1
|
Fong JL, Ong Eng Yong V, Yeo C, Adamson C, Li L, Zhang D, Qiao Y. Biochemical Characterization of Recombinant Enterococcus faecalis EntV Peptide to Elucidate Its Antihyphal and Antifungal Mechanisms against Candida albicans. ACS Infect Dis 2024; 10:3408-3418. [PMID: 39137394 DOI: 10.1021/acsinfecdis.4c00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Candida albicans is a common opportunistic fungus in humans, whose morphological switch between yeast and hyphae forms represents a key virulence trait. Developing strategies to inhibit C. albicans hyphal growth may provide insights into designs of novel antivirulent therapeutics. Importantly, the gut commensal bacterium, Enterococcus faecalis, secretes a bacteriocin EntV which has potent antivirulent and antifungal effects against C. albicans in infection models; however, hampered by the challenges to access large quantities of bioactive EntV, the detailed understanding of its mechanisms on C. albicans has remained elusive. In this work, we biochemically reconstituted the proteolytic cleavage reaction to obtain recombinant EntV88-His6 on a large preparative scale, providing facile access to the C-terminal EntV construct. Under in vitro C. albicans hyphal assay with specific inducers, we demonstrated that EntV88-His6 exhibits potent bioactivity against GlcNAc-triggered hyphal growth. Moreover, with fluorescent FITC-EntV88-His6, we revealed that EntV88-His6 enters C. albicans via endocytosis and perturbs the proper localization of the polarisome scaffolding Spa2 protein. Our findings provide important clues on EntV's mechanism of action. Surprisingly, we showed that EntV88-His6 does not affect C. albicans yeast cell growth but potently exerts cytotoxicity against C. albicans under hyphal-inducing conditions in vitro. The combination of EntV88-His6 and GlcNAc displays rapid killing of C. albicans, rendering it a promising antivirulent and antifungal agent.
Collapse
Affiliation(s)
- Jia Li Fong
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), 21 Nanyang Link, Singapore 637371, Singapore
| | - Victor Ong Eng Yong
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore
| | - Claresta Yeo
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), 21 Nanyang Link, Singapore 637371, Singapore
| | - Christopher Adamson
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), 21 Nanyang Link, Singapore 637371, Singapore
| | - Lanxin Li
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), 21 Nanyang Link, Singapore 637371, Singapore
| | - Dan Zhang
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
2
|
Lachat J, Lextrait G, Jouan R, Boukherissa A, Yokota A, Jang S, Ishigami K, Futahashi R, Cossard R, Naquin D, Costache V, Augusto L, Tissières P, Biondi EG, Alunni B, Timchenko T, Ohbayashi T, Kikuchi Y, Mergaert P. Hundreds of antimicrobial peptides create a selective barrier for insect gut symbionts. Proc Natl Acad Sci U S A 2024; 121:e2401802121. [PMID: 38865264 PMCID: PMC11194567 DOI: 10.1073/pnas.2401802121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024] Open
Abstract
The spatial organization of gut microbiota is crucial for the functioning of the gut ecosystem, although the mechanisms that organize gut bacterial communities in microhabitats are only partially understood. The gut of the insect Riptortus pedestris has a characteristic microbiota biogeography with a multispecies community in the anterior midgut and a monospecific bacterial population in the posterior midgut. We show that the posterior midgut region produces massively hundreds of specific antimicrobial peptides (AMPs), the Crypt-specific Cysteine-Rich peptides (CCRs) that have membrane-damaging antimicrobial activity against diverse bacteria but posterior midgut symbionts have elevated resistance. We determined by transposon-sequencing the genetic repertoire in the symbiont Caballeronia insecticola to manage CCR stress, identifying different independent pathways, including AMP-resistance pathways unrelated to known membrane homeostasis functions as well as cell envelope functions. Mutants in the corresponding genes have reduced capacity to colonize the posterior midgut, demonstrating that CCRs create a selective barrier and resistance is crucial in gut symbionts. Moreover, once established in the gut, the bacteria differentiate into a CCR-sensitive state, suggesting a second function of the CCR peptide arsenal in protecting the gut epithelia or mediating metabolic exchanges between the host and the gut symbionts. Our study highlights the evolution of an extreme diverse AMP family that likely contributes to establish and control the gut microbiota.
