1
|
Teufl P, Graf W. A new species of Protonemura Kempny, 1898 (Plecoptera, Nemouridae) from Albania. Biodivers Data J 2024; 12:e129725. [PMID: 39210958 PMCID: PMC11358612 DOI: 10.3897/bdj.12.e129725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
Background Although studies of the entomofauna of the Balkan Peninsula have increased in quantity and intensity over the course of the last decades, many areas are still not fully investigated regarding their faunistic inventory. New information As a result of a field trip in the Vjosa catchment in 2023, a new species of the genus Protonemura Kempny, 1898 (Plecoptera, Nemouridae, Amphinemurinae) is described from Albania, Protonemuraeclipsis sp. nov. from a holotype male, collected from the District of Tepelenë, Bënçë River. The new species is compared and differentiated from related species, namely Protonemuraalbanica Raušer, 1963 and Protonemuramiatchense Ikonomov, 1983. It differs from congeners clearly by its terminalia, namely the shape of the paraprocts. Images of the new species and of Protonemuraalbanica are provided.
Collapse
Affiliation(s)
| | - Wolfram Graf
- Institut für Hydrobiologie und Gewässermanagement, Wien, AustriaInstitut für Hydrobiologie und GewässermanagementWienAustria
| |
Collapse
|
2
|
Sorokina S, Sevastianov N, Tarasova T, Vedenina V. The Fast Evolution of the Stenobothrini Grasshoppers (Orthoptera, Acrididae, and Gomphocerinae) Revealed by an Analysis of the Control Region of mtDNA, with an Emphasis on the Stenobothrus eurasius Group. INSECTS 2024; 15:592. [PMID: 39194797 DOI: 10.3390/insects15080592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024]
Abstract
The two cryptic grasshopper species of the genus Stenobothrus, S. eurasius and S. hyalosuperficies, demonstrate different acoustic behavior despite a strong similarity in morphology. A hybridization between these species is possible in the contact zone; however, there are little molecular data about the relationships of these species. The analysis of the mtDNA control region (CR) reveals that haplotypes of S. hyalosuperficies have more in common with the more distant Stenobothrus species than with the closely related S. eurasius. In the contact zone, S. eurasius has mt-haplotypes shared with S. hyalosuperficies, which might indicate an introgression of mtDNA from S. hyalosuperficies to the S. eurasius gene pool. We also analyze the structure and evolutionary rate of the mtDNA CR for the Stenobothrus genus and estimate the time of divergence of the species within the genus. The phylogenetic tree of the tribe Stenobothrini reconstructed with either the CR or COI gave the same four groups. The phylogenetic tree of the Stenobothrus genus has a star-like topology with each mtDNA haplotype found in any analyzed species, except S. eurasius, which forms a separate branch. The maximum degree of incomplete lineage sorting can demonstrate either ancestral polymorphism or introgression.
Collapse
Affiliation(s)
- Svetlana Sorokina
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia
| | - Nikita Sevastianov
- Institute for Information Transmission Problems, Russian Academy of Sciences, 19 Bolshoy Karetny per., Moscow 127051, Russia
| | - Tatiana Tarasova
- Institute for Information Transmission Problems, Russian Academy of Sciences, 19 Bolshoy Karetny per., Moscow 127051, Russia
| | - Varvara Vedenina
- Institute for Information Transmission Problems, Russian Academy of Sciences, 19 Bolshoy Karetny per., Moscow 127051, Russia
| |
Collapse
|
3
|
Marques V, Hinojosa JC, Dapporto L, Talavera G, Stefanescu C, Gutiérrez D, Vila R. The opposed forces of differentiation and admixture across glacial cycles in the butterfly Aglais urticae. Mol Ecol 2024; 33:e17304. [PMID: 38421113 DOI: 10.1111/mec.17304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Glacial cycles lead to periodic population interbreeding and isolation in warm-adapted species, which impact genetic structure and evolution. However, the effects of these processes on highly mobile and more cold-tolerant species are not well understood. This study aims to shed light on the phylogeographic history of Aglais urticae, a butterfly species with considerable dispersal ability, and a wide Palearctic distribution reaching the Arctic. Through the analysis of genomic data, four main genetic lineages are identified: European, Sierra Nevada, Sicily/Calabria/Peloponnese, and Eastern. The results indicate that the Sardo-Corsican endemic taxon ichnusa is a distinct species. The split between the relict lineages in southern Europe and the main European lineage is estimated to have happened 400-450 thousand years ago, with admixture observed during the Quaternary glacial cycles, and still ongoing, albeit to a much smaller extent. These results suggest that these lineages may be better treated as subspecific parapatric taxa. Ecological niche modelling supported the existence of both Mediterranean and extra-Mediterranean refugia during the glacial periods, with the main one located on the Atlantic coast. Nevertheless, gene flow between populations was possible, indicating that both differentiation and admixture have acted continuously across glacial cycles in this cold-tolerant butterfly, generally balancing each other but producing differentiated lineages in the southern peninsulas. We conclude that the population dynamics and the processes shaping the population genetic structure of cold-adapted species during the Quaternary ice ages may be different than those classically accepted for warm-adapted species.
