1
|
He Y, Qin XX, Liu MW, Sun W. Morin, a matrix metalloproteinase 9 inhibitor, attenuates endothelial-to-mesenchymal transition in atherosclerosis by downregulating Notch-1 signaling. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:683-695. [PMID: 39572351 DOI: 10.1016/j.joim.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 09/14/2024] [Indexed: 12/22/2024]
Abstract
OBJECTIVE Atherosclerotic cardiovascular disease poses a significant health challenge globally. Recent findings highlight the pivotal role of the endothelial-to-mesenchymal transition (EndMT) in atherosclerosis. Morin is a bioflavonoid mainly extracted from white mulberry, a traditional Chinese herbal medicine with anti-inflammatory and antioxidant properties. This study examines whether morin can alleviate atherosclerosis by suppressing EndMT and seeks to elucidate the underlying mechanism. METHODS We induced an in vitro EndMT model in human umbilical vein endothelial cells (HUVECs) by stimulating the cells with transforming growth factor-β1 (TGF-β1) (10 ng/mL) for 48 h. The in vivo experiments were performed in an atherosclerosis model using apolipoprotein E (ApoE)-/- mice fed with a high-fat diet (HFD). Mice in the intervention group were given morin (50 mg/kg) orally for 4 weeks. Molecular docking and microscale thermophoresis were assayed to understand the interactions between morin and matrix metalloproteinase-9 (MMP-9). RESULTS Morin inhibited the expression of EndMT markers in a dose-dependent manner in TGF-β1-treated HUVECs. Administering 50 μmol/L morin suppressed the upregulation of MMP-9 and Notch-1 signaling in TGF-β1-induced EndMT. Moreover, the overexpression of MMP-9 activated Notch-1 signaling, thereby reversing morin's inhibitory effect on EndMT. In the HFD-induced atherosclerotic ApoE-/- mice, morin notably reduced aortic intimal hyperplasia and plaque formation by suppressing EndMT. Furthermore, morin demonstrated a strong binding affinity for MMP-9. CONCLUSION Morin acts as an MMP-9 inhibitor to disrupt EndMT in atherosclerosis by limiting the activation of Notch-1 signaling. This study underscores morin's potential utility in the development of anti-atherosclerotic medication. Please cite this article as: He Y, Qin XX, Liu MW, Sun W. Morin, a matrix metalloproteinase 9 inhibitor, attenuates endothelial-to-mesenchymal transition in atherosclerosis by downregulating Notch-1 Signaling. J Integr Med. 2024; 22(6): 684-696.
Collapse
Affiliation(s)
- Yuan He
- Department of Cardiology, Jiangsu Provincial People's Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xiao-Xuan Qin
- Department of Neurology, Jiangsu Provincial People's Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Ming-Wei Liu
- Department of Cardiology, Jiangsu Provincial People's Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Wei Sun
- Department of Cardiology, Jiangsu Provincial People's Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| |
Collapse
|
2
|
Epigallocatechin gallate (EGCG) alleviates vascular dysfunction in angiotensin II-infused hypertensive mice by modulating oxidative stress and eNOS. Sci Rep 2022; 12:17633. [PMID: 36271015 PMCID: PMC9587239 DOI: 10.1038/s41598-022-21107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/22/2022] [Indexed: 01/13/2023] Open
Abstract
Epigallocatechin gallate (EGCG) has been shown to have antihypertensive activity. However, the role of epigallocatechin gallate (EGCG) in improving vascular function via modulation of endothelial nitric oxide synthase (eNOS) in hypertensive subjects is not well researched. Angiotensin II-infused hypertensive mice (8-10 weeks old) received EGCG (50 mg/kg/day) for 14 days via oral gavage. The arterial systolic blood pressure (SBP) was measured using the tail-cuff method every three days. At the end of the treatment, the vascular reactivity of the isolated aortae was studied using wire myographs. The level of nitric oxide (NO), cyclic guanosine monophosphate (cGMP) and tetrahydrobiopterine (BH4) were determined using assay kits while the presence of proteins (NOS, p-eNOS and NOx-2) were determined using by Western blotting. In vivo treatment with EGCG for 14 days significantly attenuated the increase in SBP, alleviated the vascular dysfunction, increased the vascular cGMP and BH4 level as well as the expression of p-eNOS and decreased elevated ROS level and NOx-2 protein in angiotensin II-infused hypertensive mice. Collectively, treatment with EGCG in hypertensive mice exerts a blood pressure lowering effect which is partly attributed to the improvement in the vascular function due to its ability to reduce vascular oxidative stress in the aortic tissue leading to a decrease in eNOS uncoupling thus increasing NO bioavailability.
