1
|
Derman ID, Moses JC, Rivera T, Ozbolat IT. Understanding the cellular dynamics, engineering perspectives and translation prospects in bioprinting epithelial tissues. Bioact Mater 2025; 43:195-224. [PMID: 39386221 PMCID: PMC11462153 DOI: 10.1016/j.bioactmat.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
The epithelium is one of the important tissues in the body as it plays a crucial barrier role serving as a gateway into and out of the body. Most organs in the body contain an epithelial tissue component, where the tightly connected, organ-specific epithelial cells organize into cysts, invaginations, or tubules, thereby performing distinct to endocrine or exocrine secretory functions. Despite the significance of epithelium, engineering functional epithelium in vitro has remained a challenge due to it is special architecture, heterotypic composition of epithelial tissues, and most importantly, difficulty in attaining the apico-basal and planar polarity of epithelial cells. Bioprinting has brought a paradigm shift in fabricating such apico-basal polarized tissues. In this review, we provide an overview of epithelial tissues and provide insights on recapitulating their cellular arrangement and polarization to achieve epithelial function. We describe the different bioprinting techniques that have been successful in engineering polarized epithelium, which can serve as in vitro models for understanding homeostasis and studying diseased conditions. We also discuss the different attempts that have been investigated to study these 3D bioprinted engineered epithelium for preclinical use. Finally, we highlight the challenges and the opportunities that need to be addressed for translation of 3D bioprinted epithelial tissues towards paving way for personalized healthcare in the future.
Collapse
Affiliation(s)
- Irem Deniz Derman
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Joseph Christakiran Moses
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Taino Rivera
- Biomedical Engineering Department, Penn State University, University Park, PA, 16802, USA
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Biomedical Engineering Department, Penn State University, University Park, PA, 16802, USA
- Materials Research Institute, Penn State University, University Park, PA, 16802, USA
- Cancer Institute, Penn State University, University Park, PA, 16802, USA
- Neurosurgery Department, Penn State University, University Park, PA, 16802, USA
- Department of Medical Oncology, Cukurova University, Adana, 01330, Turkey
| |
Collapse
|
2
|
Pan L, Yin N, Duan M, Mei Q, Zeng Y. The role of gut microbiome and its metabolites in pancreatitis. mSystems 2024; 9:e0066524. [PMID: 39212377 PMCID: PMC11494936 DOI: 10.1128/msystems.00665-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Gut microbiome plays a vital role in the intestinal ecosystem and has close association with metabolites. Due to the development of metabolomics and microbiomics, recent studies have observed that alteration of either the gut microbiome or metabolites may have effects on the progression of pancreatitis. Several new treatments based on the gut microbiome or metabolites have been studied extensively in recent years. Gut microbes, such as Bifidobacterium, Akkermansia, and Lactobacillus, and metabolites, such as short-chain fatty acids, bile acids, vitamin, hydrogen sulfide, and alcohol, have different effects on pancreatitis. Some preliminary studies about new intervention measures were based on the gut microbiome and metabolites such as diet, prebiotic, herbal medicine, and fecal microbiota transplantation. This review aims to summarize the recent advances about the gut microbiome, metabolites, and pancreatitis in order to determine the potential beneficial role of the gut microbiome and metabolites in pancreatitis.
Collapse
Affiliation(s)
- Letian Pan
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Nuoming Yin
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Mingyu Duan
- Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Qixiang Mei
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yue Zeng
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Lange R, Glaubitz J, Frost F, Geisz A, Aghdassi AA, Weiss FU, Sendler M. Examination of duodenal and colonic microbiome changes in mouse models of acute and chronic pancreatitis. Sci Rep 2024; 14:24754. [PMID: 39433820 PMCID: PMC11493962 DOI: 10.1038/s41598-024-75564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
The exocrine pancreas is the main source of digestive enzymes which are released from secretory vesicles of acinar cells into the small intestine. Enzymes, including amylases, proteases and lipases, degrade the ingested food and thus determine the nutritional substrate for the gut microbiota. Acute (AP) and chronic pancreatitis (CP) are associated with a transitional or progressive exocrine pancreatic dysfunction, we analysed in the present study how an experimental induction of pancreatitis in mouse models affects the colonic and duodenal microbiome composition. Evaluation by 16 S rRNA gene sequencing revealed specific microbiome changes in colonic as well as in duodenal samples in different models of AP and CP. Mild acute pancreatitis, which is associated with a transient impairment of pancreatic secretion showed only minor changes in microbial composition, comparable to the ones seen in progressive dysfunctional mouse models of CP. The strongest changes were observed in a mouse model of severe AP, which suggest a direct effect of the immune response on gut microbiome in addition to a pancreatic dysfunction. Our data indicate that highly dysbiotic microbiome changes during pancreatitis are more associated with the inflammatory reaction than with a disturbed pancreatic secretion.
Collapse
Affiliation(s)
- Rabea Lange
- Department of Medicine A, University Medicine Greifswald, Fleischmannstr. 41, 17475, Greifswald, Germany
| | - Juliane Glaubitz
- Department of Medicine A, University Medicine Greifswald, Fleischmannstr. 41, 17475, Greifswald, Germany
| | - Fabian Frost
- Department of Medicine A, University Medicine Greifswald, Fleischmannstr. 41, 17475, Greifswald, Germany
| | - Andreas Geisz
- Department of Surgery, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Ali A Aghdassi
- Department of Medicine A, University Medicine Greifswald, Fleischmannstr. 41, 17475, Greifswald, Germany
| | - F Ulrich Weiss
- Department of Medicine A, University Medicine Greifswald, Fleischmannstr. 41, 17475, Greifswald, Germany
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, Fleischmannstr. 41, 17475, Greifswald, Germany.
| |
Collapse
|
4
|
Frost F, Weiss S, Hertel J, Rühlemann M, Bang C, Franke A, Nauck M, Dörr M, Völzke H, Roggenbuck D, Schierack P, Völker U, Homuth G, Aghdassi AA, Sendler M, Lerch MM, Weiss FU. Fecal glycoprotein 2 is a marker of gut microbiota dysbiosis and systemic inflammation. Gut Pathog 2024; 16:60. [PMID: 39427219 PMCID: PMC11490104 DOI: 10.1186/s13099-024-00657-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Antimicrobial autoantigenic glycoprotein 2 (GP2) is an important component of the innate immune system which originates from the exocrine pancreas as well as from the small intestines. The relationship of GP2 with the intestinal microbiome as well as the systemic implications of increased fecal GP2 levels are, however, still unclear. Therefore, fecal samples from 2,812 individuals of the Study of Health in Pomerania (SHIP) were collected to determine GP2 levels (enzyme-linked immunosorbent assay) and gut microbiota profiles (16 S rRNA gene sequencing). These data were correlated and associated with highly standardised and comprehensive phenotypic data of the study participants. RESULTS Fecal GP2 levels were increased in individuals with higher body mass index and smokers, whereas lower levels were found in case of preserved exocrine pancreatic function, female sex or a healthier diet. Moreover, higher GP2 levels were associated with increased serum levels of high-sensitivity C-reactive protein, loss of gut microbial diversity and an increase of potentially detrimental bacteria (Streptococcus, Haemophilus, Clostridium XIVa, or Collinsella). At the same time, predicted microbial pathways for the biosynthesis of beneficial short-chain fatty acids or lactic acid were depleted in individuals with high fecal GP2. Of note, GP2 exhibited a stronger association to overall microbiome variation than calprotectin. CONCLUSION Fecal GP2 is a biomarker of gut microbiota dysbiosis and associated with increased systemic inflammation. The intestines may be more important as origin for GP2 than pancreatic acinar cells. Future studies need to investigate the potential clinical value in disease specific patient cohorts.