Collapse
Affiliation(s)
- Valéria Marques
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Joan Carles Hinojosa
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Leonardo Dapporto
- Dipartimento di Biologia, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, Spain
| | - Constantí Stefanescu
- Natural Sciences Museum of Granollers, Granollers, Spain
- CREAF, Cerdanyola del Vallès, Spain
| | - David Gutiérrez
- Instituto de Investigación en Cambio Global (IICG), Universidad Rey Juan Carlos, Madrid, Spain
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Madrid, Spain
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
4
|
Ottati S, Eberle J, Rulik B, Köhler F, Ahrens D. From DNA barcodes to ecology: Meta-analysis of central European beetles reveal link with species ecology but also to data pattern and gaps. Ecol Evol 2022; 12:e9650. [PMID: 36568864 PMCID: PMC9771709 DOI: 10.1002/ece3.9650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
DNA barcoding has been used worldwide to identify biological specimens and to delimit species. It represents a cost-effective, fast, and efficient way to assess biodiversity with help of the public Barcode of Life Database (BOLD) accounting for more than 236,000 animal species and more than 10 million barcode sequences. Here, we performed a meta-analysis of available barcode data of central European Coleoptera to detect intraspecific genetic patterns among ecological groups in relation to geographic distance with the aim to investigate a possible link between infraspecific variation and species ecology. We collected information regarding feeding style, body size, as well as habitat and biotope preferences. Mantel tests and two variants of Procrustes analysis, both involving the Principal Coordinates Neighborhood Matrices (PCNM) approach, were applied on genetic and geographic distance matrices. However, significance levels were too low to further use the outcome for further trait investigation: these were in mean for all ecological guilds only 7.5, 9.4, or 15.6% for PCNM + PCA, NMDS + PCA, and Mantel test, respectively, or at best 28% for a single guild. Our study confirmed that certain ecological traits were associated with higher species diversity and foster stronger genetic differentiation. Results suggest that increased numbers of species, sampling localities, and specimens for a chosen area of interest may give new insights to explore barcode data and species ecology for the scope of conservation on a larger scale. We performed a meta-analysis of available barcode data of central European beetles to detect intraspecific genetic patterns among ecological groups in relation to geographic distance, regarding feeding style, body size, as well as habitat and biotope preferences. Our study confirmed that certain ecological traits were associated with higher species diversity and foster stronger genetic differentiation. However, significance levels were too low to further use the outcome for further trait investigation.
