1
|
Zhao L, Zhao Y, Kong X, Huang H, Hao L, Wang T, Shi Y, Zhu J, Lu J. Deep insights into the mechanism of isorhamnetin's anti-motion sickness effect based on photoshoproteomics. Food Funct 2024; 15:10300-10315. [PMID: 39344775 DOI: 10.1039/d4fo02761b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Isorhamnetin has recently been found to exhibit a remarkable anti-motion sickness effect, yet the underlying mechanism is still unclear. Herein, network pharmacology was employed to conduct a preliminary analysis on the possible biological processes involved. Results showed that common targets were localized in membranes, mitochondria, and glutamatergic synapses. In particular, protein phosphorylation, protein serine/threonine/tyrosinase activity and signal transduction might play a role in isorhamnetin's anti-motion sickness effect. Thus, mice phosphoproteomics analysis was further performed to explore the phosphorylated protein changes in the motion sickness process. Results showed that differentially phosphorylated proteins have an effect on postsynaptic density, glutamatergic synapses and other sites and are involved in various neurodegenerative disease pathways, endocytic pathways, cAMP signaling pathways and MAPK signaling pathways. Two key differentially phosphorylated proteins in glutamatergic synapses, namely, DLGAP and EPS8, might play key roles in isorhamnetin's anti-motion sickness process. The final molecular experimental verification results from qRT-PCR and western blot analyses indicated that isorhamnetin firstly regulates glutamatergic synapses and then reduces the excitability of the vestibular nucleus through inhibiting the NMDAR1/CaMKII/CREB signaling pathway, ultimately alleviating a series of symptoms of motion sickness in mice. The findings of this study provide valuable insights and a useful theoretical basis for the application of isorhamnetin as a new anti-motion sickness food ingredient.
Collapse
Affiliation(s)
- Li Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, 462300, China
| | - Yanyan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, 462300, China
| | - Xiaoran Kong
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, 462300, China
| | - He Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, 462300, China
| | - Limin Hao
- Systems Engineering Institute, Academy of Military Sciences (AMS), Beijing, 100010, China
| | - Ting Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yanling Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, 462300, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, 462300, China
| |
Collapse
|
2
|
Manno FAM, Cheung P, Basnet V, Khan MS, Mao Y, Pan L, Ma V, Cho WC, Tian S, An Z, Feng Y, Cai YL, Pienkowski M, Lau C. Subtle alterations of vestibulomotor functioning in conductive hearing loss. Front Neurosci 2023; 17:1057551. [PMID: 37706156 PMCID: PMC10495589 DOI: 10.3389/fnins.2023.1057551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/08/2023] [Indexed: 09/15/2023] Open
Abstract
Introduction Conductive hearing loss (CHL) attenuates the ability to transmit air conducted sounds to the ear. In humans, severe hearing loss is often accompanied by alterations to other neural systems, such as the vestibular system; however, the inter-relations are not well understood. The overall goal of this study was to assess vestibular-related functioning proxies in a rat CHL model. Methods Male Sprague-Dawley rats (N=134, 250g, 2months old) were used in a CHL model which produced a >20dB threshold shift induced by tympanic membrane puncture. Auditory brainstem response (ABRs) recordings were used to determine threshold depth at different times before and after CHL. ABR threshold depths were assessed both manually and by an automated ABR machine learning algorithm. Vestibular-related functioning proxy assessment was performed using the rotarod, balance beam, elevator vertical motion (EVM) and Ferris-wheel rotation (FWR) assays. Results The Pre-CHL (control) threshold depth was 27.92dB±11.58dB compared to the Post-CHL threshold depth of 50.69dB±13.98dB (mean±SD) across the frequencies tested. The automated ABR machine learning algorithm determined the following threshold depths: Pre-CHL=24.3dB, Post-CHL same day=56dB, Post-CHL 7 days=41.16dB, and Post-CHL 1 month=32.5dB across the frequencies assessed (1, 2, 4, 8, 16, and 32kHz). Rotarod assessment of motor function was not significantly different between pre and post-CHL (~1week) rats for time duration (sec) or speed (RPM), albeit the former had a small effect size difference. Balance beam time to transverse was significantly longer for post-CHL rats, likely indicating a change in motor coordination. Further, failure to cross was only noted for CHL rats. The defection count was significantly reduced for CHL rats compared to control rats following FWR, but not EVM. The total distance traveled during open-field examination after EVM was significantly different between control and CHL rats, but not for FWR. The EVM is associated with linear acceleration (acting in the vertical plane: up-down) stimulating the saccule, while the FWR is associated with angular acceleration (centrifugal rotation about a circular axis) stimulating both otolith organs and semicircular canals; therefore, the difference in results could reflect the specific vestibular-organ functional role. Discussion Less movement (EVM) and increase time to transverse (balance beam) may be associated with anxiety and alterations to defecation patterns (FWR) may result from autonomic disturbances due to the impact of hearing loss. In this regard, vestibulomotor deficits resulting in changes in balance and motion could be attributed to comodulation of auditory and vestibular functioning. Future studies should manipulate vestibular functioning directly in rats with CHL.