Collapse
Affiliation(s)
- Fabian Frost
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch- Straße, 17475, Greifswald, Germany
| | - Stefan Weiss
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch- Straße, 17475, Greifswald, Germany
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Johannes Hertel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Malte Rühlemann
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Marcus Dörr
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Dirk Roggenbuck
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Peter Schierack
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Ali A Aghdassi
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch- Straße, 17475, Greifswald, Germany
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch- Straße, 17475, Greifswald, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch- Straße, 17475, Greifswald, Germany
| | - Frank U Weiss
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch- Straße, 17475, Greifswald, Germany.
| |
Collapse
|
5
|
Iatcu OC, Hamamah S, Covasa M. Harnessing Prebiotics to Improve Type 2 Diabetes Outcomes. Nutrients 2024; 16:3447. [PMID: 39458444 PMCID: PMC11510484 DOI: 10.3390/nu16203447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The gut microbiota, a complex ecosystem of microorganisms in the human gastrointestinal tract (GI), plays a crucial role in maintaining metabolic health and influencing disease susceptibility. Dysbiosis, or an imbalance in gut microbiota, has been linked to the development of type 2 diabetes mellitus (T2DM) through mechanisms such as reduced glucose tolerance and increased insulin resistance. A balanced gut microbiota, or eubiosis, is associated with improved glucose metabolism and insulin sensitivity, potentially reducing the risk of diabetes-related complications. Various strategies, including the use of prebiotics like inulin, fructooligosaccharides, galactooligosaccharides, resistant starch, pectic oligosaccharides, polyphenols, β-glucan, and Dendrobium officinale have been shown to improve gut microbial composition and support glycemic control in T2DM patients. These prebiotics can directly impact blood sugar levels while promoting the growth of beneficial bacteria, thus enhancing glycemic control. Studies have shown that T2DM patients often exhibit a decrease in beneficial butyrate-producing bacteria, like Roseburia and Faecalibacterium, and an increase in harmful bacteria, such as Escherichia and Prevotella. This review aims to explore the effects of different prebiotics on T2DM, their impact on gut microbiota composition, and the potential for personalized dietary interventions to optimize diabetes management and improve overall health outcomes.
Collapse
Affiliation(s)
- Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| | - Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA
| | - Mihai Covasa
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
6
|
Frost F, Khaimov V, Senz V, Weiss S, Klußmann-Fricke B, Rühlemann M, Bang C, Franke A, Pickartz T, Budde C, Aghdassi AA, Siewert S, Weiss FU, Grabow N, Lerch MM, Sendler M. The composition of the stent microbiome is associated with morbidity and adverse events during endoscopic drainage therapy of pancreatic necroses and pseudocysts. Front Med (Lausanne) 2024; 11:1462122. [PMID: 39351008 PMCID: PMC11439688 DOI: 10.3389/fmed.2024.1462122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
Background Development of pancreatic necroses or pseudocysts are typical complications of pancreatitis and may require endoscopic drainage therapy using metal or plastic stents. Microbial infection of these lesions poses a major challenge. So far, the composition and significance of the microbial colonization on drainage stents are largely unknown although it may impact outcomes during endoscopic drainage therapy. Methods A total of 26 stents used for drainage of pancreatic lesions were retrieved and the stent microbiome was determined by 16S rRNA gene sequencing. Additional analysis included comparison of the stent microbiome to the intracavitary necrosis microbiome as well as scanning electron microscopy (SEM) and micro-computed tomography (μCT) imaging of selected metal or plastic stents. Results The stent microbiome comprises a large proportion of opportunistic enteric pathogens such as Enterococcus (14.4%) or Escherichia (6.1%) as well as oral bacteria like Streptococcus (13.1%). Increased levels of opportunistic enteric pathogens were associated with a prolonged hospital stay (r = 0.77, p = 3e-06) and the occurrence of adverse events during drainage therapy (p = 0.011). Higher levels of oral bacteria were associated (r = -0.62, p = 8e-04) with shorter durations of inpatient treatment. SEM and μCT investigations revealed complex biofilm networks on the stent surface. Conclusion The composition of the stent microbiome is associated with prolonged hospital stays and adverse events during endoscopic drainage therapy, highlighting the need for effective infection control to improve patient outcomes. In addition to systemic antibiotic therapy, antimicrobial stent coatings could be a conceivable option to influence the stent microbiome and possibly enhance control of the necrotic microflora.
Collapse
Affiliation(s)
- Fabian Frost
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Valeria Khaimov
- Institute for Implant Technology and Biomaterials E. V., Rostock, Germany
| | - Volkmar Senz
- Institute for Biomedical Engineering, Rostock University Medical Center, Rostock, Germany
| | - Stefan Weiss
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | | | - Malte Rühlemann
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Tilman Pickartz
- Department of Internal Medicine IV, Klinikum Südstadt Rostock, Rostock, Germany
| | - Christoph Budde
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Ali A. Aghdassi
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Siewert
- Institute for Implant Technology and Biomaterials E. V., Rostock, Germany
| | - Frank U. Weiss
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Niels Grabow
- Institute for Biomedical Engineering, Rostock University Medical Center, Rostock, Germany
| | - Markus M. Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
- Ludwig Maximilian University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
7
|
Khan R, Sharma A, Ravikumar R, Sivaprasad S, Raman R. Correlation of gut microbial diversity to sight-threatening diabetic retinopathy. BMC Microbiol 2024; 24:342. [PMID: 39271995 PMCID: PMC11395485 DOI: 10.1186/s12866-024-03496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
PURPOSE To determine the association of gut microbiome diversity and sight-threatening diabetic retinopathy (STDR) amongst patients with pre-existing diabetes. METHODS A cross-sectional study was performed, wherein 54 participants selected in total were placed into cases cohort if diagnosed with STDR and those without STDR but had a diagnosis of diabetes mellitus of at least 10-year duration were taken as controls. Statistical analysis comparing the gut microbial alpha diversity between cases and control groups as well as patients differentiated based on previously hypothesized Bacteroidetes/Firmicutes(B/F) ratio with an optimal cut-off 1.05 to identify patients with STDR were performed. RESULTS Comparing gut microbial alpha diversity did not show any difference between cases and control groups. However, statistically significant difference was noted amongst patients with B/F ratio ≥1.05 when compared to B/F ratio < 1.05; ACE index [Cut-off < 1.05:773.83 ± 362.73; Cut-off > 1.05:728.03 ± 227.37; p-0.016]; Chao1index [Cut-off < 1.05:773.63 ± 361.88; Cut-off > 1.05:728.13 ± 227.58; p-0.016]; Simpson index [Cut-off < 1.05:0.998 ± 0.001; Cut-off > 1.05:0.997 ± 0.001; p-0.006]; Shannon index [Cut-off < 1.05:6.37 ± 0.49; Cut-off > 1.05:6.10 ± 0.43; p-0.003]. Sub-group analysis showed that cases with B/F ratio ≥ 1.05, divided into proliferative diabetic retinopathy (PDR) and clinically significant macular edema (CSME), showed decreased diversity compared to controls (B/F ratio < 1.05). For PDR, all four diversity indices significantly decreased (p < 0.05). However, for CSME, only Shannon and Simpson indices showed significant decrease in diversity (p < 0.05). CONCLUSIONS Based on clinical diagnosis, decreasing gut microbial diversity was observed among patients with STDR, although not statistically significant. When utilizing B/F ratio, the decreasing gut microbial diversity in STDR patients seems to be associated due to species richness and evenness in PDR when compared to decreasing species richness in CSME.