Collapse
Affiliation(s)
- Sara Ottati
- Zoologisches Forschungsmuseum A. Koenig (LIB)BonnGermany
- Department of Agricultural, Forest and Food Sciences (DISAFA)University of TorinoTurinItaly
| | - Jonas Eberle
- Zoologisches Forschungsmuseum A. Koenig (LIB)BonnGermany
- Department of Environment & BiodiversityUniversity of SalzburgSalzburgAustria
| | - Björn Rulik
- Department of Agricultural, Forest and Food Sciences (DISAFA)University of TorinoTurinItaly
| | - Frank Köhler
- Coleopterological Research OfficeBornheimGermany
| | - Dirk Ahrens
- Zoologisches Forschungsmuseum A. Koenig (LIB)BonnGermany
| |
Collapse
|
5
|
Polic D, Yıldırım Y, Lee KM, Franzén M, Mutanen M, Vila R, Forsman A. Linking large-scale genetic structure of three Argynnini butterfly species to geography and environment. Mol Ecol 2022; 31:4381-4401. [PMID: 35841126 PMCID: PMC9544544 DOI: 10.1111/mec.16594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022]
Abstract
Understanding which factors and processes are associated with genetic differentiation within and among species remains a major goal in evolutionary biology. To explore differences and similarities in genetic structure and its association with geographical and climatic factors in sympatric sister species, we conducted a large‐scale (>32° latitude and >36° longitude) comparative phylogeographical study on three Argynnini butterfly species (Speyeria aglaja, Fabriciana adippe and F. niobe) that have similar life histories, but differ in ecological generalism and dispersal abilities. Analyses of nuclear (ddRAD‐sequencing derived SNP markers) and mitochondrial (COI sequences) data revealed differences between species in genetic structure and how genetic differentiation was associated with climatic factors (temperature, solar radiation, precipitation, wind speed). Geographical proximity accounted for much of the variation in nuclear and mitochondrial structure and evolutionary relationships in F. adippe and F. niobe, but only explained the pattern observed in the nuclear data in S. aglaja, for which mitonuclear discordance was documented. In all species, Iberian and Balkan individuals formed genetic clusters, suggesting isolation in glacial refugia and limited postglacial expansion. Solar radiation and precipitation were associated with the genetic structure on a regional scale in all species, but the specific combinations of environmental and geographical factors linked to variation within species were unique, pointing to species‐specific responses to common environments. Our findings show that the species share similar colonization histories, and that the same ecological factors, such as niche breadth and dispersal capacity, covary with genetic differentiation within these species to some extent, thereby highlighting the importance of comparative phylogeographical studies in sympatric sister species.
Collapse
Affiliation(s)
- Daniela Polic
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Yeşerin Yıldırım
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.,Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Kyung Min Lee
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland.,Zoology Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Markus Franzén
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Marko Mutanen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Anders Forsman
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
6
|
Štefánik M, Habel JC, Schmitt T, Eberle J. Geographical disjunction and environmental conditions drive intraspecific differentiation in the chalk-hill blue butterfly. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Drivers of evolution are often related to geographical isolation and/or diverging environmental conditions. Spatial variation in neutral genetic markers mostly reflects past geographical isolation, i.e. long-lasting allopatry, whereas morphology is often driven by local environmental conditions, resulting in more rapid evolution. In Europe, most thermophilic species persisted during the past glacial periods in geographically disjunct refugia, representing long-lasting isolates, frequently with diverging environmental conditions. This situation has driven the evolution of intraspecific signatures in species. Here, we analysed wing shape and wing pigmentation of the chalk-hill blue butterfly, Polyommatus coridon, across its entire distribution range restricted to the western Palaearctic. In addition, we compiled abiotic environmental parameters for each sampling site. Wing colour patterns differentiated a western and an eastern lineage. These lineages might represent two main Pleistocene refugia and differentiation centres, one located on the Italian Peninsula and the other in the Balkan region. The two lineages showed evidence of hybridization across Central Europe, from the Alps and across Germany. The intraspecific differentiation was strongest in the width of the brown band on the outer margin of the wings. The morphological structures obtained are in line with genetic signatures found in previous studies, but the latter are more fine-grained. Current environmental conditions, such as mean temperatures, were only marginally correlated with colour patterns. Our study underlines that Pleistocene range shifts, often resulting in allopatric isolation, shape intraspecific phenotypic structures within species; that pigmentation responds in a more sensitive manner to spatial disjunction than wing shape; and that morphometric and genetic structures in P. coridon provide concordant patterns and thus support identical biogeographical conclusions.