Collapse
|
3
|
Targeting Reactive Oxygen Species in Atherosclerosis via Chinese Herbal Medicines. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1852330. [PMID: 35047104 PMCID: PMC8763505 DOI: 10.1155/2022/1852330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022]
Abstract
Cardio-cerebrovascular disease (CCVD) has become the leading cause of human mortality with the coming acceleration of global population aging. Atherosclerosis is among the most common pathological changes in CCVDs. It is also a multifactorial disorder; oxidative stress caused by excessive production of reactive oxygen species (ROS) has become an important mechanism of atherosclerosis. Chinese herbal medicine (CHM) is a major type of natural medicine that has made great contributions to human health. CHMs are increasingly used in the auxiliary clinical treatment of atherosclerosis. Although their mechanism of action is unclear, CHMs can exert a variety of antiatherosclerosis effects by regulating intracellular ROS. In this review, we discussed the mechanism of ROS regulation in atherosclerosis and analyzed the role of CHMs in the treatment of atherosclerosis via ROS.
Collapse
|
4
|
Zhu M, Gao Z, Fu Y, Qiu Y, Huang K, Zhu C, Wu Y, Zhu T, Wang Q, Yang L, Yin Y, Li P. Amorphous Selenium Nanoparticles Improve Vascular Function in Rats With Chronic Isocarbophos Poisoning via Inhibiting the Apoptosis of Vascular Endothelial Cells. Front Bioeng Biotechnol 2021; 9:673327. [PMID: 34249881 PMCID: PMC8266299 DOI: 10.3389/fbioe.2021.673327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
AIM This study aimed to investigate the preventive effect and possible mechanism of amorphous selenium nanoparticles (A-SeQDs) on isocarbophos induced vascular dysfunction. METHODS A-SeQDs was made by auto redox decomposition of selenosulfate precursor. Male rats were given isocarbophos (0.5 mg/kg/2 days) by intragastric administration for 16 weeks to induce vascular dysfunction. During the course, A-SeQDs (50 mg/kg/day) was added to the water from week 5. Then, the rats were killed to observe and test the influence of A-SeQDs on the vascular dysfunction induced by isocarbophos. Finally, human umbilical vein endothelial cells (HUVECs) were treated with 10% DMEM of isocarbophos (100 μM) for 5 days to detect the related indexes. Before the use of isocarbophos treatment, different drugs were given. RESULTS A-SeQDs could reduce total carbon dioxide, MDA, VCAM-1, ICAM-1, IL-1, and IL-6 while increasing oxygen saturation, NO content, and SOD activity in rats. A-SeQDs also resulted in relatively normal vascular morphology, and the expression of sodium hydrogen exchanger 1 (NHE1) and caspase-3 decreased in rats. Furthermore, in HUVECs treated with isocarbophos, A-SeQDs maintained mitochondrial membrane potential, inhibited the cleaved caspase-3 expression, and released cytochrome c from mitochondria to cytosol. CONCLUSION A-SeQDs can inhibit the apoptosis of HUVECs through the mitochondrial pathway, and effectively treat the impairment of vascular endothelial function caused by isocarbophos, which is NHE1-dependent.
Collapse
Affiliation(s)
- Moli Zhu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
- Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Zhitao Gao
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yutian Fu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Yue Qiu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Keke Huang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Chaonan Zhu
- Department of Pharmacy, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yinan Wu
- Sanquan Medical College, Xinxiang Medical University, Xinxiang, China
| | - Tiantian Zhu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Qianqian Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
- Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Yaling Yin
- Basic Medical College, Xinxiang Medical University, Xinxiang, China
| | - Peng Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
5
|
Zheng S, Huang H, Li Y, Wang Y, Zheng Y, Liang J, Zhang S, Liu M, Fang Z. Yin-xing-tong-mai decoction attenuates atherosclerosis via activating PPARγ-LXRα-ABCA1/ABCG1 pathway. Pharmacol Res 2021; 169:105639. [PMID: 33932607 DOI: 10.1016/j.phrs.2021.105639] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/30/2021] [Accepted: 04/20/2021] [Indexed: 12/23/2022]
Abstract
Atherosclerosis is now the major cause of mortality and morbidity worldwide. Formation of macrophage-derived foam cells is a hallmark of atherosclerosis, which is regulated by cholesterol uptake, intracellular metabolism, and efflux. PPARγ-LXRα-ABCA1/ABCG1 pathway plays an important part in regulating cholesterol efflux and this pathway could be a promising target for treating atherosclerosis. However, due to undesirable systemic effects, PPARγ agonist therapy for atherosclerosis remains challenging. Many traditional Chinese medicine has been well accepted and applied in atherosclerosis treatment. Yin-xing-tong-mai decoction (YXTMD) has been applied for treating atherosclerosis for decades. However, the mechanism remains to be explored. Here, we showed that YXTMD effectively attenuated atherosclerosis in ApoE-/- mice. YXTMD increased cholesterol efflux of foam cell by upregulation of ABCA1 and ABCG1 in vivo and in vitro. Through bioinformatic analysis and experimental validation, we found that PPARγ was an important downstream effector of YXTMD in macrophages. Reduction of PPARγ significantly decreased LXRα, ABCA1, and ABCG1 expression in macrophages, with reduced cholesterol efflux. In conclusion, these findings confirmed that YXTMD attenuated atherosclerosis by activating the PPARγ-LXRα- ABCA1/ABCG1 pathway to enhance cholesterol efflux.