Collapse
Affiliation(s)
- Joy Lachat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Gaëlle Lextrait
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Romain Jouan
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Amira Boukherissa
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Aya Yokota
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Seonghan Jang
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Hokkaido Center, Sapporo062-8517, Japan
- Unit of Applied Biological Chemistry, Graduate School of Agriculture, Hokkaido University, 060-8589Sapporo, Japan
| | - Kota Ishigami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Hokkaido Center, Sapporo062-8517, Japan
- Unit of Applied Biological Chemistry, Graduate School of Agriculture, Hokkaido University, 060-8589Sapporo, Japan
| | - Ryo Futahashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba305-8566, Japan
| | - Raynald Cossard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Delphine Naquin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Vlad Costache
- MIMA2 Imaging Core Facility, Microscopie et Imagerie des Microorganismes, Animaux et Aliments (MIMA2), INRAe, Jouy-en-Josas78352, France
| | - Luis Augusto
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Pierre Tissières
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Emanuele G. Biondi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Benoît Alunni
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Tatiana Timchenko
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Tsubasa Ohbayashi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Hokkaido Center, Sapporo062-8517, Japan
- Unit of Applied Biological Chemistry, Graduate School of Agriculture, Hokkaido University, 060-8589Sapporo, Japan
| | - Peter Mergaert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| |
Collapse
|
3
|
Alfred R, Bryant G, Mata JP, Bhave M, Shah RM. Unraveling the Effects of Cationic Peptides on Vesicle Structures: Insights into Peptide-Membrane Interactions. ACS APPLIED BIO MATERIALS 2024; 7:220-229. [PMID: 38116591 DOI: 10.1021/acsabm.3c00824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Antimicrobial resistance is a pressing global health issue, with millions of lives at risk by 2050, necessitating the development of alternatives with broad-spectrum activity against pathogenic microbes. Antimicrobial peptides provide a promising solution by combating microbes, modulating immunity, and reducing resistance development through membrane and intracellular targeting. PuroA, a synthetic peptide derived from the tryptophan-rich domain of puroindoline A, exhibits potent antimicrobial activity against various pathogens, while the rationally designed P1 peptide demonstrates enhanced antimicrobial activity with its specific composition. This paper investigates the concentration-dependent effects of these cationic peptides on distinct types of vesicles representing strong-negative bacterial cell membranes (S-vesicles), weak-negative bacterial cell membranes (W-vesicles), and mammalian cell membranes (M-vesicles). To investigate the interactions between the peptides and vesicles, small-angle neutron scattering experiments were conducted. The cationic peptides, PuroA and P1, interact with S-vesicles through electrostatic interactions, leading to distinct effects. PuroA accumulates on the vesicle surface, increasing Rcore and Rtotal, aligning with the carpet model. P1 disrupts the vesicle structure at higher concentrations, consistent with the detergent model. Neither peptide significantly affects W-vesicles, emphasizing the role of charge. In uncharged M-vesicles, both peptides decrease Rcore and Rtotal and increase tshell, indicating peptide insertion and altered bilayer properties. These findings provide valuable insights into peptide-membrane interactions and their impact on vesicle structures. Furthermore, the implications of these findings extend to the potential development of innovative antimicrobial agents and drug delivery systems that specifically target bacterial and mammalian membranes. This research contributes to the advancement of understanding peptide-membrane interactions and lays the foundation for the design of approaches for targeting membranes in various biomedical applications.
Collapse
Affiliation(s)
- Rebecca Alfred
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, VIC 3122, Australia
| | - Gary Bryant
- Physics, School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Jitendra P Mata
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, NSW 2234, Australia
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mrinal Bhave
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, VIC 3122, Australia
| | - Rohan M Shah
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, VIC 3122, Australia
| |
Collapse
|
4
|
Fang Y, Li L, Sui M, Jiang Q, Dong N, Shan A, Jiang J. Protein Transduction System Based on Tryptophan-zipper against Intracellular Infections via Inhibiting Ferroptosis of Macrophages. ACS NANO 2023; 17:12247-12265. [PMID: 37350353 DOI: 10.1021/acsnano.3c00765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Cells penetrating molecules in living systems hold promise of capturing and eliminating threats and damage that can plan intracellular fate promptly. However, it remains challenging to construct cell penetration systems that are physiologically stable with predictable self-assembly behavior and well-defined mechanisms. In this study, we develop a core-shell nanoparticle using a hyaluronic acid (HA)-coated protein transduction domain (PTD) derived from the human immunodeficiency virus (HIV). This nanoparticle can encapsulate pathogens, transporting the PTD into macrophages via lipid rafts. PTD forms hydrogen bonds with the components of the membrane through TAT, which has a high density of positive charges and reduces the degree of membrane order through Tryptophan (Trp)-zipper binding to the acyl tails of phospholipid molecules. HA-encapsulated PTD increases the resistance to trypsin and proteinase K, thereby penetrating macrophages and eliminating intracellular infections. Interestingly, the nonagglutination mechanism of PTD against pathogens ensures the safe operation of the cellular system. Importantly, PTD can activate the critical pathway of antiferroptosis in macrophages against pathogen infection. The nanoparticles developed in this study demonstrate safety and efficacy against Gram-negative and Gram-positive pathogens in three animal models. Overall, this work highlights the effectiveness of the PTD nanoparticle in encapsulating pathogens and provides a paradigm for transduction systems-anti-intracellular infection therapy.
Collapse
Affiliation(s)
- Yuxin Fang
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Ling Li
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Mingrui Sui
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Qianzhi Jiang
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Junguang Jiang
- The State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130021, PR China
| |
Collapse
|
5
|
Guevara-Lora I, Bras G, Juszczak M, Karkowska-Kuleta J, Gorecki A, Manrique-Moreno M, Dymek J, Pyza E, Kozik A, Rapala-Kozik M. Cecropin D-derived synthetic peptides in the fight against Candida albicans cell filamentation and biofilm formation. Front Microbiol 2023; 13:1045984. [PMID: 36713201 PMCID: PMC9880178 DOI: 10.3389/fmicb.2022.1045984] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
The recent progressive increase in the incidence of invasive fungal infections, especially in immunocompromised patients, makes the search for new therapies crucial in the face of the growing drug resistance of prevalent nosocomial yeast strains. The latest research focuses on the active compounds of natural origin, inhibiting fungal growth, and preventing the formation of fungal biofilms. Antimicrobial peptides are currently the subject of numerous studies concerning effective antifungal therapy. In the present study, the antifungal properties of two synthetic peptides (ΔM3, ΔM4) derived from an insect antimicrobial peptide - cecropin D - were investigated. The fungicidal activity of both compounds was demonstrated against the yeast forms of Candida albicans, Candida tropicalis, and Candida parapsilosis, reaching a MFC99.9 in the micromolar range, while Candida glabrata showed greater resistance to these peptides. The scanning electron microscopy revealed a destabilization of the yeast cell walls upon treatment with both peptides; however, their effectiveness was strongly modified by the presence of salt or plasma in the yeast environment. The transition of C. albicans cells from yeast to filamentous form, as well as the formation of biofilms, was effectively reduced by ΔM4. Mature biofilm viability was inhibited by a higher concentration of this peptide and was accompanied by increased ROS production, activation of the GPX3 and SOD5 genes, and finally, increased membrane permeability. Furthermore, both peptides showed a synergistic effect with caspofungin in inhibiting the metabolic activity of C. albicans cells, and an additive effect was also observed for the mixtures of peptides with amphotericin B. The results indicate the possible potential of the tested peptides in the prevention and treatment of candidiasis.