Collapse
Affiliation(s)
- Rehana Khan
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Sankara Nethralaya, 18 College Road, Chennai, 600 006, Tamil Nadu, India
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Abhishek Sharma
- Michigan State University College of Human Medicine, East Lansing, MI, USA
| | | | - Sobha Sivaprasad
- NIHR Moorfields Biomedical Research Centre, London and University College, London, UK
| | - Rajiv Raman
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Sankara Nethralaya, 18 College Road, Chennai, 600 006, Tamil Nadu, India.
| |
Collapse
|
8
|
Hong J, Fu Y, Chen X, Zhang Y, Li X, Li T, Liu Y, Fan M, Lin R. Gut microbiome changes associated with chronic pancreatitis and pancreatic cancer: a systematic review and meta-analysis. Int J Surg 2024; 110:5781-5794. [PMID: 38847785 PMCID: PMC11392207 DOI: 10.1097/js9.0000000000001724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/19/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND The study of changes in the microbiome in chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC) holds significant potential for developing noninvasive diagnostic tools as well as innovative interventions to alter the progression of diseases. This systematic review and meta-analysis aimed to analyze in detail the taxonomic and functional characteristics of the gut microbiome in patients with CP and PDAC. METHODS Two researchers conducted a systematic search across public databases to gather all published research up to June 2023. Diversity and gut microbiota composition are the main outcomes the authors focus on. RESULTS This meta-analysis included 14 studies, involving a total of 1511 individuals in the PDAC ( n =285), CP ( n =342), and control ( n =649) groups. Our results show a significant difference in the composition of gut microbiota between PDAC/CP patients compared to healthy controls (HC), as evidenced by a slight decrease in α-diversity, including Shannon (SMD=-0.33; P =0.002 and SMD=-0.59; P <0.001, respectively) and a statistically significant β-diversity ( P <0.05). The pooled results showed that at the phylum level, the proportion of Firmicutes was lower in PDAC and CP patients than in HC patients. At the genus level, more than two studies demonstrated that four genera were significantly increased in PDAC patients compared to HC (e.g. Escherichia-Shigella and Veillonella ). CP patients had an increase in four genera (e.g. Escherichia-Shigella and Klebsiella ) and a decrease in eight genera (e.g. Coprococcus and Bifidobacterium ) compared to HC. Functional/metabolomics results from various studies also showed differences between PDAC/CP patients and HC. In addition, this study found no significant differences in gut microbiota between PDAC and CP patients. CONCLUSIONS Current evidence suggests changes in gut microbiota is associated with PDAC/CP, commonly reflected by a reduction in beneficial species and an increase in the pathogenic species. Further studies are needed to confirm these findings and explore therapeutic possibilities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mengke Fan
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
9
|
Severino A, Tohumcu E, Tamai L, Dargenio P, Porcari S, Rondinella D, Venturini I, Maida M, Gasbarrini A, Cammarota G, Ianiro G. The microbiome-driven impact of western diet in the development of noncommunicable chronic disorders. Best Pract Res Clin Gastroenterol 2024; 72:101923. [PMID: 39645277 DOI: 10.1016/j.bpg.2024.101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/02/2024] [Indexed: 07/23/2024]
Abstract
Noncommunicable chronic disorders (NCDs) are multifactorial disorders that share a state of chronic, low-grade inflammation together with an imbalance of gut microbiota. NCDs are becoming increasingly prevalent worldwide, and mainly in Western countries, with a significant impact on global health. Societal changes, together with the widespread diffusion of modern agricultural methods and food processing, have led to a significant shift in dietary habits over the past century, with an increased diffusion of the Western diet (WD). WD includes foods high in saturated fat, refined sugars, salt, sweeteners, and low in fiber, and is characterized by overeating, frequent snacking, and a prolonged postprandial state. An increasing body of evidence supports the association between the diffusion of WD and the rising prevalence of NCDs. WD also negatively affects both gut microbiota and the immune system by driving to microbial alterations, gut barrier dysfunction, increased intestinal permeability, and leakage of harmful bacterial metabolites into the bloodstream, with consequent contribution to the development of systemic low-grade inflammation. In this review article we aim to dissect the role of gut microbiota imbalance and gut barrier impairment in mediating the detrimental effects of WD on the development of NCDs, and to identify potential therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Severino
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy.
| | - Ege Tohumcu
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Luca Tamai
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Pasquale Dargenio
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Serena Porcari
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Debora Rondinella
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Irene Venturini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Marcello Maida
- Department of Medicine and Surgery, University of Enna 'Kore', Enna, Italy; Gastroenterology Unit, Umberto I Hospital, Enna, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
10
|
Pan Y, Li J, Fan Z, Chen Y, Huang X, Wu D. New Insights into Chronic Pancreatitis: Potential Mechanisms Related to Probiotics. Microorganisms 2024; 12:1760. [PMID: 39338435 PMCID: PMC11434092 DOI: 10.3390/microorganisms12091760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Chronic pancreatitis is a progressive fibroinflammatory disorder with no currently satisfactory treatment. Emerging evidence suggests an association between gut microbial dysbiosis and chronic pancreatitis. Although direct causative evidence is lacking, it is hypothesized that the gut microbiota may play a pivotal role in modulating pancreatic function via the gut-pancreas axis. Thus, modulating the gut microbiota through the administration of probiotics or prebiotics may alleviate pancreatic disorders. In this review, we first propose the potential mechanisms by which specific probiotics or prebiotics may ameliorate chronic pancreatitis, including the alleviation of small intestinal bacterial overgrowth (SIBO), the facilitation of short-chain fatty acids' (SCFAs) production, and the activation of glucagon-like peptide-1 receptors (GLP-1Rs) in the pancreas. Since there are currently no probiotics or prebiotics used for the treatment of chronic pancreatitis, we discuss research in other disease models that have used probiotics or prebiotics to modulate pancreatic endocrine and exocrine functions and prevent pancreatic fibrosis. This provides indirect evidence for their potential application in the treatment of chronic pancreatitis. We anticipate that this research will stimulate further investigation into the gut-pancreas axis and the potential therapeutic value of probiotics and prebiotics in chronic pancreatitis.
Collapse
Affiliation(s)
- Yingyu Pan
- Department of Gastroenterology, State Key Laborotary of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianing Li
- Department of Gastroenterology, State Key Laborotary of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhengyang Fan
- Department of Gastroenterology, State Key Laborotary of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yonghao Chen
- Department of Gastroenterology, State Key Laborotary of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaoxuan Huang
- Department of Gastroenterology, State Key Laborotary of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Dong Wu
- Department of Gastroenterology, State Key Laborotary of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
11
|
Davis CN, Toikumo S, Hatoum AS, Khan Y, Pham BK, Pakala SR, Feuer KL, Gelernter J, Sanchez-Roige S, Kember RL, Kranzler HR. Multivariate, Multi-omic Analysis in 799,429 Individuals Identifies 134 Loci Associated with Somatoform Traits. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.29.24310991. [PMID: 39132487 PMCID: PMC11312645 DOI: 10.1101/2024.07.29.24310991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Somatoform traits, which manifest as persistent physical symptoms without a clear medical cause, are prevalent and pose challenges to clinical practice. Understanding the genetic basis of these disorders could improve diagnostic and therapeutic approaches. With publicly available summary statistics, we conducted a multivariate genome-wide association study (GWAS) and multi-omic analysis of four somatoform traits-fatigue, irritable bowel syndrome, pain intensity, and health satisfaction-in 799,429 individuals genetically similar to Europeans. Using genomic structural equation modeling, GWAS identified 134 loci significantly associated with a somatoform common factor, including 44 loci not significant in the input GWAS and 8 novel loci for somatoform traits. Gene-property analyses highlighted an enrichment of genes involved in synaptic transmission and enriched gene expression in 12 brain tissues. Six genes, including members of the CD300 family, had putatively causal effects mediated by protein abundance. There was substantial polygenic overlap (76-83%) between the somatoform and externalizing, internalizing, and general psychopathology factors. Somatoform polygenic scores were associated most strongly with obesity, Type 2 diabetes, tobacco use disorder, and mood/anxiety disorders in independent biobanks. Drug repurposing analyses suggested potential therapeutic targets, including MEK inhibitors. Mendelian randomization indicated potentially protective effects of gut microbiota, including Ruminococcus bromii. These biological insights provide promising avenues for treatment development.