Collapse
Affiliation(s)
- Shasha Zheng
- Institute of Hypertension, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hong Huang
- Institute of Hypertension, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yizhuo Li
- Institute of Hypertension, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ye Wang
- Institute of Hypertension, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yawei Zheng
- Institute of Hypertension, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Junya Liang
- Institute of Hypertension, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Siqi Zhang
- Institute of Hypertension, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ming Liu
- Institute of Hypertension, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Zhuyuan Fang
- Institute of Hypertension, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Hendrickx JO, Martinet W, Van Dam D, De Meyer GRY. Inflammation, Nitro-Oxidative Stress, Impaired Autophagy, and Insulin Resistance as a Mechanistic Convergence Between Arterial Stiffness and Alzheimer's Disease. Front Mol Biosci 2021; 8:651215. [PMID: 33855048 PMCID: PMC8039307 DOI: 10.3389/fmolb.2021.651215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
The average age of the world's elderly population is steadily increasing. This unprecedented rise in the aged world population will increase the prevalence of age-related disorders such as cardiovascular disease (CVD) and neurodegeneration. In recent years, there has been an increased interest in the potential interplay between CVDs and neurodegenerative syndromes, as several vascular risk factors have been associated with Alzheimer's disease (AD). Along these lines, arterial stiffness is an independent risk factor for both CVD and AD. In this review, we discuss several inflammaging-related disease mechanisms including acute tissue-specific inflammation, nitro-oxidative stress, impaired autophagy, and insulin resistance which may contribute to the proposed synergism between arterial stiffness and AD.
Collapse
Affiliation(s)
- Jhana O. Hendrickx
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Guido R. Y. De Meyer
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
7
|
Shen-Hong-Tong-Luo Formula Attenuates Macrophage Inflammation and Lipid Accumulation through the Activation of the PPAR- γ/LXR- α/ABCA1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3426925. [PMID: 33082908 PMCID: PMC7556105 DOI: 10.1155/2020/3426925] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022]
Abstract
Atherosclerosis (AS) is the killer of human health and longevity, which is majorly caused by oxidized lipoproteins that attack macrophages in the endarterium. The Shen-Hong-Tong-Luo (SHTL) formula has shown great clinical efficacy and vascular protective effect for over 30 years in China, to attenuate AS progression. However, its pharmacological mechanism needs more investigation. In this study, we first investigated the chemical composition of SHTL by fingerprint analysis using high-performance liquid chromatography. In primary mouse peritoneal macrophages induced by lipopolysaccharide (LPS), we found that SHTL pretreatment suppressed reactive oxygen species accumulation and reversed the increases of the inflammatory factors, TNF-α and IL-6. Moreover, lipid accumulation induced by oxidized low-density lipoprotein (Ox-LDL) in macrophages was inhibited by SHTL. Additionally, network pharmacology was used to predict the potential targets of SHTL as the PPAR-γ/LXR-α/ABCA1 signaling pathway, which was validated in macrophages and ApoE-/- mice by histopathological staining, qPCR, and Western blot analysis. Importantly, the protective effect of SHTL in the LPS- and Ox-LDL-induced macrophages against inflammation and lipid accumulation was attenuated by GW9662, a PPAR-γ antagonist, which confirmed the prediction results of network pharmacology. In summary, these results indicated that SHTL pretreatment reduced inflammation and lipid accumulation of macrophages by activating the PPAR-γ/LXR-α/ABCA1 pathway, which may provide a new insight into the mechanism of SHTL in the suppression of AS progression.
Collapse
|
8
|
Shan MR, Zhou SN, Fu CN, Song JW, Wang XQ, Bai WW, Li P, Song P, Zhu ML, Ma ZM, Liu Z, Xu J, Dong B, Liu C, Guo T, Zhang C, Wang SX. Vitamin B6 inhibits macrophage activation to prevent lipopolysaccharide-induced acute pneumonia in mice. J Cell Mol Med 2020; 24:3139-3148. [PMID: 31970902 PMCID: PMC7077594 DOI: 10.1111/jcmm.14983] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/25/2019] [Accepted: 12/17/2019] [Indexed: 01/08/2023] Open
Abstract
Macrophage activation participates in the pathogenesis of pulmonary inflammation. As a coenzyme, vitamin B6 (VitB6) is mainly involved in the metabolism of amino acids, nucleic acids, glycogen and lipids. We have previously reported that activation of AMP‐activated protein kinase (AMPK) produces anti‐inflammatory effects both in vitro and in vivo. Whether VitB6 via AMPK activation prevents pulmonary inflammation remains unknown. The model of acute pneumonia was induced by injecting mice with lipopolysaccharide (LPS). The inflammation was determined by measuring the levels of interleukin‐1 beta (IL‐1β), IL‐6 and tumour necrosis factor alpha (TNF‐α) using real time PCR, ELISA and immunohistochemistry. Exposure of cultured primary macrophages to VitB6 increased AMP‐activated protein kinase (AMPK) Thr172 phosphorylation in a time/dose‐dependent manner, which was inhibited by compound C. VitB6 downregulated the inflammatory gene expressions including IL‐1β, IL‐6 and TNF‐α in macrophages challenged with LPS. These effects of VitB6 were mirrored by AMPK activator 5‐aminoimidazole‐4‐carboxamide ribonucleoside (AICAR). However, VitB6 was unable to inhibit LPS‐induced macrophage activation if AMPK was in deficient through siRNA‐mediated approaches. Further, the anti‐inflammatory effects produced by VitB6 or AICAR in LPS‐treated macrophages were abolished in DOK3 gene knockout (DOK3−/−) macrophages, but were enhanced in macrophages if DOK3 was overexpressed. In vivo studies indicated that administration of VitB6 remarkably inhibited LPS‐induced both systemic inflammation and acute pneumonia in wild‐type mice, but not in DOK3−/− mice. VitB6 prevents LPS‐induced acute pulmonary inflammation in mice via the inhibition of macrophage activation.