Collapse
Affiliation(s)
- Ibeth Guevara-Lora
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grazyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Juszczak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Andrzej Gorecki
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin, Colombia
| | - Jakub Dymek
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland,*Correspondence: Maria Rapala-Kozik,
| |
Collapse
|
6
|
Akbari R, Hakemi Vala M, Sabatier JM, Pooshang Bagheri K. Fast killing kinetics, significant therapeutic index, and high stability of melittin-derived antimicrobial peptide. Amino Acids 2022; 54:1275-1285. [PMID: 35779173 DOI: 10.1007/s00726-022-03180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 06/07/2022] [Indexed: 12/01/2022]
Abstract
The emergence of multidrug-resistant (MDR) bacteria is a major challenge for antimicrobial chemotherapy. Concerning this issue, antimicrobial peptides (AMPs) have been presented as novel promising antibiotics. Our previous de novo designed melittin-derived peptides (MDP1 and MDP2) indicated their potential as peptide drug leads. Accordingly, this study was aimed to evaluate the kinetics of activity, toxicity, and stability of MDP1 and MDP2 as well as determination of their structures. The killing kinetics of MDP1 and MDP2 demonstrate that all bacterial strains were rapidly killed. MDP1 and MDP2 were ca. 100- and 26.6-fold less hemolytic than melittin and found to be respectively 72.9- and 41.6-fold less cytotoxic than melittin on the HEK293 cell line. MDP1 and MDP2 showed 252- and 132-fold improvement in their therapeutic index in comparison to melittin. MDP1 and MDP2 sustained their activities in the presence of human plasma and were found to be ca. four to eightfold more stable than melittin. Spectropolarimetry analysis of MDP1 and MDP2 indicates that the peptides adopt an alpha-helical structure predominantly. According to the fast killing kinetics, significant therapeutic index, and high stability of MDP1, it could be considered as a drug lead in a mouse model of septicemia infections.
Collapse
Affiliation(s)
- Reza Akbari
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, West Azerbaijan, Iran
| | - Mojdeh Hakemi Vala
- Department of Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Jean-Marc Sabatier
- Institute of NeuroPhysiopathology (INP), Faculté de Pharmacie, Université D'Aix-Marseille, UMR 7051, 27 Bd Jean Moulin, CEDEX 05, 13385, Marseille, France
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
7
|
Clayton AHA. Spectroscopic and Microscopic Approaches for Investigating the Dynamic Interactions of Anti-microbial Peptides With Membranes and Cells. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 2:628552. [PMID: 35047900 PMCID: PMC8757865 DOI: 10.3389/fmedt.2020.628552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/30/2020] [Indexed: 11/13/2022] Open
Abstract
The emergence of microbes resistant to conventional antibiotics is a burgeoning threat to humanity with significant impacts on the health of people and on the health system itself. Antimicrobial peptides (AMPs) hold promise as potential future alternatives to conventional drugs because they form an integral part of the defense systems of other species in the animal, plant, and fungal kingdoms. To aid the design of the next generation of AMPs optimized for human use, we must first understand the mechanism of action of existing AMPs with their targets, ideally in the context of the complex landscape of the living (microbial) cell. Advances in lasers, optics, detectors, fluid dynamics and various probes has enabled the experimentalist to measure the kinetics of molecule–membrane, molecule–molecule, and molecule–cell interactions with increasing spatial and temporal resolution. The purpose of this review is to highlight studies into these dynamic interactions with a view to improving our understanding of AMP mechanisms.
