhan Lv
- Department of Gastroenterology, The Affliated Hospital of Southwest Medical University, Luzhao, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Aigner GP, Nenning P, Fiechtner B, Šrut M, Höckner M. DNA Methylation and Detoxification in the Earthworm Lumbricus terrestris Exposed to Cadmium and the DNA Demethylation Agent 5-aza-2'-deoxycytidine. TOXICS 2022; 10:100. [PMID: 35202286 PMCID: PMC8879108 DOI: 10.3390/toxics10020100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 01/27/2023]
Abstract
Earthworms are well-established model organisms for testing the effects of heavy metal pollution. How DNA methylation affects cadmium (Cd) detoxification processes such as the expression of metallothionein 2 (MT2), however, is largely unknown. We therefore exposed Lumbricus terrestris to 200 mg concentrations of Cd and 5-aza-2'-deoxycytidine (Aza), a demethylating agent, and sampled tissue and coelomocytes, cells of the innate immune system, for 48 h. MT2 transcription significantly increased in the Cd- and Cd-Aza-treated groups. In tissue samples, a significant decrease in MT2 in the Aza-treated group was detected, showing that Aza treatment inhibits basal MT2 gene activity but has no effect on Cd-induced MT2 levels. Although Cd repressed the gene expression of DNA-(cytosine-5)-methyltransferase-1 (DNMT1), which is responsible for maintaining DNA methylation, DNMT activity was unchanged, meaning that methylation maintenance was not affected in coelomocytes. The treatment did not influence DNMT3, which mediates de novo methylation, TET gene expression, which orchestrates demethylation, and global levels of hydroxymethylcytosine (5hmC), a product of the demethylation process. Taken together, this study indicates that Aza inhibits basal gene activity, in contrast to Cd-induced MT2 gene expression, but does not affect global DNA methylation. We therefore conclude that Cd detoxification based on the induction of MT2 does not relate to DNA methylation changes.
Collapse
Affiliation(s)
| | | | | | | | - Martina Höckner
- Department of Zoology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria; (G.P.A.); (P.N.); (B.F.); (M.Š.)
| |
Collapse
|
3
|
Duncan EJ, Cunningham CB, Dearden PK. Phenotypic Plasticity: What Has DNA Methylation Got to Do with It? INSECTS 2022; 13:110. [PMID: 35206684 PMCID: PMC8878681 DOI: 10.3390/insects13020110] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/14/2022]
Abstract
How does one genome give rise to multiple, often markedly different, phenotypes in response to an environmental cue? This phenomenon, known as phenotypic plasticity, is common amongst plants and animals, but arguably the most striking examples are seen in insects. Well-known insect examples include seasonal morphs of butterfly wing patterns, sexual and asexual reproduction in aphids, and queen and worker castes of eusocial insects. Ultimately, we need to understand how phenotypic plasticity works at a mechanistic level; how do environmental signals alter gene expression, and how are changes in gene expression translated into novel morphology, physiology and behaviour? Understanding how plasticity works is of major interest in evolutionary-developmental biology and may have implications for understanding how insects respond to global change. It has been proposed that epigenetic mechanisms, specifically DNA methylation, are the key link between environmental cues and changes in gene expression. Here, we review the available evidence on the function of DNA methylation of insects, the possible role(s) for DNA methylation in phenotypic plasticity and also highlight key outstanding questions in this field as well as new experimental approaches to address these questions.