Collapse
Affiliation(s)
- Mei-Rong Shan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Sheng-Nan Zhou
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Chang-Ning Fu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Jia-Wen Song
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Xue-Qing Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Wen-Wu Bai
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China.,Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Ping Song
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Mo-Li Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Zhi-Min Ma
- Department of Endocrinology, Suzhou Science & Technology Town Hospital, Suzhou, China
| | - Zhan Liu
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Jian Xu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Chao Liu
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China
| | - Tao Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Shuang-Xi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China.,College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
9
|
Xu X, Tian L, Zhang Z. Triptolide inhibits angiogenesis in microvascular endothelial cells through regulation of miR-92a. J Physiol Biochem 2019; 75:573-583. [PMID: 31691162 DOI: 10.1007/s13105-019-00707-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/13/2019] [Indexed: 12/15/2022]
Abstract
Atherosclerosis is one common chronic inflammatory disease in which angiogenesis is involved. Here we established an in vitro cell model of angiogenesis made by human dermal microvascular endothelial cells (HMEC-1) and work to investigate the role of triptolide (TPL) in this model. To induce angiogenesis, HMEC-1 cells were cultured in Matrigel-conditioned medium. The ratio of tubes to nucleus was detected. To evaluate angiogenesis, Western blot assay was carried out to detect endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor receptor-2 (VEGFR2) and VEGF. Cell counting kit-8 was utilized to estimate the viability of HMEC-1 cells. microRNA (miR)-92a was analyzed by qRT-PCR. The targeting relationship between integrin subunit alpha 5 (ITGA5) and miR-92a was verified through luciferase activity assay. The effects of ITGA5 on signaling transducers (ERK, PI3K, and AKT) in a phosphorylated form were valued using Western blot method. After stimulated by TPL, LY294002 and PD98059, the alteration in phosphorylation of the signaling transducers was evaluated by Western blot assay. The ratio of tubes to nucleus and angiogenesis related factors were increased with the delaying of culture time. TPL decreased the expression of angiogenesis factors. Furthermore, miR-92a was upregulated by TPL and miR-92a silence upregulated angiogenesis factors. In addition, TPL decreased ITGA5 which was proved as a target of miR-92a. ITGA5 overexpression resulted in the abundance of angiogenesis factors while ITGA5 silence led to the opposite results. Meanwhile, ITGA5 overexpression increased phosphorylation of ERK, PI3K and AKT while ITGA5 silence reversed the trend. TPL (as an anti-angiogenesis agent) suppressed angiogenesis by upregulating miR-92a, and miR-92a-mediated down-regulation of ITGA5 blocked the signaling transduction of ERK and PI3K/AKT pathways.
Collapse
Affiliation(s)
- Xiaomeng Xu
- Medical Examination Center of Qilu Hospital of Shandong University, No.107 Culture West Road, Jinan, 250012, Shandong, China.,Department of Health Management, Jining NO.1 People's Hospital, Jining, 272011, Shandong, China
| | - Li Tian
- Department of Critical Care Medicine, Jining NO.1 People's Hospital, Jining, 272011, Shandong, China
| | - Zhimian Zhang
- Medical Examination Center of Qilu Hospital of Shandong University, No.107 Culture West Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
10
|
Lee GH, Hoang TH, Jung ES, Jung SJ, Chae SW, Chae HJ. Mulberry Extract Attenuates Endothelial Dysfunction through the Regulation of Uncoupling Endothelial Nitric Oxide Synthase in High Fat Diet Rats. Nutrients 2019; 11:nu11050978. [PMID: 31035424 PMCID: PMC6566444 DOI: 10.3390/nu11050978] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 11/23/2022] Open
Abstract
Dyslipidemia is associated with endothelial dysfunction, which is linked to nitric oxide (NO) biology. The coupling of endothelial NO synthase with cofactors is a major step for NO release. This study is aimed to investigate the vascular pharmacology effects of mulberry in rat thoracic aorta and human vascular endothelial cells. In vitro, we investigated the protective effects of the mulberry extract and its main component cyanidin-3-rutinoside (C-3-R), against oxidized low-density lipoprotein (ox-LDL)-induced endothelial nitric oxide synthase (eNOS) uncoupling. Whereas ox-LDL significantly decreased NO levels in endothelial cells, mulberry extract, and C-3-R significantly recovered NO levels and phospho-eNOS Thr495 and Ser1177 expression. In vivo, mulberry was administered to 60% of high-fat diet (w/w)-fed Sprague Dawley (SD) rats for six weeks, in which endothelium-dependent relaxations were significantly improved in organ bath studies and isometric tension recordings. Consistently, aortic expressions of phospho-eNOS and nitrotyrosine were increased. Mulberry also raised serum NO levels, increased phosphorylation of eNOS, and reduced nitrotyrosine and intracellular reactive oxygen species (ROS) in aortas, showing that mulberry preserves endothelium-dependent relaxation in aortas from high-fat diet rats. We suggest that this effect is mediated through enhanced NO bioavailability, in which the regulation of ROS and its reduced eNOS uncoupling are involved.