Collapse
Affiliation(s)
- Andrew H A Clayton
- Cell Biophysics Laboratory, Optical Sciences Centre, Department of Physics and Astronomy, School of Science, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Pirtskhalava M, Vishnepolsky B, Grigolava M, Managadze G. Physicochemical Features and Peculiarities of Interaction of AMP with the Membrane. Pharmaceuticals (Basel) 2021; 14:471. [PMID: 34067510 PMCID: PMC8156082 DOI: 10.3390/ph14050471] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) are anti-infectives that have the potential to be used as a novel and untapped class of biotherapeutics. Modes of action of antimicrobial peptides include interaction with the cell envelope (cell wall, outer- and inner-membrane). A comprehensive understanding of the peculiarities of interaction of antimicrobial peptides with the cell envelope is necessary to perform a rational design of new biotherapeutics, against which working out resistance is hard for microbes. In order to enable de novo design with low cost and high throughput, in silico predictive models have to be invoked. To develop an efficient predictive model, a comprehensive understanding of the sequence-to-function relationship is required. This knowledge will allow us to encode amino acid sequences expressively and to adequately choose the accurate AMP classifier. A shared protective layer of microbial cells is the inner, plasmatic membrane. The interaction of AMP with a biological membrane (native and/or artificial) has been comprehensively studied. We provide a review of mechanisms and results of interactions of AMP with the cell membrane, relying on the survey of physicochemical, aggregative, and structural features of AMPs. The potency and mechanism of AMP action are presented in terms of amino acid compositions and distributions of the polar and apolar residues along the chain, that is, in terms of the physicochemical features of peptides such as hydrophobicity, hydrophilicity, and amphiphilicity. The survey of current data highlights topics that should be taken into account to come up with a comprehensive explanation of the mechanisms of action of AMP and to uncover the physicochemical faces of peptides, essential to perform their function. Many different approaches have been used to classify AMPs, including machine learning. The survey of knowledge on sequences, structures, and modes of actions of AMP allows concluding that only possessing comprehensive information on physicochemical features of AMPs enables us to develop accurate classifiers and create effective methods of prediction. Consequently, this knowledge is necessary for the development of design tools for peptide-based antibiotics.
Collapse
Affiliation(s)
- Malak Pirtskhalava
- Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi 0160, Georgia; (B.V.); (M.G.); (G.M.)
| | | | | | | |
Collapse
|
9
|
Bertrand B, Garduño-Juárez R, Munoz-Garay C. Estimation of pore dimensions in lipid membranes induced by peptides and other biomolecules: A review. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183551. [PMID: 33465367 DOI: 10.1016/j.bbamem.2021.183551] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
The cytoplasmic membrane is one of the most frequent cell targets of antimicrobial peptides (AMPs) and other biomolecules. Understanding the mechanism of action of AMPs at the molecular level is of utmost importance for designing of new membrane-specific molecules. In particular, the formation of pores, the structure and size of these pores are of great interest and require nanoscale resolution approaches, therefore, biophysical strategies are essential to achieve an understanding of these processes at this scale. In the case of membrane active peptides, pore formation or general membrane disruption is usually the last step before cell death, and so, pore size is generally directly associated to pore structure and stability and loss of cellular homeostasis, implicated in overall peptide activity. Up to date, there has not been a critical review discussing the methods that can be used specifically for estimating the pore dimensions induced by membrane active peptides. In this review we discuss the scope, relevance and popularity of the different biophysical techniques such as liposome leakage experiments, advanced microscopy, neutron or X-ray scattering, electrophysiological techniques and molecular dynamics studies, all of them useful for determining pore structure and dimension.
Collapse
Affiliation(s)
- Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (ICF-UNAM), Avenida Universidad 2001, Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - Ramón Garduño-Juárez
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (ICF-UNAM), Avenida Universidad 2001, Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (ICF-UNAM), Avenida Universidad 2001, Chamilpa, 62210 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
10
|
Shagaghi N, Clayton AHA, Aguilar MI, Lee TH, Palombo EA, Bhave M. Effects of Rationally Designed Physico-Chemical Variants of the Peptide PuroA on Biocidal Activity towards Bacterial and Mammalian Cells. Int J Mol Sci 2020; 21:ijms21228624. [PMID: 33207639 PMCID: PMC7696940 DOI: 10.3390/ijms21228624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/20/2020] [Accepted: 11/11/2020] [Indexed: 01/07/2023] Open
Abstract
Antimicrobial peptides (AMPs) often exhibit wide-spectrum activities and are considered ideal candidates for effectively controlling persistent and multidrug-resistant wound infections. PuroA, a synthetic peptide based on the tryptophan (Trp)-rich domain of the wheat protein puroindoline A, displays strong antimicrobial activities. In this work, a number of peptides were designed based on PuroA, varying in physico-chemical parameters of length, number of Trp residues, net charge, hydrophobicity or amphipathicity, D-versus L-isomers of amino acids, cyclization or dimerization, and were tested for antimicrobial potency and salt and protease tolerance. Selected peptides were assessed for effects on biofilms of methicillin-resistant Staphylococcus aureus (MRSA) and selected mammalian cells. Peptide P1, with the highest amphipathicity, six Trp and a net charge of +7, showed strong antimicrobial activity and salt stability. Peptides W7, W8 and WW (seven to eight residues) were generally more active than PuroA and all diastereomers were protease-resistant. PuroA and certain variants significantly inhibited initial biomass attachment and eradicated preformed biofilms of MRSA. Further, P1 and dimeric PuroA were cytotoxic to HeLa cells. The work has led to peptides with biocidal effects on common human pathogens and/or anticancer potential, also offering great insights into the relationship between physico-chemical parameters and bioactivities, accelerating progress towards rational design of AMPs for therapeutics.
Collapse
Affiliation(s)
- Nadin Shagaghi
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia; (N.S.); (E.A.P.)
| | - Andrew H. A. Clayton
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia;
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; (M.-I.A.); (T.-H.L.)
| | - Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; (M.-I.A.); (T.-H.L.)
| | - Enzo A. Palombo
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia; (N.S.); (E.A.P.)
| | - Mrinal Bhave
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia; (N.S.); (E.A.P.)