Collapse
Affiliation(s)
- Christal N. Davis
- Mental Illness Research, Education, and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sylvanus Toikumo
- Mental Illness Research, Education, and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Alexander S. Hatoum
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Yousef Khan
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Benjamin K. Pham
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Shreya R. Pakala
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Kyra L. Feuer
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, VA Connecticut Healthcare Center, West Haven, CT, USA
- Departments of Genetics and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Rachel L. Kember
- Mental Illness Research, Education, and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Henry R. Kranzler
- Mental Illness Research, Education, and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
12
|
Sarkar P, Chintaluri S, Sarkar S, Unnisa M, Jakkampudi A, Mulukutla AP, Kumari S, Reddy DN, Talukdar R. Evaluation of the Crosstalk Between the Host Mycobiome and Bacteriome in Patients with Chronic Pancreatitis. Indian J Microbiol 2024; 64:603-617. [PMID: 39011022 PMCID: PMC11246408 DOI: 10.1007/s12088-024-01207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/14/2024] [Indexed: 07/17/2024] Open
Abstract
The human microbiome is a diverse consortium of microbial kingdoms that play pivotal roles in host health and diseases. We previously reported a dysbiotic bacteriome in chronic pancreatitis patients with diabetes (CPD) compared with patients with it's nondiabetic (CPND) phenotype. In this study, we extended our exploration to elucidate the intricate interactions between the mycobiome, bacteriome, and hosts' plasma metabolome with the disease phenotypes. A total of 25 participants (CPD, n = 7; CPND, n = 10; healthy control, n = 8) were recruited for the study. We observed elevated species richness in both the bacterial and fungal profiles within the CP diabetic cohort compared to the nondiabetic CP phenotype and healthy control cohorts. Notably, the CP group displayed heterogeneous fungal diversity, with only 40% of the CP nondiabetic patients and 20% of the CP diabetic patients exhibiting common core gut fungal profiles. Specific microbial taxa alterations were identified, including a reduction in Bifidobacterium adolescentis and an increase in the prevalence of Aspergillus penicilloides and Klebsiella sp. in the disease groups. In silico analysis revealed the enrichment of pathways related to lipopolysaccharide (LPS), apoptosis, and peptidase, as well as reduced counts of the genes responsible for carbohydrate metabolism in the CP groups. Additionally, distinct plasma metabolome signatures were observed, with CPD group exhibiting higher concentrations of sugars and glycerolipids, while the CPND cohort displayed elevated levels of amino acids in their blood. The fatty acid-binding protein (FABP) concentration was notably greater in the CPD group than in the HC group (4.220 vs. 1.10 ng/ml, p = 0.04). Furthermore, compared with healthy controls, disease groups exhibited fewer correlations between key fungal taxa (Aspergillus sp., Candida sp.) and bacterial taxa (Prevotella copri, Bifidobacteria sp., Rumminococcaceae). Our study unveils, for the first time, a dysbiotic mycobiome and emphasizes unique host bacterial-mycobial interactions in CP patient with diabetes, potentially influencing disease severity. These findings provide crucial insights for future mechanistic studies aiming to unravel the determinants of disease severity in this complex clinical context. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01207-8.
Collapse
Affiliation(s)
- Priyanka Sarkar
- Gut Microbiome Research Group, Wellcome-DBT (Indian Alliance) Lab, Asian Healthcare Foundation, Asian Institute of Gastroenterology (AIG Hospitals), Hyderabad, India
| | - Sreelekha Chintaluri
- Gut Microbiome Research Group, Wellcome-DBT (Indian Alliance) Lab, Asian Healthcare Foundation, Asian Institute of Gastroenterology (AIG Hospitals), Hyderabad, India
| | - Subhaleena Sarkar
- Gut Microbiome Research Group, Wellcome-DBT (Indian Alliance) Lab, Asian Healthcare Foundation, Asian Institute of Gastroenterology (AIG Hospitals), Hyderabad, India
| | - Misbah Unnisa
- Department of Medical Gastroenterology, Asian Institute of Gastroenterology (AIG Hospitals), Hyderabad, India
| | - Aparna Jakkampudi
- Gut Microbiome Research Group, Wellcome-DBT (Indian Alliance) Lab, Asian Healthcare Foundation, Asian Institute of Gastroenterology (AIG Hospitals), Hyderabad, India
| | - Ambika Prasanna Mulukutla
- Gut Microbiome Research Group, Wellcome-DBT (Indian Alliance) Lab, Asian Healthcare Foundation, Asian Institute of Gastroenterology (AIG Hospitals), Hyderabad, India
| | - Sneha Kumari
- Gut Microbiome Research Group, Wellcome-DBT (Indian Alliance) Lab, Asian Healthcare Foundation, Asian Institute of Gastroenterology (AIG Hospitals), Hyderabad, India
| | - D. Nageshwar Reddy
- Department of Medical Gastroenterology, Asian Institute of Gastroenterology (AIG Hospitals), Hyderabad, India
| | - Rupjyoti Talukdar
- Gut Microbiome Research Group, Wellcome-DBT (Indian Alliance) Lab, Asian Healthcare Foundation, Asian Institute of Gastroenterology (AIG Hospitals), Hyderabad, India
- Department of Medical Gastroenterology, Asian Institute of Gastroenterology (AIG Hospitals), Hyderabad, India
| |
Collapse
|
13
|
Qiu YF, Ye J, Xie JJ, Mao XT, Liu YL, Fang Q, Qian YY, Zou WB, Cao Y, Liao Z. Pancreatitis affects gut microbiota via metabolites and inflammatory cytokines: an exploratory two-step Mendelian randomisation study. Mol Genet Genomics 2024; 299:36. [PMID: 38492113 PMCID: PMC10944441 DOI: 10.1007/s00438-024-02125-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/09/2024] [Indexed: 03/18/2024]
Abstract
Previous studies have observed relationships between pancreatitis and gut microbiota; however, specific changes in gut microbiota abundance and underlying mechanisms in pancreatitis remain unknown. Metabolites are important for gut microbiota to fulfil their biological functions, and changes in the metabolic and immune environments are closely linked to changes in microbiota abundance. We aimed to clarify the mechanisms of gut-pancreas interactions and explore the possible role of metabolites and the immune system. To this end, we conducted two-sample Mendelian randomisation (MR) analysis to evaluate the casual links between four different types of pancreatitis and gut microbiota, metabolites, and inflammatory cytokines. A two-step MR analysis was conducted to further evaluate the probable mediating pathways involving metabolites and inflammatory cytokines in the causal relationship between pancreatitis and gut microbiota. In total, six potential mediators were identified in the causal relationship between pancreatitis and gut microbiota. Nineteen species of gut microbiota and seven inflammatory cytokines were genetically associated with the four types of pancreatitis. Metabolites involved in glucose and amino acid metabolisms were genetically associated with chronic pancreatitis, and those involved in lipid metabolism were genetically associated with acute pancreatitis. Our study identified alterations in the gut microbiota, metabolites, and inflammatory cytokines in pancreatitis at the genetic level and found six potential mediators of the pancreas-gut axis, which may provide insights into the precise diagnosis of pancreatitis and treatment interventions for gut microbiota to prevent the exacerbation of pancreatitis. Future studies could elucidate the mechanism underlying the association between pancreatitis and the gut microbiota.