Collapse
Affiliation(s)
- Geum-Hwa Lee
- Non-Clinical Evaluation Center, Biomedical Research Institute, Chonbuk National University Hospital, Jeonju 54907, Chonbuk, Korea.
| | - The-Hiep Hoang
- Non-Clinical Evaluation Center, Biomedical Research Institute, Chonbuk National University Hospital, Jeonju 54907, Chonbuk, Korea.
| | - Eun-Soo Jung
- Clinical Trial Center for Functional Foods (CTCF2), Chonbuk National University Hospital, Jeonju 54907, Chonbuk, Korea.
| | - Su-Jin Jung
- Clinical Trial Center for Functional Foods (CTCF2), Chonbuk National University Hospital, Jeonju 54907, Chonbuk, Korea.
| | - Soo-Wan Chae
- Clinical Trial Center for Functional Foods (CTCF2), Chonbuk National University Hospital, Jeonju 54907, Chonbuk, Korea.
- Department of Pharmacology, Chonbuk National University Medical School, Jeonju 54896, Chonbuk, Korea.
| | - Han-Jung Chae
- Non-Clinical Evaluation Center, Biomedical Research Institute, Chonbuk National University Hospital, Jeonju 54907, Chonbuk, Korea.
- Department of Pharmacology, Chonbuk National University Medical School, Jeonju 54896, Chonbuk, Korea.
- Institute of New Drug Development, School of Medicine, Chonbuk National University, Jeonju 54907, Chonbuk, Korea.
| |
Collapse
|
11
|
Zhang Y, Liu S, Feng Q, Huang X, Wang X, Peng Y, Zhao Z, Liu Z. Perilaldehyde activates AMP-activated protein kinase to suppress the growth of gastric cancer via induction of autophagy. J Cell Biochem 2019; 120:1716-1725. [PMID: 30378150 DOI: 10.1002/jcb.27491] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/18/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND AIM Perillaldehyde (PAH), one of the major oil components in Perilla frutescens, is very critical to health maintenance, for a wide range of human chronic diseases, including cancers. AMP-activated protein kinase (AMPK) has been implicated in the activation of autophagy in distinct tissues. This study was designed to explore whether PAH prevents gastric cancer growth and to investigate the molecular mechanism. METHODS AND RESULTS In cultured mouse gastric cancer cell line MFCs and human gastric cancer cell lines GC9811-P, PAH activated AMPK by increasing the Thr172 phosphorylation and activity in a time-/concentration-dependent manner. Furthermore, incubation of MFCs with PAH also increased autophagy as determined by monodansylcadaverine (MDC) staining, which was reversed by AMPK inhibitor compound C. PAH further decreased MFCs cell survival, which was abolished by compound C or autophagy inhibitor 3-Methyladenine (3-MA). In vivo studies indicated that 4-week administration of PAH (100 mg/kg/day) suppressed the growth of gastric cancer and increased the levels of autophagy-related proteins, including beclin-1, LC3-II, cathepsin, caspase-3, p53, and cathepsin in tumors isolated from the xenograft model of gastric cancer in mice. Moreover, these anticancer effects produced by PAH were abolished by coadministration of compound C or 3-MA in vivo. CONCLUSIONS PAH increases AMPK phosphorylation and activity to induce gastric cancer cell autophagy to inhibit the growth of gastric cancer. In perspective, therapy of PAH should be applied to treat patients with gastric cancer.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Suosi Liu
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Qin Feng
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Xiuyun Huang
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Xiangyang Wang
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Ya Peng
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Zhihong Zhao
- Department of Neurology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Zhan Liu
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
12
|
Sun Q, Wang K, Pan M, Zhou J, Qiu X, Wang Z, Yang Z, Chen Y, Shen H, Gu Q, Fang L, Zhang G, Bai Y. A minimally invasive approach to induce myocardial infarction in mice without thoracotomy. J Cell Mol Med 2018; 22:5208-5219. [PMID: 30589494 PMCID: PMC6201221 DOI: 10.1111/jcmm.13708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022] Open
Abstract
Acute myocardial infarction (MI) is a leading cause of morbidity and mortality in the world. Traditional method to induce MI by left coronary artery (LCA) ligation is typically performed by an invasive approach that requires ventilation and thoracotomy, causing serious injuries in animals undergoing this surgery. We attempted to develop a minimally invasive method (MIM) to induce MI in mice. Under the guide of ultrasound, LCA ligation was performed in mice without ventilation and chest-opening. Compared to sham mice, MIM induced MI in mice as determined by triphenyltetrazolium chloride staining and Masson staining. Mice with MIM surgery revealed the reductions of LVEF, LVFS, E/A and ascending aorta (AAO) blood flow, and the elevations of S-T segment and serum cTn-I levels at 24 post-operative hours. The effects of MI induced by MIM were comparable to the effects of MI produced by traditional method in mice. Importantly, MIM increased the survival rates and caused less inflammation after the surgery of LCA ligation, compared to the surgery of traditional method. Further, MIM induced angiogenesis and apoptosis in ischaemic hearts from mice at postoperative 28 days as similarly as traditional method did. Finally, the MIM model was able to develop into the myocardial ischaemia/reperfusion model by using a balloon catheter with minor modifications. The MI model is able to be efficiently induced by a minimally invasive approach in mice without ventilation and chest-opening. This new model is potentially to be used in studying ischaemia-related heart diseases.