- Correspondence: ; Tel.: +61-3-9214-5759
| |
Collapse
|
11
|
Gao Q, Zhang J, Chen C, Chen M, Sun P, Du W, Zhang S, Liu Y, Zhang R, Bai M, Fan C, Wu J, Men T, Jiang X. In Situ Mannosylated Nanotrinity-Mediated Macrophage Remodeling Combats Candida albicans Infection. ACS NANO 2020; 14:3980-3990. [PMID: 32167741 DOI: 10.1021/acsnano.9b07896] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Deep Candida albicans infection is one of the major causes of death in immunosuppressed hosts. Remodeling macrophages to phenotype M1 can decrease fungus burden and facilitate combating C. albicans under an immunosuppressive state. In this study, a nanotrinity was exploited to direct fungicidal macrophage polarization by leveraging the regulation pathways in macrophage redifferentiation. Conventional chemotherapeutic imatinib, which can abrogate M2 macrophage polarization via "shutting off" the STAT6 phosphorylation pathway, was encapsulated in biodegradable polymeric nanoparticles. In house-customized dual functional mannosylated chitosan oligosaccharides were then coated on the surface of the imatinib-laden nanoparticles, and thus, a mannosylated nanotrinity was achieved with ternary functions for macrophage remodeling: (i) imatinib-blocked STAT6 phosphorylation pathway for decreasing M2 macrophage population; (ii) chitosan oligosaccharides-mediated TLR-4 pathway activation that could promote macrophage redifferentiation to M1 phenotype; (iii) mannose motif-enhanced macrophage targeting. After physiochemical characterization, regulatory effects of the mannosylated nanotrinity on macrophages and the anti-C. albicans efficacy were evaluated at the cellular level and animal level, respectively. The results demonstrated that our mannosylated nanotrinity could efficiently induce macrophage polarization toward the M1 phenotype, decrease M2 phenotype production, and markedly lessen fungus burden and increased the median survival time of mice infected with C. albicans. Therefore, the mannosylated nanotrinity developed in this study could significantly induce macrophage remodeling in situ by the two-pronged process, "turning on" M1 phenotype polarization meanwhile "shutting off" M2 phenotype polarization, and thus allowed to eradicate C. albicans infection.
Collapse
Affiliation(s)
- Qiongqiong Gao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, Shandong Province, PR China
- Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Jing Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, Shandong Province, PR China
| | - Chen Chen
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, Shandong Province, PR China
| | - Menglin Chen
- Department of engineering, Aarhus University, Navitas, Inge Lehmanns Gade 10, 8000 Aarhus, Denmark
| | - Peng Sun
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, PR China
| | - Wei Du
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, Shandong Province, PR China
| | - Shengchang Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, Shandong Province, PR China
| | - Ying Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, Shandong Province, PR China
| | - Rui Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, Shandong Province, PR China
| | - Mei Bai
- Yancheng City No.1 People's Hospital, Yancheng 224001, Jiangsu Province, PR China
| | - Changchun Fan
- Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
- The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, PR China
| | - Jibiao Wu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, PR China
| | - Tongyi Men
- Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
- The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, PR China
| | - Xinyi Jiang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, Shandong Province, PR China
| |
Collapse
|
12
|
Vergis J, Malik SS, Pathak R, Kumar M, Ramanjaneya S, Kurkure NV, Barbuddhe SB, Rawool DB. Antimicrobial Efficacy of Indolicidin Against Multi-Drug Resistant Enteroaggregative Escherichia coli in a Galleria mellonella Model. Front Microbiol 2019; 10:2723. [PMID: 31849877 PMCID: PMC6895141 DOI: 10.3389/fmicb.2019.02723] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial resistance against enteroaggregative Escherichia coli (EAEC), an emerging food-borne pathogen, has been observed in an increasing trend recently. In the recent wake of antimicrobial resistance, alternate strategies especially, cationic antimicrobial peptides (AMPs) have attracted considerable attention to source antimicrobial technology solutions. This study evaluated the in vitro antimicrobial efficacy of Indolicidin against multi-drug resistant enteroaggregative Escherichia coli (MDR-EAEC) strains and further to assess its in vivo antimicrobial efficacy in Galleria mellonella larval model. The minimum inhibitory concentration (MIC; 32 μM) and minimum bactericidal concentration (MBC; 64 μM) of Indolicidin against MDR-EAEC was determined by micro broth dilution method. Indolicidin was also tested for its stability (high-end temperatures, physiological concentration of salts and proteases); safety (sheep RBCs; HEp-2 and RAW 264.7 cell lines); effect on beneficial microflora (Lactobacillus rhamnosus and Lactobacillus acidophilus) and its mode of action (flow cytometry; nitrocefin and ONPG uptake). In vitro time-kill kinetic assay of MDR-EAEC treated with Indolicidin was performed. Further, survival rate, MDR-EAEC count, melanization rate, hemocyte enumeration, cytotoxicity assay and histopathological examination were carried out in G. mellonella model to assess in vivo antimicrobial efficacy of Indolicidin against MDR-EAEC strains. Indolicidin was tested stable at high temperatures (70°C; 90°C), physiological concentration of cationic salts (NaCl; MgCl2) and proteases, except for trypsin and tested safe with sheep RBCs and cell lines (RAW 264.7; HEp-2) at MIC (1X and 2X); the beneficial flora was not inhibited. Indolicidin exhibited outer membrane permeabilization in a concentration- and time-dependent manner. In vitro time-kill assay revealed concentration-cum-time dependent clearance of MDR-EAEC in Indolicidin-treated groups at 120 min, while, in G. mellonella, the infected group treated with Indolicidin revealed an increased survival rate, immunomodulatory effect, reduced MDR-EAEC counts and were tested safe to the larval cells which was concurred histopathologically. To conclude, the results suggests Indolicidin as an effective antimicrobial candidate against MDR-EAEC and we recommend its further investigation in appropriate animal models (mice/piglets) before its application in the target host.