Collapse
Affiliation(s)
- Yi-Fan Qiu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Jun Ye
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Jin-Jin Xie
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Xiao-Tong Mao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yi-Long Liu
- College of Basic Medicine Sciences, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Qian Fang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yang-Yang Qian
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yu Cao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
14
|
Lupu VV, Bratu RM, Trandafir LM, Bozomitu L, Paduraru G, Gimiga N, Ghiga G, Forna L, Ioniuc I, Petrariu FD, Puha B, Lupu A. Exploring the Microbial Landscape: Gut Dysbiosis and Therapeutic Strategies in Pancreatitis-A Narrative Review. Biomedicines 2024; 12:645. [PMID: 38540258 PMCID: PMC10967871 DOI: 10.3390/biomedicines12030645] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 01/03/2025] Open
Abstract
The gut microbiota is emerging as an important contributor to the homeostasis of the human body through its involvement in nutrition and metabolism, protection against pathogens, and the development and modulation of the immune system. It has therefore become an important research topic in recent decades. Although the association between intestinal dysbiosis and numerous digestive pathologies has been thoroughly researched, its involvement in pancreatic diseases constitutes a novelty in the specialized literature. In recent years, growing evidence has pointed to the critical involvement of the pancreas in regulating the intestinal microbiota, as well as the impact of the intestinal microbiota on pancreatic physiology, which implies the existence of a bidirectional connection known as the "gut-pancreas axis". It is theorized that any change at either of these levels triggers a response in the other component, hence leading to the evolution of pancreatitis. However, there are not enough data to determine whether gut dysbiosis is an underlying cause or a result of pancreatitis; therefore, more research is needed in this area. The purpose of this narrative review is to highlight the role of gut dysbiosis in the pathogenesis of acute and chronic pancreatitis, its evolution, and the prospect of employing the microbiota as a therapeutic intervention for pancreatitis.
Collapse
Affiliation(s)
| | - Roxana Mihaela Bratu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (V.V.L.); (L.M.T.); (L.B.); (N.G.); (G.G.); (L.F.); (I.I.); (F.D.P.); (B.P.); (A.L.)
| | | | | | - Gabriela Paduraru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (V.V.L.); (L.M.T.); (L.B.); (N.G.); (G.G.); (L.F.); (I.I.); (F.D.P.); (B.P.); (A.L.)
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Jacquier EF, van de Wouw M, Nekrasov E, Contractor N, Kassis A, Marcu D. Local and Systemic Effects of Bioactive Food Ingredients: Is There a Role for Functional Foods to Prime the Gut for Resilience? Foods 2024; 13:739. [PMID: 38472851 DOI: 10.3390/foods13050739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Scientific advancements in understanding the impact of bioactive components in foods on the gut microbiota and wider physiology create opportunities for designing targeted functional foods. The selection of bioactive ingredients with potential local or systemic effects holds promise for influencing overall well-being. An abundance of studies demonstrate that gut microbiota show compositional changes that correlate age and disease. However, navigating this field, especially for non-experts, remains challenging, given the abundance of bioactive ingredients with varying levels of scientific substantiation. This narrative review addresses the current knowledge on the potential impact of the gut microbiota on host health, emphasizing gut microbiota resilience. It explores evidence related to the extensive gut health benefits of popular dietary components and bioactive ingredients, such as phytochemicals, fermented greens, fibres, prebiotics, probiotics, and postbiotics. Importantly, this review distinguishes between the potential local and systemic effects of both popular and emerging ingredients. Additionally, it highlights how dietary hormesis promotes gut microbiota resilience, fostering better adaptation to stress-a hallmark of health. By integrating examples of bioactives, this review provides insights to guide the design of evidence-based functional foods aimed at priming the gut for resilience.
Collapse
Affiliation(s)
| | - Marcel van de Wouw
- Department of Pediatrics, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | | | - Amira Kassis
- Neat Science, 1618 Chatel-Saint-Denis, Switzerland
| | - Diana Marcu
- School of Molecular Biosciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
16
|
Kesh K, Tao J, Ghosh N, Jalodia R, Singh S, Dawra R, Roy S. Prescription opioids induced microbial dysbiosis worsens severity of chronic pancreatitis and drives pain hypersensitivity. Gut Microbes 2024; 16:2310291. [PMID: 38329115 PMCID: PMC10857465 DOI: 10.1080/19490976.2024.2310291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
Opioids, such as morphine and oxycodone, are widely used for pain management associated with chronic pancreatitis (CP); however, their impact on the progression and pain sensitivity of CP has never been evaluated. This report investigates the impact of opioid use on the severity of CP, pain sensitivity, and the gut microbiome. C57BL/6 mice were divided into control, CP, CP with morphine/oxycodone, and either morphine or oxycodone alone groups. CP was induced by administration of caerulein (50ug/kg/h, i.p. hourly x7, twice a week for 10 weeks). The mouse-to-pancreas weight ratio, histology, and Sirius red staining were performed to measure CP severity. Tail flick and paw pressure assays were used to measure thermal and mechanical pain. DNA was extracted from the fecal samples and subjected to whole-genome shotgun sequencing. Germ-free mice were used to validate the role of gut microbiome in sensitizing acute pancreatic inflammation. Opioid treatment exacerbates CP by increasing pancreatic necrosis, fibrosis, and immune-cell infiltration. Opioid-treated CP mice exhibited enhanced pain hypersensitivity and showed distinct clustering of the gut microbiome compared to untreated CP mice, with severely compromised gut barrier integrity. Fecal microbiota transplantation (FMT) from opioid-treated CP mice into germ-free mice resulted in pancreatic inflammation in response to a suboptimal caerulein dose. Together, these analyses revealed that opioids worsen the severity of CP and induce significant alterations in pain sensitivity and the gut microbiome in a caerulein CP mouse model. Microbial dysbiosis plays an important role in sensitizing the host to pancreatic inflammation.
Collapse
Affiliation(s)
- Kousik Kesh
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Junyi Tao
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Nillu Ghosh
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Richa Jalodia
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Salma Singh
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Rajinder Dawra
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Sabita Roy
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| |
Collapse
|
17
|
Wang K, Qin X, Ran T, Pan Y, Hong Y, Wang J, Zhang X, Shen X, Liu C, Lu X, Chen Y, Bai Y, Zhang Y, Zhou C, Zou D. Causal link between gut microbiota and four types of pancreatitis: a genetic association and bidirectional Mendelian randomization study. Front Microbiol 2023; 14:1290202. [PMID: 38075894 PMCID: PMC10702359 DOI: 10.3389/fmicb.2023.1290202] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/13/2023] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND A number of recent observational studies have indicated a correlation between the constitution of gut microbiota and the incidence of pancreatitis. Notwithstanding, observational studies are unreliable for inferring causality because of their susceptibility to confounding, bias, and reverse causality, the causal relationship between specific gut microbiota and pancreatitis is still unclear. Therefore, our study aimed to investigate the causal relationship between gut microbiota and four types of pancreatitis. METHODS An investigative undertaking encompassing a genome-wide association study (GWAS) comprising 18,340 participants was undertaken with the aim of discerning genetic instrumental variables that exhibit associations with gut microbiota, The aggregated statistical data pertaining to acute pancreatitis (AP), alcohol-induced AP (AAP), chronic pancreatitis (CP), and alcohol-induced CP (ACP) were acquired from the FinnGen Consortium. The two-sample bidirectional Mendelian randomization (MR) approach was utilized. Utilizing the Inverse-Variance Weighted (IVW) technique as the cornerstone of our primary analysis. The Bonferroni analysis was used to correct for multiple testing, In addition, a number of sensitivity analysis methodologies, comprising the MR-Egger intercept test, the Cochran's Q test, MR polymorphism residual and outlier (MR-PRESSO) test, and the leave-one-out test, were performed to evaluate the robustness of our findings. RESULTS A total of 28 intestinal microflora were ascertained to exhibit significant associations with diverse outcomes of pancreatitis. Among them, Class Melainabacteria (OR = 1.801, 95% CI: 1.288-2.519, p = 0.008) has a strong causality with ACP after the Bonferroni-corrected test, in order to assess potential reverse causation effects, we used four types of pancreatitis as the exposure variable and scrutinized its impact on gut microbiota as the outcome variable, this analysis revealed associations between pancreatitis and 30 distinct types of gut microflora. The implementation of Cochran's Q test revealed a lack of substantial heterogeneity among the various single nucleotide polymorphisms (SNP). CONCLUSION Our first systematic Mendelian randomization analysis provides evidence that multiple gut microbiota taxa may be causally associated with four types of pancreatitis disease. This discovery may contribute significant biomarkers conducive to the preliminary, non-invasive identification of Pancreatitis. Additionally, it could present viable targets for potential therapeutic interventions in the disease's treatment.