Collapse
Affiliation(s)
- Quan Sun
- Department of Cardiovascular MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Kang‐Kai Wang
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
| | - Miao Pan
- Department of Cardiovascular MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Ji‐Peng Zhou
- Department of Cardiovascular MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Xue‐Ting Qiu
- Department of Geriatric MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Zhen‐Yu Wang
- Department of Cardiovascular MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Zhen Yang
- Department of Hypertension and Vascular Diseasethe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Yan Chen
- Department of HematologyXiangya HospitalCentral South UniversityChangshaChina
| | - Hong Shen
- Institute of Medical SciencesXiangya HospitalCentral South UniversityChangshaChina
| | - Qi‐Lin Gu
- Department of Cardiovascular SciencesHouston Methodist Research InstituteHoustonTXUSA
| | - Long‐Hou Fang
- Department of Cardiovascular SciencesHouston Methodist Research InstituteHoustonTXUSA
| | - Guo‐Gang Zhang
- Department of Cardiovascular MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Yong‐Ping Bai
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
| |
Collapse
|
13
|
Lu JX, Guo C, Ou WS, Jing Y, Niu HF, Song P, Li QZ, Liu Z, Xu J, Li P, Zhu ML, Yin YL. Citronellal prevents endothelial dysfunction and atherosclerosis in rats. J Cell Biochem 2018; 120:3790-3800. [PMID: 30367511 DOI: 10.1002/jcb.27660] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/21/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Atherosclerosis is a chronical inflammatory disease in arterial walls, which is involved in oxidative stress and endothelial dysfunction. Aromatherapy is one of the complementary therapies that use essential oils as the major therapeutic agents to treat several diseases. Citronellal (CT) is a monoterpene predominantly formed by the secondary metabolism of plants, producing antithrombotic, antiplatelet, and antihypertensive activities. AIM The aim of the present study is to explore whether aromatherapy with CT improves endothelial function to prevent the formation of atherosclerotic plaque in vivo. METHODS An AS model in carotid artery was induced by balloon injury and vitamin D3 injection in rats fed with a high-fat diet. The size of the carotid atherosclerotic plaque was determined by ultrasound, oil red, and hematoxylin-eosin staining. Endothelial function was assessed by measuring acetylcholine-induced vessel relaxation in an organ chamber. RESULTS Administrations of CT (50, 100, and 150 mg/kg) as well as lovastatin dramatically reduced the size of carotid atherosclerotic plaque in rats in a dose-dependent manner, compared with atherosclerotic rats fed with a high-fat diet plus balloon injury and vitamin D3. Mechanically, CT improved endothelial dysfunction, increased cell migration, and suppressed oxidative stress and inflammation in vascular endothelium in rats feeding on the high-fat diet plus balloon injury. Further, CT downregulated the protein levels of sodium-hydrogen exchanger 1 in rats with atherosclerosis. CONCLUSION CT improves endothelial dysfunction and prevents the growth of atherosclerosis in rats by reducing oxidative stress. Clinically, CT is potentially considered as a medicine to treat patients with atherosclerosis.