Collapse
Affiliation(s)
- Jess Vergis
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Satyaveer Singh Malik
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Richa Pathak
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Manesh Kumar
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Sunitha Ramanjaneya
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | | | - Deepak Bhiwa Rawool
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
13
|
Lv A, Li C, Tian P, Yuan W, Zhang S, Lv Y, Hu Y. Expression and purification of recombinant puroindoline A protein in Escherichia coli and its antifungal effect against Aspergillus flavus. Appl Microbiol Biotechnol 2019; 103:9515-9527. [PMID: 31720772 DOI: 10.1007/s00253-019-10168-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 12/21/2022]
Abstract
Aspergillus flavus is the main cause of postharvest agricultural commodity loss. In this study, puroindoline A (PINA) protein was expressed in Escherichia coli, purified, and its antifungal properties against A. flavus were characterized. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that the molecular weight of the recombinant PINA protein was approximately 44 kDa. PINA exerted a powerful antifungal effect against A. flavus at 42.42 μg/mL on potato dextrose agar culture medium. Flow cytometry and scanning electron microscopy revealed that the spore morphology was damaged by PINA exposure; spores were depressed and broken, suggesting that the cell wall was impaired. Transmission electron microscopy and propidium iodide staining illustrated significant changes in intracellular spore structure, indicating cell membrane damage. 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine iodide staining indicated decreased mitochondrial membrane potential. Large nuclear condensation and DNA fragmentation were detected by 4',6-diamidino-2-phenylindole staining. The expression of genes related to the cell wall, cell membrane, and spore germination significantly changed in PINA-treated cells; this illustrated the probable mode of PINA action on A. flavus through cell wall destruction and triggered cell membrane, mitochondrial, and DNA damage leading to cell death. The antifungal mechanism of wheat PINA protein on A. flavus has been demonstrated in this study, and has potential application in preventing postharvest loss in the agricultural industry.
Collapse
Affiliation(s)
- Ang Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
| | - Cuixiang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
| | - Pingping Tian
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
| | - Wenjing Yuan
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
| | - Shuaibing Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
| | - Yangyong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China.
| | - Yuansen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China.
| |
Collapse
|
14
|
De Novo Design and In Vitro Testing of Antimicrobial Peptides against Gram-Negative Bacteria. Pharmaceuticals (Basel) 2019; 12:ph12020082. [PMID: 31163671 PMCID: PMC6631481 DOI: 10.3390/ph12020082] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/26/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) have been identified as a potentially new class of antibiotics to combat bacterial resistance to conventional drugs. The design of de novo AMPs with high therapeutic indexes, low cost of synthesis, high resistance to proteases and high bioavailability remains a challenge. Such design requires computational modeling of antimicrobial properties. Currently, most computational methods cannot accurately calculate antimicrobial potency against particular strains of bacterial pathogens. We developed a tool for AMP prediction (Special Prediction (SP) tool) and made it available on our Web site (https://dbaasp.org/prediction). Based on this tool, a simple algorithm for the design of de novo AMPs (DSP) was created. We used DSP to design short peptides with high therapeutic indexes against gram-negative bacteria. The predicted peptides have been synthesized and tested in vitro against a panel of gram-negative bacteria, including drug resistant ones. Predicted activity against Escherichia coli ATCC 25922 was experimentally confirmed for 14 out of 15 peptides. Further improvements for designed peptides included the synthesis of D-enantiomers, which are traditionally used to increase resistance against proteases. One synthetic D-peptide (SP15D) possesses one of the lowest values of minimum inhibitory concentration (MIC) among all DBAASP database short peptides at the time of the submission of this article, while being highly stable against proteases and having a high therapeutic index. The mode of anti-bacterial action, assessed by fluorescence microscopy, shows that SP15D acts similarly to cell penetrating peptides. SP15D can be considered a promising candidate for the development of peptide antibiotics. We plan further exploratory studies with the SP tool, aiming at finding peptides which are active against other pathogenic organisms.
Collapse
|
15
|
The antimicrobial properties of the puroindolines, a review. World J Microbiol Biotechnol 2019; 35:86. [PMID: 31134452 DOI: 10.1007/s11274-019-2655-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/10/2019] [Indexed: 10/26/2022]
Abstract
Antimicrobial proteins, and especially antimicrobial peptides (AMPs) hold great promise in the control of animal and plant diseases with low risk of pathogen resistance. The two puroindolines, a and b, from wheat control endosperm softness of the wheat caryopsis (grain), but have also been shown to inhibit the growth and kill various bacteria and fungi, while showing little toxicity to erythrocytes. Puroindolines are small (~ 13 kDa) amphipathic proteins with a characteristic tryptophan-rich domain (TRD) that is part of an 18 or 19 amino acid residue loop subtended by a disulfide bond. This review presents a brief history of the puroindolines, their physical-chemical characteristics, their interaction with lipids and membranes, and their activity as antimicrobial proteins and AMPs. In this latter context, the use of the TRDs of puroindoline a and b in puroindoline AMP function is reviewed. The activity of puroindoline a and b and their AMPs appear to act through similar but somewhat different modes, which may involve membrane binding, membrane disruption and ion channel formation, and intra-cellular nucleic acid binding and metabolic disruption. Natural and synthetic mutants have identified key elements of the puroindolines for antimicrobial activity.