Collapse
Affiliation(s)
- Kui Wang
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Gastroenterology, The Affiliated Hospital of Kunming University of Science and Technology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Xianzheng Qin
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Taojing Ran
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yundi Pan
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Hong
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawei Wang
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xianda Zhang
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - XiaoNan Shen
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenxiao Liu
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinchen Lu
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yifei Chen
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaya Bai
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Zhang
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunhua Zhou
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Wu L, Hu J, Yi X, Lv J, Yao J, Tang W, Zhang S, Wan M. Gut microbiota interacts with inflammatory responses in acute pancreatitis. Therap Adv Gastroenterol 2023; 16:17562848231202133. [PMID: 37829561 PMCID: PMC10566291 DOI: 10.1177/17562848231202133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Acute pancreatitis (AP) is one of the most common acute abdominal conditions, and its incidence has been increasing for years. Approximately 15-20% of patients develop severe AP (SAP), which is complicated by critical inflammatory injury and intestinal dysfunction. AP-associated inflammation can lead to the gut barrier and function damage, causing dysbacteriosis and facilitating intestinal microbiota migration. Pancreatic exocrine deficiency and decreased levels of antimicrobial peptides in AP can also lead to abnormal growth of intestinal bacteria. Meanwhile, intestinal microbiota migration influences the pancreatic microenvironment and affects the severity of AP, which, in turn, exacerbates the systemic inflammatory response. Thus, the interaction between the gut microbiota (GM) and the inflammatory response may be a key pathogenic feature of SAP. Treating either of these factors or breaking their interaction may offer some benefits for SAP treatment. In this review, we discuss the mechanisms of interaction of the GM and inflammation in AP and factors that can deteriorate or even cure both, including some traditional Chinese medicine treatments, to provide new methods for studying AP pathogenesis and developing therapies.
Collapse
Affiliation(s)
- Linjun Wu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- Hospital of Chinese Traditional Medicine of Leshan, Leshan, China
| | - Jing Hu
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
- Hospital of Chinese Traditional Medicine of Leshan, Leshan, China
| | - Xiaolin Yi
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
- Intensive Care Unit, Suining Municipal Hospital of TCM, Suining, China
| | - Jianqin Lv
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
| | - Jiaqi Yao
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
| | - Wenfu Tang
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
| | - Shu Zhang
- Department of Emergency Medicine, Emergency Medical Laboratory, West China
- Hospital, Sichuan University, Guo Xue Road 37, Chengdu 610041, Sichuan, China
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Guo Xue Road 37, Chengdu 610041, China
| |
Collapse
|
19
|
Pan LL, Ren ZN, Yang J, Li BB, Huang YW, Song DX, Li X, Xu JJ, Bhatia M, Zou DW, Zhou CH, Sun J. Gut microbiota controls the development of chronic pancreatitis: A critical role of short-chain fatty acids-producing Gram-positive bacteria. Acta Pharm Sin B 2023; 13:4202-4216. [PMID: 37799394 PMCID: PMC10547962 DOI: 10.1016/j.apsb.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/21/2023] [Accepted: 06/13/2023] [Indexed: 10/07/2023] Open
Abstract
Chronic pancreatitis (CP) is a progressive and irreversible fibroinflammatory disorder, accompanied by pancreatic exocrine insufficiency and dysregulated gut microbiota. Recently, accumulating evidence has supported a correlation between gut dysbiosis and CP development. However, whether gut microbiota dysbiosis contributes to CP pathogenesis remains unclear. Herein, an experimental CP was induced by repeated high-dose caerulein injections. The broad-spectrum antibiotics (ABX) and ABX targeting Gram-positive (G+) or Gram-negative bacteria (G-) were applied to explore the specific roles of these bacteria. Gut dysbiosis was observed in both mice and in CP patients, which was accompanied by a sharply reduced abundance for short-chain fatty acids (SCFAs)-producers, especially G+ bacteria. Broad-spectrum ABX exacerbated the severity of CP, as evidenced by aggravated pancreatic fibrosis and gut dysbiosis, especially the depletion of SCFAs-producing G+ bacteria. Additionally, depletion of SCFAs-producing G+ bacteria rather than G- bacteria intensified CP progression independent of TLR4, which was attenuated by supplementation with exogenous SCFAs. Finally, SCFAs modulated pancreatic fibrosis through inhibition of macrophage infiltration and M2 phenotype switching. The study supports a critical role for SCFAs-producing G+ bacteria in CP. Therefore, modulation of dietary-derived SCFAs or G+ SCFAs-producing bacteria may be considered a novel interventive approach for the management of CP.
Collapse
Affiliation(s)
- Li-Long Pan
- Wuxi Medical School, Jiangnan University, Wuxi 214122, China
| | - Zheng-Nan Ren
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jun Yang
- Department of General Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Bin-Bin Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Yi-Wen Huang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Dong-Xiao Song
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Xuan Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jia-Jia Xu
- Department of General Medicine, Beicai Community Health Service Center of Pudong New District, Shanghai 214001, China
| | - Madhav Bhatia
- Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| | - Duo-Wu Zou
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chun-Hua Zhou
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jia Sun
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
20
|
Wang Z, Guo M, Li J, Jiang C, Yang S, Zheng S, Li M, Ai X, Xu X, Zhang W, He X, Wang Y, Chen Y. Composition and functional profiles of gut microbiota reflect the treatment stage, severity, and etiology of acute pancreatitis. Microbiol Spectr 2023; 11:e0082923. [PMID: 37698429 PMCID: PMC10580821 DOI: 10.1128/spectrum.00829-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/13/2023] [Indexed: 09/13/2023] Open
Abstract
Acute pancreatitis (AP) is a type of digestive system disease with high mortality. Previous studies have shown that gut microbiota can participate in developing and treating acute pancreatitis by affecting the host's metabolism. In this study, we followed 20 AP patients to generate longitudinal gut microbiota profiles and activity during disease (before treatment, on the third day of treatment, and 1 month after discharge). We analyzed species composition and metabolic pathways' changes across the treatment phase, severity, and etiology. The diversity of the gut microbiome of patients with AP did not show much variation with treatment. In contrast, the metabolic functions of the gut microbiota, such as the essential chemical reactions that produce energy and maintain life, were partially reinstated after treatment. The severe AP (SAP) patients contained less beneficial bacteria (i.e., Bacteroides xylanisolvens, Clostridium lavalense, and Roseburia inulinivorans) and weaker sugar degradation function than mild AP patients before treatment. Moreover, etiology was one of the drivers of gut microbiome composition and explained the 3.54% variation in species' relative abundance. The relative abundance of pathways related to lipid synthesis was higher in the gut of hyperlipidemia AP patients than in biliary AP patients. The composition and functional profiles of the gut microbiota reflect the severity and etiology of AP. Otherwise, we also identified bacterial species associated with SAP, i.e., Oscillibacter sp. 57_20, Parabacteroides johnsonii, Bacteroides stercoris, Methanobrevibacter smithii, Ruminococcus lactaris, Coprococcus comes, and Dorea formicigenerans, which have the potential to identify the SAP at an early stage. IMPORTANCE Acute pancreatitis (AP) is a type of digestive system disease with high mortality. Previous studies have shown that gut microbiota can participate in the development and treatment of acute pancreatitis by affecting the host's metabolism. However, fewer studies acquired metagenomic sequencing data to associate species to functions intuitively and performed longitudinal analysis to explore how gut microbiota influences the development of AP. We followed 20 AP patients to generate longitudinal gut microbiota profiles and activity during disease and studied the differences in intestinal flora under different severities and etiologies. We have two findings. First, the gut microbiota profile has the potential to identify the severity and etiology of AP at an early stage. Second, gut microbiota likely acts synergistically in the development of AP. This study provides a reference for characterizing the driver flora of severe AP to identify the severity of acute pancreatitis at an early stage.