Collapse
Affiliation(s)
- Jun-X Lu
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Chao Guo
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Wen-S Ou
- Department of Gastroenterology, Chenzhou No.1 People's Hospital, Chenzhou, China
| | - Yun Jing
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Hui-F Niu
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Ping Song
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Quan-Z Li
- Department of Cardiology, Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Zhan Liu
- Department of Clinical Nutrition, The Affiliated Hospital, Hunan Normal University, Changsha, China
| | - Jian Xu
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Peng Li
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Mo-L Zhu
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Ya-L Yin
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
14
|
Zhang ZM, Wang BX, Ou WS, Lv YH, Li MM, Miao Z, Wang SX, Fei JC, Guo T. Administration of losartan improves aortic arterial stiffness and reduces the occurrence of acute coronary syndrome in aged patients with essential hypertension. J Cell Biochem 2018; 120:5713-5721. [PMID: 30362602 DOI: 10.1002/jcb.27856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/19/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUNDS AND AIMS Increased arterial stiffness may increase cardiovascular morbidity and mortality. Angiotensin II type 1 receptor blocker losartan is potentially useful in controlling the central blood pressure and arterial stiffness in mild to moderate essential hypertension, while the effects of losartan in aged patients with essential hypertension are not entirely investigated. METHODS The carotid-femoral arterial pulse wave velocity (PWV) was measured in aged patients with essential hypertension. RESULTS In a cross-sectional study, PWV value was significantly higher in these old patients with essential hypertension, compared with patients without essential hypertension. Logistic regression analysis indicated that age, hypertension duration, and losartan treatment are risk factors of arterial stiffness. In a perspective study, long-term administration of losartan (50 mg/d) remarkably reduced PWV in aged patients with essential hypertension. In a longitudinal study, PWV is an independent predictor of the occurrence of acute coronary syndrome (ACS) in elderly patients with essential hypertension by using multivariate analysis. Further, the ACS occurrence was reduced by long-term administration of losartan in aged patients with essential hypertension, compared with the old hypertensive patients without taking losartan. CONCLUSION Losartan treatment is a negative risk factor of arterial stiffness and reduces the risk of ACS in aged patients with essential hypertension.
Collapse
Affiliation(s)
- Zhi-Mian Zhang
- Department of Cardiology, The Center of Health Examination, Qilu Hospital, Shandong University, Jinan, China
| | - Bing-Xiang Wang
- Department of Orthopedics, Provincial Hospital of Shandong, Jinan, China
| | - Wen-Sheng Ou
- Department of Liver Disease, Chenzhou No.1 People s Hospital, Chenzhou, China
| | - Yan-Hong Lv
- Department of Cardiology, The Center of Health Examination, Qilu Hospital, Shandong University, Jinan, China
| | - Ming-Min Li
- Department of Cardiology, The Center of Health Examination, Qilu Hospital, Shandong University, Jinan, China
| | - Zhang Miao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Shuang-Xi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Jian-Chun Fei
- Department of Anaesthesia, Qilu Hospital, Shandong University, Jinan, China
| | - Tao Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
15
|
Zhu ML, Sun RL, Zhang HY, Zhao FR, Pan GP, Zhang C, Song P, Li P, Xu J, Wang S, Yin YL. Angiotensin II type 1 receptor blockers prevent aortic arterial stiffness in elderly patients with hypertension. Clin Exp Hypertens 2018; 41:657-661. [PMID: 30311805 DOI: 10.1080/10641963.2018.1529781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Backgrounds and aims: Increased arterial stiffness may increase cardiovascular morbidity and mortality. Angiotensin II type 1 receptor blockers (ARBs) are potentially useful in controlling the central blood pressure and arterial stiffness in mild to moderate essential hypertension, while the effects of ARBs in aged patients with essential hypertension are not entirely investigated. Methods: The carotid-femoral arterial pulse wave velocity (PWV) was measured in aged patients with essential hypertension. Results: In a cross-sectional study, PWV value was significantly higher in these old patients with essential hypertension, compared to patients without essential hypertension. In correlation analysis, PWV was associated positively with age, hypertension duration, and carotid atherosclerosis. However, there was no relationship between PWV and gender in aged patients with essential hypertension. In a perspective study, 6-12 months administration of ARBs (losartan, 50 mg/day; telmisartan, 40 mg/day; valsartan 80 mg/day; irbesartan, 150 mg/day) remarkably reduced PWV in aged patients with essential hypertension. Regression analyses of multiple factors indicated that the effects of ARBs on arterial stiffness were not associated with the reduction of blood pressure. Conclusion: ARB treatment is a negative risk factor of arterial stiffness in aged patients with essential hypertension.