Collapse
|
16
|
Cai X, Xie X, Fu N, Wang S. Physico-Chemical and Antifungal Properties of a Trypsin Inhibitor from the Roots of Pseudostellaria heterophylla. Molecules 2018; 23:E2388. [PMID: 30231516 PMCID: PMC6225307 DOI: 10.3390/molecules23092388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/11/2018] [Accepted: 09/14/2018] [Indexed: 02/05/2023] Open
Abstract
Plant peptidase inhibitors play essential roles in the defense systems of plants. A trypsin inhibitor (PHTI) with a molecular mass of 20.5 kDa was isolated from the fresh roots of the medicinal herb, Pseudostellaria heterophylla. The purification process involved ammonium sulfate precipitation, gel filtration chromatography on Sephadex G50, and ion-exchange chromatography on DEAE 650M. The PHTI contained 3.7% α-helix, 42.1% β-sheets, 21.2% β-turns, and 33% disordered structures, which showed similarity with several Kunitz-type trypsin inhibitors. Inhibition kinetic studies indicated that PHTI was a competitive inhibitor, with a Ki value of 3.01 × 10-9 M, indicating a high affinity to trypsin. The PHTI exhibited considerable stability over a broad range of pH (2⁻10) and temperatures (20⁻70 °C); however, metal ions, including Fe3+, Ba2+, Mn2+, and Al3+, could inactivate PHTI to different degrees. Results of fluorescence spectroscopy and circular dichroism showed that Fe3+ could bind to TI with an association constant of 2.75 × 10⁵ M-1 to form a 1:1 complex, inducing conformation changes and inactivation of PHTI. In addition, PHTI could inhibit the growth of the phytopathogens, Colletotrichum gloeosporioides and Fusarium oxysporum, through disruption of the cell membrane integrity. The present study extended research on Pseudostellaria heterophylla proteins and makes PHTI an exploitable candidate as an antifungal protein for further investigation.
Collapse
Affiliation(s)
- Xixi Cai
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
- Institute of Food and Marine Bio-Resources, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China.
| | - Xiaoli Xie
- Institute of Food and Marine Bio-Resources, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China.
| | - Nanyan Fu
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Shaoyun Wang
- Institute of Food and Marine Bio-Resources, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
17
|
Action mechanism of melittin-derived antimicrobial peptides, MDP1 and MDP2, de novo designed against multidrug resistant bacteria. Amino Acids 2018; 50:1231-1243. [PMID: 29905903 DOI: 10.1007/s00726-018-2596-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 05/28/2018] [Indexed: 10/28/2022]
Abstract
The emergence and dissemination of multidrug resistant (MDR) bacteria are major challenges for antimicrobial chemotherapy of bacterial infections. In this critical condition, cationic antimicrobial peptides are 'novel' promising candidate antibiotics to overcome the issue. In this study, we investigated the antibacterial mechanism of new melittin-derived peptides (i.e., MDP1 and MDP2) against multidrug resistant Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. MDP1 was designed with deletion of three amino acid residues, i.e., S18, W19, and I20, from the end of second hydrophobic motif of melittin. In the next step, VLTTG in MDP1 sequence was substituted with tryptophan residue. MDP1 and MDP2 had a high-antibacterial activity against MDR and reference strains of S. aureus, E. coli, and P. aeruginosa. DNA and calcein release and flow cytometry assays indicate a time-dependent antibacterial activity on the examined bacteria affected by both MDP1 and MDP2. Finally, SEM analyses highlighted dose- and time-dependent effects of MDP1 and MDP2 on S. aureus and E. coli bacteria by induction of vesicle or pore formation as well as cell lysis. In this study we successfully showed that rational truncation of large hydrophobic motifs can lead to significant reduction in toxicity against human RBCs and improving the antibacterial activity as well. Analyses of data from DNA release, fluorometry, flow cytometry, and morphological assays demonstrated that the MDP1 and MDP2 altered the integrity of both Gram-positive and Gram-negative bacterial membranes and killed the bacteria via membrane damages.
Collapse
|
18
|
Antimicrobial peptides: biochemical determinants of activity and biophysical techniques of elucidating their functionality. World J Microbiol Biotechnol 2018; 34:62. [PMID: 29651655 DOI: 10.1007/s11274-018-2444-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/05/2018] [Indexed: 10/17/2022]
Abstract
Antimicrobial peptides (AMPs) have been established over millennia as powerful components of the innate immune system of many organisms. Due to their broad spectrum of activity and the development of host resistance against them being unlikely, AMPs are strong candidates for controlling drug-resistant pathogenic microbial pathogens. AMPs cause cell death through several independent or cooperative mechanisms involving membrane lysis, non-lytic activity, and/or intracellular mechanisms. Biochemical determinants such as peptide length, primary sequence, charge, secondary structure, hydrophobicity, amphipathicity and host cell membrane composition together influence the biological activities of peptides. A number of biophysical techniques have been used in recent years to study the mechanisms of action of AMPs. This work appraises the molecular parameters that determine the biocidal activity of AMPs and overviews their mechanisms of actions and the diverse biochemical, biophysical and microscopy techniques utilised to elucidate these.