Collapse
Affiliation(s)
- Zhenjiang Wang
- Department of Gastroenterology, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, China
| | - Mingyi Guo
- Department of Gastroenterology, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, China
| | - Jing Li
- School of Management, University of Science and Technology of China, Hefei, Anhui, China
- Department of Research and Development, Shenzhen Byoryn Technology Co., Ltd., Shenzhen, China
| | - Chuangming Jiang
- Department of Gastroenterology, Gaolangang Branch of Zhuhai People’s Hospital (Hospital of Gaolangang), Zhuhai, China
| | - Sen Yang
- Department of Gastroenterology, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, China
| | - Shizhuo Zheng
- Department of Gastroenterology, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, China
| | - Mingzhe Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Xinbo Ai
- Department of Gastroenterology, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, China
| | - Xiaohong Xu
- Department of Gastroenterology, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, China
| | - Wenbo Zhang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Xingxiang He
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yinan Wang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yuping Chen
- Department of Gastroenterology, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, China
| |
Collapse
|
21
|
Ahn-Jarvis JH, Sosh D, Lombardo E, Lesinski GB, Conwell DL, Hart PA, Vodovotz Y. Short-Term Soy Bread Intervention Leads to a Dose-Response Increase in Urinary Isoflavone Metabolites and Satiety in Chronic Pancreatitis. Foods 2023; 12:foods12091762. [PMID: 37174299 PMCID: PMC10178207 DOI: 10.3390/foods12091762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Patients with chronic pancreatitis (CP) are particularly vulnerable to nutrient malabsorption and undernutrition caused by the underlying pathology of their disease. Dietary intervention trials involving soy isoflavones in patients with CP are limited and isoflavone metabolites have not yet been reported. We hypothesized soy bread containing plant-based protein, dietary fiber, and isoflavones would be well-tolerated and restore gut functional capacity which would lead to isoflavone metabolites profiles like those of healthy populations. Participants (n = 9) received 1 week of soy bread in a dose-escalation design (1 to 3 slices/day) or a 4-week maximally tolerated dose (n = 1). Dietary adherence, satiety, and palatability were measured. Isoflavone metabolites from 24 h urine collections were quantified using high-performance liquid chromatography. A maximum dose of three slices (99 mg of isoflavones) of soy bread per day was achieved. Short-term exposure to soy bread showed a significant dose-response increase (p = 0.007) of total isoflavones and their metabolites in urine. With increasing slices of soy bread, dietary animal protein intake (p = 0.009) and perceived thirst (p < 0.001) significantly decreased with prolonged satiety (p < 0.001). In this study, adherence to short-term intervention with soy bread in CP patients was excellent. Soy isoflavones were reliably delivered. These findings provide the foundation for evaluating a well-characterized soy bread in supporting healthy nutrition and gut function in CP.
Collapse
Affiliation(s)
- Jennifer H Ahn-Jarvis
- College of Food, Agricultural, and Environmental Sciences, Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel Sosh
- College of Food, Agricultural, and Environmental Sciences, Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Erin Lombardo
- College of Public Health, The Ohio State University, Columbus, OH 43210, USA
| | - Gregory B Lesinski
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Darwin L Conwell
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Phil A Hart
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yael Vodovotz
- College of Food, Agricultural, and Environmental Sciences, Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
22
|
Maev IV, Levchenko AI, Galeeva JS, Andreev DN, Osipenko JV, Bordin DS, Ilyina EN. [Comparative analysis of the intestinal microbiota in patients with exocrine pancreatic insufficiency of various severity]. TERAPEVT ARKH 2023; 95:130-139. [PMID: 37167128 DOI: 10.26442/00403660.2023.02.202056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Exocrine pancreatic insufficiency (EPI) is a critical host factor in determining the composition of the gut microbiota. Diseases that cause exocrine insufficiency can affect the gut microbiome, which can potentiate disease progression and complications. To date, the relationship of exocrine insufficiency in various pancreatic (PA) pathologies, in chronic pancreatitis (CP), with dysbiotic changes in the intestinal microbiota (IM) has not been reliably studied. The available data are heterogeneous and contradictory, which determines the need for further research. AIM To conduct a comparative analysis of the taxonomic composition of the intestinal microbiota in patients with CP of various etiologies, without or with the presence of EPI of varying severity, as well as patients with severe EPI with a history of surgical intervention (SI) on the pancreas. MATERIALS AND METHODS A total of 85 patients were included in the study. Patients were divided into groups according to the severity of EPI: Group 1 (n=16) - patients with CP without EPI; Group 2 (n=11) - patients with CP and mild EPI; Group 3 (n=17) - patients with severe CP and EPI; Group 4 (n=41) - severe EPI in persons with a history of SI on the pancreas. Verification of CP was carried out according to clinical, anamnestic and instrumental data. The degree of EPI was determined by the level of pancreatic elastase-1 (PE-1) feces. Informed consent for the study was obtained for each patient, an anamnesis was collected, physical and laboratory examinations were performed, and a stool sample was obtained. DNA was extracted from each stool sample, the taxonomic composition of BM was determined by sequencing the bacterial 16S rRNA genes, followed by bioinformatic analysis. RESULTS We followed the changes in the gut microbiota from a group of patients with CP without EPI to a group with severe EPI, in those who underwent SI. At the level of the phylum, the IM of all groups showed the dominance of Firmicutes, with the lowest representation in the severe EPI group, both with SI and CP, and the growth of the Actinobacteria, Verrucomicrobiota and Fusobacteria types. The differential representation of childbirth varied: in patients with severe EPI and CP, compared with mild, statistically significant genera - Akkermansia, Ruminococcus gauvreauii group and Holdemanella; compared with CP without exocrine insufficiency, Prevotella, Ruminococcus gauvreauii group, Peptostreptococcus and Blautia dominated. The CP group with mild EPI was dominated by the following genera: Lachnospiraceae_ND 2004 group, Faecalitalea, Fusobacterium, Catenibacterium, Roseburia, Atopobium, Cloacibacillus, Clostridium innococum group, Ruminococcus torques group. All groups showed a low diversity of taxa with a predominance of opportunistic flora, including participants in oncogenesis. CONCLUSION The results of the study show that patients with CP of various etiologies and patients with severe EPI who underwent specific intervention on the pancreas have intestinal microbiota dysbiosis, the severity of which is significantly influenced by the degree of EPI.
Collapse
Affiliation(s)
- I V Maev
- Yevdokimov Moscow State University of Medicine and Dentistry
| | - A I Levchenko
- Yevdokimov Moscow State University of Medicine and Dentistry
| | - J S Galeeva
- Research Institute for Systems Biology and Medicine
| | - D N Andreev
- Yevdokimov Moscow State University of Medicine and Dentistry
| | | | - D S Bordin
- Yevdokimov Moscow State University of Medicine and Dentistry
- Loginov Moscow Clinical Scientific Center
- Tver State Medical University
| | - E N Ilyina
- Research Institute for Systems Biology and Medicine
| |
Collapse
|
23
|
Inter-Day Variation in the Fasting Plasma Lipopolysaccharide Concentration in the Morning Is Associated with Inter-Day Variation in Appetite in Japanese Males: A Short-Term Cohort Study. Metabolites 2023; 13:metabo13030395. [PMID: 36984835 PMCID: PMC10053071 DOI: 10.3390/metabo13030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Injection of lipopolysaccharide (LPS), a product of gut bacteria, into the blood increases blood triglycerides and cortisol, an appetite-stimulating hormone. Meanwhile, small amounts of LPS derived from gut bacteria are thought to enter the bloodstream from the gut in daily basis. This study aimed to investigate the effect of LPS influx on appetite or lipid metabolism in humans in everyday life. We measured the fasting plasma LPS concentration before breakfast and the corresponding days’ appetite and fat-burning markers for 10 days in four Japanese males (28–31 years) and analyzed the correlation of their inter-day variation. The LPS concentration was negatively correlated with fullness, and positively correlated with the carbohydrate intake. Against our hypothesis, the LPS concentration was positively correlated with the fasting breath acetone concentration, a fat-burning marker. There was a positive correlation between the LPS concentration and fasting body mass index (BMI), but the inter-day variation in BMI was slight. The results suggest that the LPS influx in everyday life is at least associated with appetite in the day.