Collapse
Affiliation(s)
- Martin Štefánik
- Evolutionary Zoology, Department of Biosciences, University of Salzburg, Salzburg, Austria
- Department of Environmental Ecology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Jan Christian Habel
- Evolutionary Zoology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Thomas Schmitt
- Senckenberg German Entomological Institute, Müncheberg, Germany
- Department of Zoology, Institute of Biology, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jonas Eberle
- Evolutionary Zoology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| |
Collapse
|
7
|
Thörn F, Rödin-Mörch P, Cortazar-Chinarro M, Richter-Boix A, Laurila A, Höglund J. The effects of drift and selection on latitudinal genetic variation in Scandinavian common toads (Bufo bufo) following postglacial recolonisation. Heredity (Edinb) 2021; 126:656-667. [PMID: 33564181 PMCID: PMC8115047 DOI: 10.1038/s41437-020-00400-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 12/07/2020] [Accepted: 12/22/2020] [Indexed: 01/31/2023] Open
Abstract
Clinal variation is paramount for understanding the factors shaping genetic diversity in space and time. During the last glacial maximum, northern Europe was covered by glacial ice that rendered the region uninhabitable for most taxa. Different evolutionary processes during and after the recolonisation of this area from different glacial refugia have affected the genetic landscape of the present day European flora and fauna. In this study, we focus on the common toad (Bufo bufo) in Sweden and present evidence suggesting that these processes have resulted in two separate lineages of common toad, which colonised Sweden from two directions. Using ddRAD sequencing data for demographic modelling, structure analyses, and analysis of molecular variance (AMOVA), we provide evidence of a contact zone located between Uppland and Västerbotten in central Sweden. Genetic diversity was significantly higher in southern Sweden compared to the north, in accordance with a pattern of decreased genetic diversity with increasing distance from glacial refugia. Candidate genes under putative selection are identified through outlier detection and gene-environment association methods. We provide evidence of divergent selection related to stress response and developmental processes in these candidate genes. The colonisation of Sweden by two separate lineages may have implications for how future conservation efforts should be directed by identifying management units and putative local adaptations.
Collapse
Affiliation(s)
- Filip Thörn
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
- Department for Bioinformatics and Genetics, Swedish Natural History Museum, Stockholm, Sweden.
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Patrik Rödin-Mörch
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | | | - Alex Richter-Boix
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Anssi Laurila
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Jacob Höglund
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Sucháčková Bartoňová A, Konvička M, Marešová J, Wiemers M, Ignatev N, Wahlberg N, Schmitt T, Faltýnek Fric Z. Wolbachia affects mitochondrial population structure in two systems of closely related Palaearctic blue butterflies. Sci Rep 2021; 11:3019. [PMID: 33542272 PMCID: PMC7862691 DOI: 10.1038/s41598-021-82433-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/19/2021] [Indexed: 01/30/2023] Open
Abstract
The bacterium Wolbachia infects many insect species and spreads by diverse vertical and horizontal means. As co-inherited organisms, these bacteria often cause problems in mitochondrial phylogeny inference. The phylogenetic relationships of many closely related Palaearctic blue butterflies (Lepidoptera: Lycaenidae: Polyommatinae) are ambiguous. We considered the patterns of Wolbachia infection and mitochondrial diversity in two systems: Aricia agestis/Aricia artaxerxes and the Pseudophilotes baton species complex. We sampled butterflies across their distribution ranges and sequenced one butterfly mitochondrial gene and two Wolbachia genes. Both butterfly systems had uninfected and infected populations, and harboured several Wolbachia strains. Wolbachia was highly prevalent in A. artaxerxes and the host's mitochondrial structure was shallow, in contrast to A. agestis. Similar bacterial alleles infected both Aricia species from nearby sites, pointing to a possible horizontal transfer. Mitochondrial history of the P. baton species complex mirrored its Wolbachia infection and not the taxonomical division. Pseudophilotes baton and P. vicrama formed a hybrid zone in Europe. Wolbachia could obscure mitochondrial history, but knowledge on the infection helps us to understand the observed patterns. Testing for Wolbachia should be routine in mitochondrial DNA studies.
Collapse
Affiliation(s)
- Alena Sucháčková Bartoňová
- Biology Centre CAS, Institute of Entomology, České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| | - Martin Konvička
- Biology Centre CAS, Institute of Entomology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jana Marešová
- Biology Centre CAS, Institute of Entomology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Martin Wiemers
- Senckenberg German Entomological Institute, Müncheberg, Germany
| | - Nikolai Ignatev
- Biology Centre CAS, Institute of Entomology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | | | - Thomas Schmitt
- Senckenberg German Entomological Institute, Müncheberg, Germany
- Faculty of Natural Sciences I, Institute of Biology, Zoology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | |
Collapse
|
9
|
Marabuto E, Pina-Martins F, Rebelo MT, Paulo OS. Ancient divergence, a crisis of salt and another of ice shaped the evolution of the west Mediterranean butterfly Euchloe tagis. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AbstractThe Mediterranean region is an extremely complex hotspot where, since the Miocene, extensive geological, habitat and climate changes have taken place, alternating between warm and cold periods. These phenomena have taken a toll on the genetic composition of species, and surviving lineages have often adapted locally and diverged to the point of (complete) speciation. To study these phenomena, in this study we used one of the most enigmatic butterflies, the Portuguese dappled white, Euchloe tagis, a west Mediterranean endemic with fragmented, morphologically differentiated populations whose status have long been disputed. Even its affiliations with other Anthocharidini are largely unresolved. We used mitochondrial and nuclear markers under a phylogenetic and phylogeographical framework to evaluate its placement among relatives and population differentiation, reconstructing its evolutionary history. We found that this species had a Miocene origin ~15 Mya and was nearest to Euchloe s.s. and Elphinstonia. Its populations showed high genetic diversity but all coalesced to 5.3 Mya, when European and all but one African population diverged. Our multiple findings concerning the evolution of E. tagis through a changing, narrow habitable area might provide a more general perspective on how species survive within this hotspot of paramount importance.