Collapse
Affiliation(s)
- Elizabeth J. Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | - Peter K. Dearden
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
4
|
Kumar S, Sarthi P, Mani I, Ashraf MU, Kang MH, Kumar V, Bae YS. Epitranscriptomic Approach: To Improve the Efficacy of ICB Therapy by Co-Targeting Intracellular Checkpoint CISH. Cells 2021; 10:2250. [PMID: 34571899 PMCID: PMC8466810 DOI: 10.3390/cells10092250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular immunotherapy has recently emerged as a fourth pillar in cancer treatment co-joining surgery, chemotherapy and radiotherapy. Where, the discovery of immune checkpoint blockage or inhibition (ICB/ICI), anti-PD-1/PD-L1 and anti-CTLA4-based, therapy has revolutionized the class of cancer treatment at a different level. However, some cancer patients escape this immune surveillance mechanism and become resistant to ICB-therapy. Therefore, a more advanced or an alternative treatment is required urgently. Despite the functional importance of epitranscriptomics in diverse clinico-biological practices, its role in improving the efficacy of ICB therapeutics has been limited. Consequently, our study encapsulates the evidence, as a possible strategy, to improve the efficacy of ICB-therapy by co-targeting molecular checkpoints especially N6A-modification machineries which can be reformed into RNA modifying drugs (RMD). Here, we have explained the mechanism of individual RNA-modifiers (editor/writer, eraser/remover, and effector/reader) in overcoming the issues associated with high-dose antibody toxicities and drug-resistance. Moreover, we have shed light on the importance of suppressor of cytokine signaling (SOCS/CISH) and microRNAs in improving the efficacy of ICB-therapy, with brief insight on the current monoclonal antibodies undergoing clinical trials or already approved against several solid tumor and metastatic cancers. We anticipate our investigation will encourage researchers and clinicians to further strengthen the efficacy of ICB-therapeutics by considering the importance of epitranscriptomics as a personalized medicine.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (M.U.A.); (M.-H.K.)
- Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea
| | - Parth Sarthi
- University Department of Botany, M.Sc. Biotechnology, Ranchi University, Ranchi 834008, India;
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi 110049, India;
| | - Muhammad Umer Ashraf
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (M.U.A.); (M.-H.K.)
- Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea
| | - Myeong-Ho Kang
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (M.U.A.); (M.-H.K.)
- Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea
| | - Vishal Kumar
- Department of Pharmaceutical Science, Dayananda Sagar University, Bengaluru 560078, India;
| | - Yong-Soo Bae
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (M.U.A.); (M.-H.K.)
- Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea
| |
Collapse
|
5
|
Planques A, Kerner P, Ferry L, Grunau C, Gazave E, Vervoort M. DNA methylation atlas and machinery in the developing and regenerating annelid Platynereis dumerilii. BMC Biol 2021; 19:148. [PMID: 34340707 PMCID: PMC8330077 DOI: 10.1186/s12915-021-01074-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/16/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Methylation of cytosines in DNA (5mC methylation) is a major epigenetic modification that modulates gene expression and constitutes the basis for mechanisms regulating multiple aspects of embryonic development and cell reprogramming in vertebrates. In mammals, 5mC methylation of promoter regions is linked to transcriptional repression. Transcription regulation by 5mC methylation notably involves the nucleosome remodeling and deacetylase complex (NuRD complex) which bridges DNA methylation and histone modifications. However, less is known about regulatory mechanisms involving 5mC methylation and their function in non-vertebrate animals. In this paper, we study 5mC methylation in the marine annelid worm Platynereis dumerilii, an emerging evolutionary and developmental biology model capable of regenerating the posterior part of its body post-amputation. RESULTS Using in silico and experimental approaches, we show that P. dumerilii displays a high level of DNA methylation comparable to that of mammalian somatic cells. 5mC methylation in P. dumerilii is dynamic along the life cycle of the animal and markedly decreases at the transition between larval to post-larval stages. We identify a full repertoire of mainly single-copy genes encoding the machinery associated with 5mC methylation or members of the NuRD complex in P. dumerilii and show that this repertoire is close to the one inferred for the last common ancestor of bilaterians. These genes are dynamically expressed during P. dumerilii development and regeneration. Treatment with the DNA hypomethylating agent Decitabine impairs P. dumerilii larval development and regeneration and has long-term effects on post-regenerative growth. CONCLUSIONS Our data reveal high levels of 5mC methylation in the annelid P. dumerilii, highlighting that this feature is not specific to vertebrates in the bilaterian clade. Analysis of DNA methylation levels and machinery gene expression during development and regeneration, as well as the use of a chemical inhibitor of DNA methylation, suggest an involvement of 5mC methylation in P. dumerilii development and regeneration. We also present data indicating that P. dumerilii constitutes a promising model to study biological roles and mechanisms of DNA methylation in non-vertebrate bilaterians and to provide new knowledge about evolution of the functions of this key epigenetic modification in bilaterian animals.