Collapse
Affiliation(s)
- Mo-Li Zhu
- a College of Pharmacy, Xinxiang Medical University , Xinxiang , China
| | - Rui-Li Sun
- b Henan Key Laboratory of Immunology and Targeted Therapy, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine in Henan Province, School of Laboratory Medicine, Xinxiang Medical University , Xinxiang , China
| | - He-Yun Zhang
- a College of Pharmacy, Xinxiang Medical University , Xinxiang , China
| | - Fan-Rong Zhao
- a College of Pharmacy, Xinxiang Medical University , Xinxiang , China
| | - Guo-Pin Pan
- a College of Pharmacy, Xinxiang Medical University , Xinxiang , China
| | - Chong Zhang
- a College of Pharmacy, Xinxiang Medical University , Xinxiang , China
| | - Ping Song
- a College of Pharmacy, Xinxiang Medical University , Xinxiang , China
| | - Peng Li
- a College of Pharmacy, Xinxiang Medical University , Xinxiang , China
| | - Jian Xu
- a College of Pharmacy, Xinxiang Medical University , Xinxiang , China
| | - Shuangxi Wang
- a College of Pharmacy, Xinxiang Medical University , Xinxiang , China
| | - Ya-Ling Yin
- c School of Basic Medical Sciences, Xinxiang Medical University , Xinxiang , China
| |
Collapse
|
16
|
Yu L, Liu H. Perillaldehyde prevents the formations of atherosclerotic plaques through recoupling endothelial nitric oxide synthase. J Cell Biochem 2018; 119:10204-10215. [DOI: 10.1002/jcb.27362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/26/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Li Yu
- Department of Physiology, School of Basic Medical Sciences Jinzhou Medical University Jinzhou China
- Institue of Eyes Jinzhou Medical University Jinzhou China
| | - Hua Liu
- Institue of Eyes Jinzhou Medical University Jinzhou China
| |
Collapse
|
17
|
Zhu ML, Yin YL, Ping S, Yu HY, Wan GR, Jian X, Li P. Berberine promotes ischemia-induced angiogenesis in mice heart via upregulation of microRNA-29b. Clin Exp Hypertens 2017; 39:672-679. [PMID: 28722488 DOI: 10.1080/10641963.2017.1313853] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Berberine has several preventive effects on cardiovascular diseases. Increased expression of miR-29b has been reported to attenuate cardiac remodeling after myocardial infarction (MI). We hypothesized that berberine via an miR-29b-dependent mechanism promotes angiogenesis and improves heart functions in mice after MI. METHODS The MI model was established in mice by ligation of left anterior descending coronary artery. The expression of miR-29b was examined by RT-qPCR. Angiogenesis was assessed by immunohistochemistry. RESULTS Berberine increased miR-29b expression and promoted cell proliferations and migrations in cultured endothelial cells, which were abolished by miR-29b antagomir or AMP-activated protein kinase inhibitor compound C. In mice following MI, administration of berberine significantly increased miR-29b expressional level, promoted angiogenesis, reduced infarct size, and improved heart functions after 14 postoperative days. Importantly, these in vivo effects of berberine were ablated by antagonism of miR-29b. CONCLUSION Berberine via upregulation of miR-29b promotes ischemia-induced angiogenesis and improves heart functions.
Collapse
Affiliation(s)
- Mo-Li Zhu
- a College of Pharmacy , Xinxiang Medical University , Xinxiang , Henan , China
| | - Ya-Ling Yin
- b School of Basic Medical Sciences , Xinxiang Medical University , Xinxiang , Henan , China
| | - Song Ping
- a College of Pharmacy , Xinxiang Medical University , Xinxiang , Henan , China
| | - Hai-Ya Yu
- c Department of Neurology , The People's Hospital of Xishui County , Huangang , Hubei , China
| | - Guang-Rui Wan
- a College of Pharmacy , Xinxiang Medical University , Xinxiang , Henan , China
| | - Xu Jian
- a College of Pharmacy , Xinxiang Medical University , Xinxiang , Henan , China
| | - Peng Li
- a College of Pharmacy , Xinxiang Medical University , Xinxiang , Henan , China
| |
Collapse
|
18
|
Zhu ML, Lu JX, Pan GP, Ping S, Zhao FR, Qi HT, Yu HY, Jian X, Wan GR, Li P. Traditional Chinese medicine Ka-Sai-Ping suppresses the growths of gastric cancers via induction of autophagy. Oncotarget 2017; 8:95075-95082. [PMID: 29221112 PMCID: PMC5707006 DOI: 10.18632/oncotarget.18041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/10/2017] [Indexed: 11/25/2022] Open
Abstract
Traditional Chinese medication is increasingly used to treat a wide range of human chronic diseases like cardiovascular diseases and cancers. This study was designed to explore whether ka-sai-ping (KSP), a novel traditional Chinese medicine developed by us, prevents gastric cancer growths and to investigate the underlying mechanism. The xenograft model of mouse gastric cancer was established by injecting MFCs into nude mouse subcutaneously. Cell autophagy was assessed by MDC staining. Lysosome and mitochondria were detected by Lyso-Tracker Red and Mito-Traker Green staining. Incubation of cultured mouse gastric cancer cell line MFCs with KSP for 48 hours, concentration-dependently reduced cell survivals and activated autophagy, which were accompanied with damaged lysosomes and mitochondria. In vivo studies indicated that KSP therapy (20 ml/kg/day) for two weeks suppressed the growth of gastric cancer, increased the protein levels of LC3-II, beclin-1, cathepsin L, bcl-2, p53, and capase-3 in tumor tissues from the xenograft model of mouse gastric cancer. Importantly, all these effects induced by KSP were abolished by co-administration of autophagy inhibitor 3-MA. In conclusion, KSP activates cell autophagy to suppress gastric cancer growths. Clinically, KSP is potentially considered as a medicine to treat patients with gastric cancer.
Collapse
Affiliation(s)
- Mo-Li Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Jun-Xiu Lu
- Department of Histology and Embryology, Xinxiang Medical University, Xinxiang, China
| | - Guo-Pin Pan
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Song Ping
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Fan-Rong Zhao
- San-Quan College of Xinxiang Medical University, Xinxiang, China
| | - Heng-Tian Qi
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Hai-Ya Yu
- Department of Neurology, The People's Hospital of Xishui County, Huangang, Hubei, China
| | - Xu Jian
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Guang-Rui Wan
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|