Collapse
|
19
|
Krawczyk P, Jędrzejewska B, Cysewski P, Janek T. Synthesis, photophysical and biological properties of a new oxazolone fluorescent probe for bioimaging: an experimental and theoretical study. Org Biomol Chem 2018; 15:8952-8966. [PMID: 29043360 DOI: 10.1039/c7ob02439h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this study, a new oxazolone derivative 4-{N,N-bis[2-phenyl-4-benzylidene-1,3-oxazol-5(4H)-one]amino}benzaldehyde (PB3) was synthesized and investigated as a fluorescent dye. The spectroscopic properties in different solvents were thoroughly studied. The experimental data were supported by quantum-chemical calculations using density functional theory. Measurements and theoretical calculations showed that the PB3 dye is characterized by non-monotonic solvatochromism, a strongly polar charge transfer excited state, a large Stokes' shift, a high fluorescence quantum yield and a high fluorescence lifetime. Bioconjugate complexes (PB3-concanavalin A) were studied by circular dichroism (CD) spectroscopy. The results showed that the secondary structure of concanavalin A was not significantly influenced by the PB3-fluorophore. Conventional fluorescence microscopy imaging of Candida albicans cells, incubated with the PB3-concanavalin A, was demonstrated. The results from cytochemistry experiments demonstrate that the PB3 dye has valuable advantages compared to the other long-wavelength dyes in typical fluorescence-based cell labeling applications. In vitro tolerance was evaluated by the MTT method in the human colon adenocarcinoma cell line HT29. The PB3 and bioconjugate complexes (PB3-concanavalin A), in the range of concentrations tested, were not considerably toxic. The AutoDock simulations showed LYS46 as the most likely active site for covalent bond formation during PB3-concanavalin A conjugation. In addition, theoretical studies have shown that PB3 is characterized by good bioavailability and absorption/transmission across the cell membrane. This molecule will not bioaccumulate in living organisms and should be excreted in urine without interacting with other drugs. This work provided promising results for the red fluorescent probe (PB3) as a valuable alternative to commercial probes designed for cellular labeling in biological and biomedical research.
Collapse
Affiliation(s)
- Przemysław Krawczyk
- Nicolaus Copernicus University, Collegium Medicum, Faculty of Pharmacy, Chair and Department of Physical Chemistry, Kurpińskiego 5, 85-950 Bydgoszcz, Poland.
| | | | | | | |
Collapse
|
20
|
Islam KT, Shah DM, El-Mounadi K. Live-cell Imaging of Fungal Cells to Investigate Modes of Entry and Subcellular Localization of Antifungal Plant Defensins. J Vis Exp 2017. [PMID: 29364205 DOI: 10.3791/55995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Small cysteine-rich defensins are one of the largest groups of host defense peptides present in all plants. Many plant defensins exhibit potent in vitro antifungal activity against a broad-spectrum of fungal pathogens and therefore have the potential to be used as antifungal agents in transgenic crops. In order to harness the full potential of plant defensins for diseases control, it is crucial to elucidate their mechanisms of action (MOA). With the advent of advanced microscopy techniques, live-cell imaging has become a powerful tool for understanding the dynamics of the antifungal MOA of plant defensins. Here, a confocal microscopy based live-cell imaging method is described using two fluorescently labeled plant defensins (MtDef4 and MtDef5) in combination with vital fluorescent dyes. This technique enables real-time visualization and analysis of the dynamic events of MtDef4 and MtDef5 internalization into fungal cells. Importantly, this assay generates a wealth of information including internalization kinetics, mode of entry and subcellular localization of these peptides. Along with other cell biological tools, these methods have provided critical insights into the dynamics and complexity of the MOA of these peptides. These tools can also be used to compare the MOA of these peptides against different fungi.
Collapse
|
21
|
Dysli C, Wolf S, Berezin MY, Sauer L, Hammer M, Zinkernagel MS. Fluorescence lifetime imaging ophthalmoscopy. Prog Retin Eye Res 2017; 60:120-143. [PMID: 28673870 PMCID: PMC7396320 DOI: 10.1016/j.preteyeres.2017.06.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/19/2017] [Accepted: 06/29/2017] [Indexed: 12/17/2022]
Abstract
Imaging techniques based on retinal autofluorescence have found broad applications in ophthalmology because they are extremely sensitive and noninvasive. Conventional fundus autofluorescence imaging measures fluorescence intensity of endogenous retinal fluorophores. It mainly derives its signal from lipofuscin at the level of the retinal pigment epithelium. Fundus autofluorescence, however, can not only be characterized by the spatial distribution of the fluorescence intensity or emission spectrum, but also by a characteristic fluorescence lifetime function. The fluorescence lifetime is the average amount of time a fluorophore remains in the excited state following excitation. Fluorescence lifetime imaging ophthalmoscopy (FLIO) is an emerging imaging modality for in vivo measurement of lifetimes of endogenous retinal fluorophores. Recent reports in this field have contributed to our understanding of the pathophysiology of various macular and retinal diseases. Within this review, the basic concept of fluorescence lifetime imaging is provided. It includes technical background information and correlation with in vitro measurements of individual retinal metabolites. In a second part, clinical applications of fluorescence lifetime imaging and fluorescence lifetime features of selected retinal diseases such as Stargardt disease, age-related macular degeneration, choroideremia, central serous chorioretinopathy, macular holes, diabetic retinopathy, and retinal artery occlusion are discussed. Potential areas of use for fluorescence lifetime imaging ophthalmoscopy will be outlined at the end of this review.
Collapse
Affiliation(s)
- Chantal Dysli
- Department of Ophthalmology and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Sebastian Wolf
- Department of Ophthalmology and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Mikhail Y Berezin
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Lydia Sauer
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Martin Hammer
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Martin S Zinkernagel
- Department of Ophthalmology and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|