Collapse
Affiliation(s)
- Anabelle Planques
- Université de Paris, CNRS, Institut Jacques Monod, F-75006, Paris, France
| | - Pierre Kerner
- Université de Paris, CNRS, Institut Jacques Monod, F-75006, Paris, France
| | - Laure Ferry
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75006, Paris, France
| | - Christoph Grunau
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, F-66860, Perpignan, France
| | - Eve Gazave
- Université de Paris, CNRS, Institut Jacques Monod, F-75006, Paris, France.
| | - Michel Vervoort
- Université de Paris, CNRS, Institut Jacques Monod, F-75006, Paris, France.
| |
Collapse
|
6
|
Özbek R, Mukherjee K, Uçkan F, Vilcinskas A. Reprograming of epigenetic mechanisms controlling host insect immunity and development in response to egg-laying by a parasitoid wasp. Proc Biol Sci 2020; 287:20200704. [PMID: 32519598 DOI: 10.1098/rspb.2020.0704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Parasitoids are insects that use other insects as hosts. They sabotage host cellular and humoral defences to promote the survival of their offspring by injecting viruses and venoms along with their eggs. Many pathogens and parasites disrupt host epigenetic mechanisms to overcome immune system defences, and we hypothesized that parasitoids may use the same strategy. We used the ichneumon wasp Pimpla turionellae as a model idiobiont parasitoid to test this hypothesis, with pupae of the greater wax moth Galleria mellonella as the host. We found that parasitoid infestation involves the suppression of host immunity-related effector genes and the modulation of host genes involved in developmental hormone signalling. The transcriptional reprogramming of host genes following the injection of parasitoid eggs was associated with changes in host epigenetic mechanisms. The introduction of parasitoids resulted in a transient decrease in host global DNA methylation and the modulation of acetylation ratios for specific histones. Genes encoding regulators of histone acetylation and deacetylation were mostly downregulated in the parasitized pupae, suggesting that parasitoids can suppress host transcription. We also detected a strong parasitoid-specific effect on host microRNAs regulating gene expression at the post-transcriptional level. Our data therefore support the hypothesis that parasitoids may favour the survival of their offspring by interfering with host epigenetic mechanisms to suppress the immune system and disrupt development.
Collapse
Affiliation(s)
- Rabia Özbek
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Krishnendu Mukherjee
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Fevzi Uçkan
- Department of Biology, Faculty of Science and Literature, Kocaeli University, 41380 Kocaeli, Turkey
| | - Andreas Vilcinskas
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany.,Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich Buff Ring 26-32, 35392 Giessen, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| |
Collapse
|
7
|
Lievers R, Kuperus P, Groot AT. DNA methylation patterns in the tobacco budworm, Chloridea virescens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 121:103370. [PMID: 32251721 DOI: 10.1016/j.ibmb.2020.103370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/08/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
DNA methylation is an important epigenetic modification that is prone to stochastic variation and is responsive to environmental factors. Yet changes in DNA methylation could persist across generations and thus play an important role in evolution. In this study, we used methylation-sensitive amplified fragment length polymorphisms (MS-AFLP) to evaluate whether DNA methylation could contribute to the evolution of the sexual communication signal in the noctuid moth Chloridea virescens. We found that most DNA methylation was consistent across tissues, although some methylation sites were specifically found in pheromone glands. We also found significant DNA methylation differences among families and two pheromone phenotype selection lines, and these differences correlated with genetic variation. Most DNA methylation patterns were inherited, although some sites were subject to spontaneous de novo DNA methylation across generations. Thus, DNA methylation likely plays a role in a wide range of processes in moths. Together, our results present an important initial step towards understanding the potential role of DNA methylation in the evolution of sexual communication signals in moths.