Collapse
Affiliation(s)
- Eduardo Marabuto
- Computational Biology and Population Genomics Group, cE3c – Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Francisco Pina-Martins
- Computational Biology and Population Genomics Group, cE3c – Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Maria Teresa Rebelo
- Centre for Environmental and Marine Studies (CESAM), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Octávio S Paulo
- Computational Biology and Population Genomics Group, cE3c – Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| |
Collapse
|
10
|
Saladin B, Pellissier L, Graham CH, Nobis MP, Salamin N, Zimmermann NE. Rapid climate change results in long-lasting spatial homogenization of phylogenetic diversity. Nat Commun 2020; 11:4663. [PMID: 32938914 PMCID: PMC7495423 DOI: 10.1038/s41467-020-18343-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/14/2020] [Indexed: 11/09/2022] Open
Abstract
Scientific understanding of biodiversity dynamics, resulting from past climate oscillations and projections of future changes in biodiversity, has advanced over the past decade. Little is known about how these responses, past or future, are spatially connected. Analyzing the spatial variability in biodiversity provides insight into how climate change affects the accumulation of diversity across space. Here, we evaluate the spatial variation of phylogenetic diversity of European seed plants among neighboring sites and assess the effects of past rapid climate changes during the Quaternary on these patterns. Our work shows a marked homogenization in phylogenetic diversity across Central and Northern Europe linked to high climate change velocity and large distances to refugia. Our results suggest that the future projected loss in evolutionary heritage may be even more dramatic, as homogenization in response to rapid climate change has occurred among sites across large landscapes, leaving a legacy that has lasted for millennia. How past climate change has affected biodiversity over large spatial scales remains underexplored. Here, the authors find marked homogenization in flowering plant phylogenetic diversity across Central and Northern Europe linked to rapid climate change and large distances to glacial refugia.
Collapse
Affiliation(s)
- Bianca Saladin
- Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland.
| | - Loïc Pellissier
- Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland.,Department of Environmental Systems Sciences, Landscape Ecology, Institute of Terrestrial Ecosystems, ETH Zürich, 8092, Zurich, Switzerland
| | | | - Michael P Nobis
- Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | | |
Collapse
|
11
|
Cassel‐Lundhagen A, Schmitt T, Wahlberg N, Sarvašová L, Konvička M, Ryrholm N, Kaňuch P. Wing morphology of the butterfly
Coenonympha arcania
in Europe: Traces of both historical isolation in glacial refugia and current adaptation. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Thomas Schmitt
- Senckenberg German Entomological Institute Müncheberg Germany
- Zoology Institute of Biology Faculty of Natural Sciences I Martin Luther University Halle‐Wittenberg Halle (Saale) Germany
| | | | - Lenka Sarvašová
- Institute of Forest Ecology Slovak Academy of Sciences Zvolen Slovakia
| | - Martin Konvička
- Faculty of Sciences University South Bohemia České Budějovice Czech Republic
| | - Nils Ryrholm
- Department of Electronics, Mathematics and Natural Sciences Faculty of Engineering and Sustainable Development University of Gävle Gävle Sweden
| | - Peter Kaňuch
- Institute of Forest Ecology Slovak Academy of Sciences Zvolen Slovakia
- Institute of Biology and Ecology Faculty of Science P. J. Šafárik University in Košice Košice Slovakia
| |
Collapse
|
12
|
Fačkovcová Z, Slovák M, Vďačný P, Melichárková A, Zozomová-Lihová J, Guttová A. Spatio-temporal formation of the genetic diversity in the Mediterranean dwelling lichen during the Neogene and Quaternary epochs. Mol Phylogenet Evol 2019; 144:106704. [PMID: 31821879 DOI: 10.1016/j.ympev.2019.106704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 10/14/2019] [Accepted: 12/06/2019] [Indexed: 01/06/2023]
Abstract