Collapse
Affiliation(s)
- Francis A. M. Manno
- Department of Physics, East Carolina University, Greenville, NC, United States
- Department of Biomedical Engineering, Center for Imaging Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Pikting Cheung
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Vardhan Basnet
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | | | - Yuqi Mao
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Leilei Pan
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Victor Ma
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - Shile Tian
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Ziqi An
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yi-Ling Cai
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Martin Pienkowski
- Osborne College of Audiology, Salus University, Elkins Park, PA, United States
| | - Condon Lau
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
3
|
Mao Y, Pan L, Li W, Xiao S, Qi R, Zhao L, Wang J, Cai Y. Stroboscopic lighting with intensity synchronized to rotation velocity alleviates motion sickness gastrointestinal symptoms and motor disorders in rats. Front Integr Neurosci 2022; 16:941947. [PMID: 35965602 PMCID: PMC9366139 DOI: 10.3389/fnint.2022.941947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
Motion sickness (MS) is caused by mismatch between conflicted motion perception produced by motion challenges and expected “internal model” of integrated motion sensory pattern formed under normal condition in the brain. Stroboscopic light could reduce MS nausea symptom via increasing fixation ability for gaze stabilization to reduce visuo-vestibular confliction triggered by distorted vision during locomotion. This study tried to clarify whether MS induced by passive motion could be alleviated by stroboscopic light with emitting rate and intensity synchronized to acceleration–deceleration phase of motion. We observed synchronized and unsynchronized stroboscopic light (SSL: 6 cycle/min; uSSL: 2, 4, and 8 cycle/min) on MS-related gastrointestinal symptoms (conditioned gaping and defecation responses), motor disorders (hypoactivity and balance disturbance), and central Fos protein expression in rats receiving Ferris wheel-like rotation (6 cycle/min). The effects of color temperature and peak light intensity were also examined. We found that SSL (6 cycle/min) significantly reduced rotation-induced conditioned gaping and defecation responses and alleviated rotation-induced decline in spontaneous locomotion activity and disruption in balance beam performance. The efficacy of SSL against MS behavioral responses was affected by peak light intensity but not color temperature. The uSSL (4 and 8 cycle/min) only released defecation but less efficiently than SSL, while uSSL (2 cycle/min) showed no beneficial effect in MS animals. SSL but not uSSL inhibited Fos protein expression in the caudal vestibular nucleus, the nucleus of solitary tract, the parabrachial nucleus, the central nucleus of amygdala, and the paraventricular nucleus of hypothalamus, while uSSL (4 and 8 cycle/min) only decreased Fos expression in the paraventricular nucleus of hypothalamus. These results suggested that stroboscopic light synchronized to motion pattern might alleviate MS gastrointestinal symptoms and motor disorders and inhibit vestibular-autonomic pathways. Our study supports the utilization of motion-synchronous stroboscopic light as a potential countermeasure against MS under abnormal motion condition in future.
Collapse
|
5
|
Idoux E, Tagliabue M, Beraneck M. No Gain No Pain: Relations Between Vestibulo-Ocular Reflexes and Motion Sickness in Mice. Front Neurol 2018; 9:918. [PMID: 30483206 PMCID: PMC6240678 DOI: 10.3389/fneur.2018.00918] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/10/2018] [Indexed: 01/07/2023] Open
Abstract
Motion sickness occurs when the vestibular system is subjected to conflicting sensory information or overstimulation. Despite the lack of knowledge about the actual underlying mechanisms, several drugs, among which scopolamine, are known to prevent or alleviate the symptoms. Here, we aim at better understanding how motion sickness affects the vestibular system, as well as how scopolamine prevents motion sickness at the behavioral and cellular levels. We induced motion sickness in adult mice and tested the vestibulo-ocular responses to specific stimulations of the semi-circular canals and of the otoliths, with or without scopolamine, as well as the effects of scopolamine and muscarine on central vestibular neurons recorded on brainstem slices. We found that both motion sickness and scopolamine decrease the efficacy of the vestibulo-ocular reflexes and propose that this decrease in efficacy might be a protective mechanism to prevent later occurrences of motion sickness. To test this hypothesis, we used a behavioral paradigm based on visuo-vestibular interactions which reduces the efficacy of the vestibulo-ocular reflexes. This paradigm also offers protection against motion sickness, without requiring any drug. At the cellular level, we find that depending on the neuron, scopolamine can have opposite effects on the polarization level and firing frequency, indicating the presence of at least two types of muscarinic receptors in the medial vestibular nucleus. The present results set the basis for future studies of motion sickness counter-measures in the mouse model and offers translational perspectives for improving the treatment of affected patients.
Collapse
Affiliation(s)
- Erwin Idoux
- Center for Neurophysics, Physiology, Pathology, CNRS UMR 8119, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Centre National D'Etudes Spatiales, Paris, France
| | - Michele Tagliabue
- Center for Neurophysics, Physiology, Pathology, CNRS UMR 8119, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Mathieu Beraneck
- Center for Neurophysics, Physiology, Pathology, CNRS UMR 8119, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|