Collapse
Affiliation(s)
- Rik Lievers
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098, XH, Amsterdam, the Netherlands.
| | - Peter Kuperus
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098, XH, Amsterdam, the Netherlands
| | - Astrid T Groot
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098, XH, Amsterdam, the Netherlands; Max Planck Institute for Chemical Ecology, Department of Entomology, Hans Knoell strasse 8, 07745, Jena, Germany
| |
Collapse
|
8
|
Distinct epigenomic and transcriptomic modifications associated with Wolbachia-mediated asexuality. PLoS Pathog 2020; 16:e1008397. [PMID: 32187233 PMCID: PMC7105135 DOI: 10.1371/journal.ppat.1008397] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/30/2020] [Accepted: 02/11/2020] [Indexed: 11/19/2022] Open
Abstract
Wolbachia are maternally transmitted intracellular bacteria that induce a range of pathogenic and fitness-altering effects on insect and nematode hosts. In parasitoid wasps of the genus Trichogramma, Wolbachia infection induces asexual production of females, thus increasing transmission of Wolbachia. It has been hypothesized that Wolbachia infection accompanies a modification of the host epigenome. However, to date, data on genome-wide epigenomic changes associated with Wolbachia are limited, and are often confounded by background genetic differences. Here, we took sexually reproducing Trichogramma free of Wolbachia and introgressed their genome into a Wolbachia-infected cytoplasm, converting them to Wolbachia-mediated asexuality. Wolbachia was then cured from replicates of these introgressed lines, allowing us to examine the genome-wide effects of wasps newly converted to asexual reproduction while controlling for genetic background. We thus identified gene expression and DNA methylation changes associated with Wolbachia-infection. We found no overlaps between differentially expressed genes and differentially methylated genes, indicating that Wolbachia-infection associated DNA methylation change does not directly modulate levels of gene expression. Furthermore, genes affected by these mechanisms exhibit distinct evolutionary histories. Genes differentially methylated due to the infection tended to be evolutionarily conserved. In contrast, differentially expressed genes were significantly more likely to be unique to the Trichogramma lineage, suggesting host-specific transcriptomic responses to infection. Nevertheless, we identified several novel aspects of Wolbachia-associated DNA methylation changes. Differentially methylated genes included those involved in oocyte development and chromosome segregation. Interestingly, Wolbachia-infection was associated with higher levels of DNA methylation. Additionally, Wolbachia infection reduced overall variability in gene expression, even after accounting for the effect of DNA methylation. We also identified specific cases where alternative exon usage was associated with DNA methylation changes due to Wolbachia infection. These results begin to reveal distinct genes and molecular pathways subject to Wolbachia induced epigenetic modification and/or host responses to Wolbachia-infection. Wolbachia is an extremely common endosymbiotic infection of arthropods and nematodes. One of the reasons why Wolbachia can so successfully infect diverse species is the bacterium’s ability to profoundly alter the reproductive behavior of its host. It has been proposed that Wolbachia may modify host’s epigenetic programs to alter its reproductive behavior. However, it has been difficult to study how epigenetic programs change with Wolbachia infection, due to the confounding effects of genetic backgrounds. Here, we studied host transcriptome and epigenome changes associated with Wolbachia infection in a homogenous genetic background, by carrying out an innovative introgression scheme. By doing so, we show, for the first time, high-resolution molecular consequences of intracellular infection and offer insights into epigenetic and transcriptomic regulation of invertebrates.