Genetic patterns of lichenized fungi often display a mosaic-like and difficult to interpret structure blurring their evolutionary history. The genetic diversity and phylogeographic pattern of a mycobiont of the predominantly Mediterranean dwelling lichen Solenopsora candicans were investigated on the base of extensive sampling (361 individuals, 77 populations) across its entire distribution range. We tested whether the genetic pattern of S. candicans mirrors paleoclimatic and paleogeological events in the Mediterranean and adjacent regions. The divergence time estimates indicated a Tertiary origin for S. candicans, with formation of intraspecific diversity initiated in the Late Miocene. The distribution of the most divergent haplotypes, mostly of a pre-Pleistocene origin, was restricted to the eastern or western extremities of the Mediterranean exhibiting Kiermack disjunction. The population genetic diversity analyses indicated multiple diversity centres and refugia for S. candicans across the entire Mediterranean Basin. While the south Mediterranean regions harboured both the Tertiary and Quaternary born diversity, conforming to the 'cumulative refugia' paradigm, the Apennine and Balkan Peninsulas in the north hosted mostly younger Pleistocene haplotypes and lineages. The recent population expansion of S. candicans might have occurred in the middle Pleistocene with a population burst in the Apennine and Balkan peninsulas. The presence of unique haplotypes in Central Europe indicates the existence of extra-Mediterranean microrefugia. This study presents the first comprehensive lichen phylogeography from the Mediterranean region and simultaneously reports for the first time the glacial survival of a warm-adapted lichen in the temperate zone.
Collapse
Affiliation(s)
- Zuzana Fačkovcová
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523 Bratislava, Slovakia.
| | - Marek Slovák
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523 Bratislava, Slovakia; Department of Botany, Charles University, Benátská 2, 12801 Prague, Czech Republic
| | - Peter Vďačný
- Department of Zoology, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Andrea Melichárková
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523 Bratislava, Slovakia
| | - Judita Zozomová-Lihová
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523 Bratislava, Slovakia
| | - Anna Guttová
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523 Bratislava, Slovakia
| |
Collapse
|
13
|
Rejlová L, Chrtek J, Trávníček P, Lučanová M, Vít P, Urfus T. Polyploid evolution: The ultimate way to grasp the nettle. PLoS One 2019; 14:e0218389. [PMID: 31260474 PMCID: PMC6602185 DOI: 10.1371/journal.pone.0218389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/01/2019] [Indexed: 11/18/2022] Open
Abstract
Polyploidy is one of the major forces of plant evolution and widespread mixed-ploidy species offer an opportunity to evaluate its significance. We therefore selected the cosmopolitan species Urtica dioica (stinging nettle), examined its cytogeography and pattern of absolute genome size, and assessed correlations with bioclimatic and ecogeographic data (latitude, longitude, elevation). We evaluated variation in ploidy level using an extensive dataset of 7012 samples from 1317 populations covering most of the species' distribution area. The widespread tetraploid cytotype (87%) was strongly prevalent over diploids (13%). A subsequent analysis of absolute genome size proved a uniform Cx-value of core U. dioica (except for U. d. subsp. cypria) whereas other closely related species, namely U. bianorii, U. kioviensis and U. simensis, differed significantly. We detected a positive correlation between relative genome size and longitude and latitude in the complete dataset of European populations and a positive correlation between relative genome size and longitude in a reduced dataset of diploid accessions (the complete dataset of diploids excluding U. d. subsp. kurdistanica). In addition, our data indicate an affinity of most diploids to natural and near-natural habitats and that the tetraploid cytotype and a small part of diploids (population from the Po river basin in northern Italy) tend to inhabit synanthropic sites. To sum up, the pattern of ploidy variation revealed by our study is in many aspects unique to the stinging nettle, being most likely first of all driven by the greater ecological plasticity and invasiveness of the tetraploid cytotype.