Collapse
|
9
|
Chen W, Dong Y, Lin L, Saqib HSA, Ma X, Xu X, Zhang L, Jing X, Peng L, Wang Y, Vasseur L, He W, You M. Implication for DNA methylation involved in the host transfer of diamondback moth, Plutella xylostella (L.). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21600. [PMID: 31328824 DOI: 10.1002/arch.21600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
DNA methylation exerts extensive impacts on gene expression of various living organisms exposed to environmental variation. However, little is known whether DNA methylation is involved in the host transfer of diamondback moth, Plutella xylostella (L.), a worldwide destructive pest of crucifers. In this study, we found that P. xylostella genome exhibited a relatively low level of DNA methylation on the basis of the CpG O/E prediction and experimental validation. A significant positive linear correlation was observed between the stage-specific expressions of PxDNMT1 and DNA methylation levels (5mC content). Particularly, high levels of DNA methylation and gene expression of PxDNMT1 were observed in eggs and mature females of P. xylostella. After host transfer of P. xylostella from Raphanus sativus to Arabidopsis thaliana, we identified some potential genomic loci that might have changed methylation levels. Using the method of fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP), we also found the corresponding genes primarily involved in neural system and signaling. The expressions of six candidate genes were verified by qRT-PCR. One of the genes, Px009600, might be regulated by a DNA methylation-mediated mechanism in response to host transfer. Our study provides evidence for a functional system of DNA methylation in P. xylostella and its possible role in adaptation during host transfer. Further studies should examine methylation as responsive factors to different host plants and environmental cues in insect pests.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhong Dong
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lianyun Lin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hafiz Sohaib Ahmed Saqib
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoli Ma
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuejiao Xu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lingling Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaodong Jing
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lu Peng
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yue Wang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liette Vasseur
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Weiyi He
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
10
|
Baradaran E, Moharramipour S, Asgari S, Mehrabadi M. Induction of DNA methyltransferase genes in Helicoverpa armigera following injection of pathogenic bacteria modulates expression of antimicrobial peptides and affects bacterial proliferation. JOURNAL OF INSECT PHYSIOLOGY 2019; 118:103939. [PMID: 31493391 DOI: 10.1016/j.jinsphys.2019.103939] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Following pathogen attack in a host, widespread changes are induced in the host's gene expression, in particular those involved in the immune system, growth and survival. Epigenetic mechanisms have been suggested to be involved in the regulation of these changes through a number of mechanisms. DNA methylation is one of the important epigenetic processes that is carried out by DNA (cytosine-5) methyltransferase (DNMT) and alters expression of target genes. Here, we identified two putative sequences of DNMT (i.e. DNMT1 and DNMT2) from the transcriptome dataset of Helicoverpa armigera that showed high similarity to the homologous sequences in Bombyx mori. Domain architectures of DNMT1 and DNMT2 exhibit the unique pattern of DNMTs that highlights conserved function of these genes in different insects. To see if these genes play any role in bacterial infection, we challenged the fifth instar larvae of H. armigera by injecting Bacillus thuringiensis and Serratia marcescens cells into the hemolymph. Transcript levels of the DNMTs were analyzed by RT-qPCR. The results showed that the expression levels of DNMT1 and DNMT2 increased in the bacteria-injected larvae. Injection of the heat-killed bacteria also induced the expression of the DNMTs, but lower than that of the live bacteria. To determine whether these genes function during bacterial infection, we injected the inhibitor of DNMTs, 5-azacytidine (5-AZA), into the larvae and 24 h later, the bacterial cells were also injected into the larvae. Bacterial replication and larval mortality were analyzed in the treated and control insects. We found that 5-AZA reduced bacterial replication and also mortality of the bacterial-injected larvae regardless of the pathogenic bacterial species. Interestingly, the expression levels of antimicrobial peptides (AMPs) were also modulated following 5-AZA treatment. In conclusion, we showed that upregulation of the DNMTs in H. armigera following bacterial infections modulates AMPs and thereby affects the insect-bacteria interactions.