Collapse
Affiliation(s)
- Ludmila Rejlová
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jindřich Chrtek
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Trávníček
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
| | - Magdalena Lučanová
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Botany, Faculty of Science University of South Bohemia, České Budějovice, Czech Republic
| | - Petr Vít
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Tomáš Urfus
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
14
|
Esquer-Garrigos Y, Streiff R, Party V, Nidelet S, Navascués M, Greenfield MD. Pleistocene origins of chorusing diversity in Mediterranean bush-cricket populations ( Ephippiger diurnus). Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/bly195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Yareli Esquer-Garrigos
- CBGP, INRA, CIRAD, IRD, Université de Montpellier, Montpellier, France
- DGIMI, INRA, Université de Montpellier, Montpellier, France
- Université de Tours, Tours, France
| | - Réjane Streiff
- CBGP, INRA, CIRAD, IRD, Université de Montpellier, Montpellier, France
- DGIMI, INRA, Université de Montpellier, Montpellier, France
| | | | - Sabine Nidelet
- CBGP, INRA, CIRAD, IRD, Université de Montpellier, Montpellier, France
| | | | - Michael D Greenfield
- Université de Tours, Tours, France
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
15
|
Queirós J, Acevedo P, Santos JPV, Barasona J, Beltran-Beck B, González-Barrio D, Armenteros JA, Diez-Delgado I, Boadella M, Fernandéz de Mera I, Ruiz-Fons JF, Vicente J, de la Fuente J, Gortázar C, Searle JB, Alves PC. Red deer in Iberia: Molecular ecological studies in a southern refugium and inferences on European postglacial colonization history. PLoS One 2019; 14:e0210282. [PMID: 30620758 PMCID: PMC6324796 DOI: 10.1371/journal.pone.0210282] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/19/2018] [Indexed: 01/31/2023] Open
Abstract
The red deer (Cervus elaphus) is a widespread wild ungulate in Europe that has suffered strong anthropogenic impacts over their distribution during the last centuries, but also at the present time, due its economic importance as a game species. Here we focus on the evolutionary history of the red deer in Iberia, one of the three main southern refugial areas for temperate species in Europe, and addressed the hypothesis of a cryptic refugia at higher latitudes during the Last Glacial Maximum (LGM). A total of 911 individuals were sampled, genotyped for 34 microsatellites specifically developed for red deer and sequenced for a fragment of 670 bp of the mitochondrial (mtDNA) D-loop. The results were combined with published mtDNA sequences, and integrated with species distribution models and historical European paleo-distribution data, in order to further examine the alternative glacial refugial models and the influence of cryptic refugia on European postglacial colonization history. Clear genetic differentiation between Iberian and European contemporary populations was observed at nuclear and mtDNA levels, despite the mtDNA haplotypes central to the phylogenetic network are present across western Europe (including Iberia) suggesting a panmictic population in the past. Species distribution models, fossil records and genetic data support a timing of divergence between Iberian and European populations that overlap with the LGM. A notable population structure was also found within the Iberian Peninsula, although several populations displayed high levels of admixture as a consequence of recent red deer translocations. Five D-loop sub-lineages were found in Iberia that belong to the Western European mtDNA lineage, while there were four main clusters based on analysis of nuclear markers. Regarding glacial refugial models, our findings provide detailed support for the hypothesis that red deer may have persisted in cryptic northern refugia in western Europe during the LGM, most likely in southern France, southern Ireland, or in a region between them (continental shelf), and these regions were the source of individuals during the European re-colonization. This evidence heightens the importance of conserving the high mitochondrial and nuclear diversity currently observed in Iberian populations.
Collapse
Affiliation(s)
- João Queirós
- Centro de Investigacão em Biodiversidade e Recursos Genéticos (CIBIO)/InBio Laboratório Associado, Universidade do Porto, R. Monte-Crasto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto (FCUP), Porto, Portugal
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real, Spain
- * E-mail:
| | - Pelayo Acevedo
- Centro de Investigacão em Biodiversidade e Recursos Genéticos (CIBIO)/InBio Laboratório Associado, Universidade do Porto, R. Monte-Crasto, Vairão, Portugal
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real, Spain
| | - João P. V. Santos
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real, Spain
- Departamento de Biologia & CESAM, Universidade de Aveiro, Aveiro, Portugal
| | - Jose Barasona
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real, Spain
| | - Beatriz Beltran-Beck
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real, Spain
| | - David González-Barrio
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real, Spain
| | - Jose A. Armenteros
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real, Spain
| | - Iratxe Diez-Delgado
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real, Spain
| | - Mariana Boadella
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real, Spain
- SABIOtec. Ed. Polivalente UCLM, Ciudad Real, Spain
| | - Isabel Fernandéz de Mera
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real, Spain
| | - Jose F. Ruiz-Fons
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real, Spain
| | - Joaquin Vicente
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real, Spain
| | - Jose de la Fuente
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States of America
| | - Christian Gortázar
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real, Spain
| | - Jeremy B. Searle
- Centro de Investigacão em Biodiversidade e Recursos Genéticos (CIBIO)/InBio Laboratório Associado, Universidade do Porto, R. Monte-Crasto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto (FCUP), Porto, Portugal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States of America
| | - Paulo C. Alves
- Centro de Investigacão em Biodiversidade e Recursos Genéticos (CIBIO)/InBio Laboratório Associado, Universidade do Porto, R. Monte-Crasto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto (FCUP), Porto, Portugal
- Wildlife Biology Program, University of Montana, Missoula, MT, United States of America
| |
Collapse
|
16
|
Bartonova A, Konvicka M, Korb S, Kramp K, Schmitt T, Faltynek Fric Z. Range dynamics of Palaearctic steppe species under glacial cycles: the phylogeography of Proterebia afra (Lepidoptera: Nymphalidae: Satyrinae). Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Alena Bartonova
- University of South Bohemia, Faculty of Science, Branisovska, Ceske Budejovice, Czech Republic
- Biology Centre CAS, Institute of Entomology, Branisovska, Ceske Budejovice, Czech Republic
| | - Martin Konvicka
- University of South Bohemia, Faculty of Science, Branisovska, Ceske Budejovice, Czech Republic
- Biology Centre CAS, Institute of Entomology, Branisovska, Ceske Budejovice, Czech Republic
| | - Stanislav Korb
- Ural Division of the Russian Academy of Sciences, Institute of Biology, Syktyvkar, Russian Federation
| | - Katja Kramp
- Senckenberg German Entomological Institut Müncheberg, Müncheberg, Germany
| | - Thomas Schmitt
- Senckenberg German Entomological Institut Müncheberg, Müncheberg, Germany
| | - Zdenek Faltynek Fric
- Biology Centre CAS, Institute of Entomology, Branisovska, Ceske Budejovice, Czech Republic
| |
Collapse
|
17
|
Kindler C, Graciá E, Fritz U. Extra-Mediterranean glacial refuges in barred and common grass snakes (Natrix helvetica, N. natrix). Sci Rep 2018; 8:1821. [PMID: 29379101 PMCID: PMC5788984 DOI: 10.1038/s41598-018-20218-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/16/2018] [Indexed: 11/30/2022] Open
Abstract
Extra-Mediterranean glacial refugia of thermophilic biota, in particular in northern latitudes, are controversial. In the present study we provide genetic evidence for extra-Mediterranean refugia in two species of grass snake. The refuge of a widely distributed western European lineage of the barred grass snake (Natrix helvetica) was most likely located in southern France, outside the classical refuges in the southern European peninsulas. One genetic lineage of the common grass snake (N. natrix), distributed in Scandinavia, Central Europe and the Balkan Peninsula, had two distinct glacial refuges. We show that one was located in the southern Balkan Peninsula. However, Central Europe and Scandinavia were not colonized from there, but from a second refuge in Central Europe. This refuge was located in between the northern ice sheet and the Alpine glaciers of the last glaciation and most likely in a permafrost region. Another co-distributed genetic lineage of N. natrix, now massively hybridizing with the aforementioned lineage, survived the last glaciation in a structured refuge in the southern Balkan Peninsula, according to the idea of 'refugia-within-refugia'. It reached Central Europe only very recently. This study reports for the first time the glacial survival of a thermophilic egg-laying reptile species in Central Europe.
Collapse
Affiliation(s)
- Carolin Kindler
- Museum of Zoology (Museum für Tierkunde), Senckenberg Dresden, A. B. Meyer Building, 01109, Dresden, Germany
| | - Eva Graciá
- Ecology Area, Department of Applied Biology, Miguel Hernández University, Av. de la Universidad, Torreblanca, 03202, Elche, Spain
| | - Uwe Fritz
- Museum of Zoology (Museum für Tierkunde), Senckenberg Dresden, A. B. Meyer Building, 01109, Dresden, Germany.
| |
Collapse
|