Collapse
Affiliation(s)
- Ehsan Baradaran
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Saeid Moharramipour
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Mohammad Mehrabadi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
11
|
Gegner J, Baudach A, Mukherjee K, Halitschke R, Vogel H, Vilcinskas A. Epigenetic Mechanisms Are Involved in Sex-Specific Trans-Generational Immune Priming in the Lepidopteran Model Host Manduca sexta. Front Physiol 2019; 10:137. [PMID: 30886585 PMCID: PMC6410660 DOI: 10.3389/fphys.2019.00137] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/06/2019] [Indexed: 12/13/2022] Open
Abstract
Parents invest in their offspring by transmitting acquired resistance against pathogens that only the parents have encountered, a phenomenon known as trans-generational immune priming (TGIP). Examples of TGIP are widespread in the animal kingdom. Female vertebrates achieve TGIP by passing antibodies to their offspring, but the mechanisms of sex-specific TGIP in invertebrates are unclear despite increasing evidence suggesting that both male-specific and female-specific TGIP occurs in insects. We used the tobacco hornworm (Manduca sexta) to investigate sex-specific TGIP in insects because it is a model host for the analysis of insect immunity and the complete genome sequence is available. We found that feeding larvae with non-pathogenic Escherichia coli or the entomopathogen Serratia entomophila triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation. Maternal TGIP was mediated by the translocation of bacterial structures from the gut lumen to the eggs, resulting in the microbe-specific transcriptional reprogramming of genes encoding immunity-related effector molecules and enzymes involved in the regulation of histone acetylation as well as DNA methylation in larvae of the F1 generation. The third-instar F1 larvae displayed sex-specific differences in the expression profiles of immunity-related genes and DNA methylation. We observed crosstalk between histone acetylation and DNA methylation, which mediated sex-specific immune responses in the F1 generation derived from parents exposed to a bacterial challenge. Multiple routes for TGIP seem to exist in M. sexta and – partially sex-specific – effects in the offspring depend on the microbial exposure history of their parents. Crucially, the entomopathogen S. entomophila appears to be capable of interfering with TGIP in the host.
Collapse
Affiliation(s)
- Jasmin Gegner
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Arne Baudach
- Institute for Insect Biotechnology, Faculty of Agricultural Sciences, Nutritional Sciences, and Environmental Management, Justus-Liebig University of Giessen, Giessen, Germany
| | - Krishnendu Mukherjee
- Institute for Insect Biotechnology, Faculty of Agricultural Sciences, Nutritional Sciences, and Environmental Management, Justus-Liebig University of Giessen, Giessen, Germany
| | - Rayko Halitschke
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany.,Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany.,Institute for Insect Biotechnology, Faculty of Agricultural Sciences, Nutritional Sciences, and Environmental Management, Justus-Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
12
|
Brevik K, Lindström L, McKay SD, Chen YH. Transgenerational effects of insecticides-implications for rapid pest evolution in agroecosystems. CURRENT OPINION IN INSECT SCIENCE 2018; 26:34-40. [PMID: 29764658 DOI: 10.1016/j.cois.2017.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/05/2017] [Accepted: 12/27/2017] [Indexed: 06/08/2023]
Abstract
Although pesticides are a major selective force in driving the evolution of insect pests, the evolutionary processes that give rise to insecticide resistance remain poorly understood. Insecticide resistance has been widely observed to increase with frequent and intense insecticide exposure, but can be lost following the relaxation of insecticide use. One possible but rarely explored explanation is that insecticide resistance may be associated with epigenetic modifications, which influence the patterning of gene expression without changing underlying DNA sequence. Epigenetic modifications such as DNA methylation, histone modifications, and small RNAs have been observed to be heritable in arthropods, but their role in the context of rapid evolution of insecticide resistance remain poorly understood. Here, we discuss evidence supporting how: firstly, insecticide-induced effects can be transgenerationally inherited; secondly, epigenetic modifications are heritable; and thirdly, epigenetic modifications are responsive to pesticide and xenobiotic stress. Therefore, pesticides may drive the evolution of resistance via epigenetic processes. Moreover, insect pests primed by pesticides may be more tolerant of other stress, further enhancing their success in adapting to agroecosystems. Resolving the role of epigenetic modifications in the rapid evolution of insect pests has the potential to lead to new approaches for integrated pest management as well as improve our understanding of how anthropogenic stress may drive the evolution of insect pests.
Collapse
Affiliation(s)
- Kristian Brevik
- Department of Plant and Soil Science, University of Vermont, Burlington, VT, USA.
| | - Leena Lindström
- Department of Biological and Environmental Science, University of Jyväskylä, Finland
| | - Stephanie D McKay
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, USA
| | - Yolanda H Chen
- Department of Plant and Soil Science, University of Vermont, Burlington, VT, USA
| |
Collapse
|