Collapse
|
24
|
Liu L, Zhang T, Sui Y, Li G, Liu L, Lu T, Tan H, Sun B, Li X, Li L. Gut microbiota affects pancreatic fibrotic progression through immune modulation in chronic pancreatitis. Microb Pathog 2023; 177:106035. [PMID: 36828341 DOI: 10.1016/j.micpath.2023.106035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/02/2022] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
Chronic pancreatitis (CP) is characterized by chronic progressive pancreatic inflammation, which leads to the permanent damage of exocrine and endocrine cells. CP causes irreversible morphological and functional changes, and the clinical manifestations includes abdomen pain, steatorrhea and diabetes. CP induces changes in the composition of gut microbiota that could be used as potential biomarkers for pancreatic fibrosis evaluation. Gut microbiota has emerged as key regulator of immunomodulation and gut microbiota-induced immune activation has not been explored in CP. In current study, we profiled gut microbial signatures in mouse CP model, and found that higher proportion of Streptomyces, Turicibacter, Methylobacterium, Enterococcus and Candidatus_Paenicardiniummore were positively associated with the occurrence of pancreatic fibrosis. We then identified increased CD3+T cells and macrophage infiltration in mouse and human CP tissues by transcriptome sequencing data from GEO database. Subsequently, we demonstrated that fecal microbiota transplantation (FMT) from CP mouse (FMT-CP) exacerbated pancreatic fibrosis by increasing CD4+T cells and macrophage infiltration compared to fecal samples obtained from healthy mouse donor (FMT-HC). Our study describes the link between gut microbiota dysbiosis and immune activation in pancreatic fibrotic progression, and highlights the potential therapeutic roles of FMT and CP treatment.
Collapse
Affiliation(s)
- Lu Liu
- Department of Pharmacy, The First Hospital of Qiqihar, Qiqihar, Heilongjiang, China
| | - Tao Zhang
- Department of General Surgery, Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| | - Yuhang Sui
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Guanqun Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Liwei Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Tianqi Lu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongtao Tan
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xina Li
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
25
|
Xu JJ, Meng YT, Zou WB, Zhao JL, Fang X, Zhang Y, Zhou W, Zhang L, Wang KX, Hu LH, Liao Z, Zhou CH, Zou DW. Cross-sectional evaluation of gut microbial-host cometabolites in patients with chronic pancreatitis. J Dig Dis 2023; 24:51-59. [PMID: 36795087 DOI: 10.1111/1751-2980.13162] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/20/2022] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
OBJECTIVES Gut bacteria facilitate nutrient metabolism and generate small molecules that form part of the broader "metabolome". It is unclear whether these metabolites are disturbed in chronic pancreatitis (CP). This study aimed to evaluate the gut microbial-host cometabolites and their relationship in patients with CP. METHODS Fecal samples were collected from 40 patients with CP and 38 healthy family members. Each sample was examined with 16S rRNA gene profiling and gas chromatography time-of-flight mass spectrometry to estimate the relative abundances of specific bacterial taxa between the two groups and to profile any changes in the metabolome, respectively. Correlation analysis was used to evaluate the differences in metabolites and gut microbiota between the two groups. RESULTS The abundance of Actinobacteria was lower at the phylum level, and that of Bifidobacterium was lower at the genus level in the CP group. Eighteen metabolites had significantly different abundances and the concentrations of 13 metabolites were significantly different between the two groups. Oxoadipic acid and citric acid levels were positively correlated with Bifidobacterium abundance (r = 0.306 and 0.330, respectively, both P < 0.05), while the 3-methylindole concentration was negatively correlated with Bifidobacterium abundance (r = -0.252, P = 0.026) in CP. CONCLUSIONS Gut microbiome and host microbiome metabolic products might be altered in patients with CP. Evaluating gastrointestinal metabolite levels may further enhance our understanding of the pathogenesis and/or progression of CP.
Collapse
Affiliation(s)
- Jia Jia Xu
- Department of Gastroenterology, Changhai Hospital Affiliated to The Second Military Medical University, Shanghai, China.,Department of General Medicine, Beicai Community Health Service Center of Pudong New Area, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Yu Ting Meng
- Department of Gastroenterology, Changhai Hospital Affiliated to The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China.,Department of Hyperbaric Oxgen, Nanjing Benq Medical Center, Nanjing, Jiangsu Province, China
| | - Wen Bin Zou
- Department of Gastroenterology, Changhai Hospital Affiliated to The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Jiu Long Zhao
- Department of Gastroenterology, Changhai Hospital Affiliated to The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Xue Fang
- Department of Gastroenterology, Changhai Hospital Affiliated to The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Yao Zhang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhou
- Department of Gastroenterology, Changhai Hospital Affiliated to The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Ling Zhang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Xuan Wang
- Department of Gastroenterology, Changhai Hospital Affiliated to The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Liang Hao Hu
- Department of Gastroenterology, Changhai Hospital Affiliated to The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital Affiliated to The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Chun Hua Zhou
- Department of Gastroenterology, Changhai Hospital Affiliated to The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China.,Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Duo Wu Zou
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Fuke N, Yamashita T, Shimizu S, Matsumoto M, Sawada K, Jung S, Tokuda I, Misawa M, Suzuki S, Ushida Y, Mikami T, Itoh K, Suganuma H. Association of Plasma Lipopolysaccharide-Binding Protein Concentration with Dietary Factors, Gut Microbiota, and Health Status in the Japanese General Adult Population: A Cross-Sectional Study. Metabolites 2023; 13:metabo13020250. [PMID: 36837869 PMCID: PMC9965710 DOI: 10.3390/metabo13020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The influx of intestinal bacteria-derived lipopolysaccharide (LPS) into the blood has attracted attention as a cause of diseases. The aim of this study is investigating the associations between the influx of LPS, dietary factors, gut microbiota, and health status in the general adult population. Food/nutrient intake, gut microbiota, health status and plasma LPS-binding protein (LBP; LPS exposure indicator) were measured in 896 residents (58.1% female, mean age 54.7 years) of the rural Iwaki district of Japan, and each correlation was analyzed. As the results, plasma LBP concentration correlated with physical (right/left arms' muscle mass [β = -0.02, -0.03]), renal (plasma renin activity [β = 0.27], urine albumin creatinine ratio [β = 0.50]), adrenal cortical (cortisol [β = 0.14]), and thyroid function (free thyroxine [β = 0.05]), iron metabolism (serum iron [β = -0.14]), and markers of lifestyle-related diseases (all Qs < 0.20). Plasma LBP concentration were mainly negatively correlated with vegetables/their nutrients intake (all βs ≤ -0.004, Qs < 0.20). Plasma LBP concentration was positively correlated with the proportion of Prevotella (β = 0.32), Megamonas (β = 0.56), and Streptococcus (β = 0.65); and negatively correlated with Roseburia (β = -0.57) (all Qs < 0.20). Dietary factors correlated with plasma LBP concentration correlated with positively (all βs ≥ 0.07) or negatively (all βs ≤ -0.07) the proportion of these bacteria (all Qs < 0.20). Our results suggested that plasma LBP concentration in the Japanese general adult population was associated with various health issues, and that dietary habit was associated with plasma LBP concentration in relation to the intestinal bacteria.
Collapse
Affiliation(s)
- Nobuo Fuke
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
- Correspondence: ; Tel.: +81-80-1573-5815
| | - Takahiro Yamashita
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| | - Sunao Shimizu
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Mai Matsumoto
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| | - Kaori Sawada
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Songee Jung
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
- Department of Digital Nutrition and Health Sciences, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Itoyo Tokuda
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Mina Misawa
- Center of Innovation Research Initiatives Organization, Hirosaki University, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Shigenori Suzuki
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| | - Yusuke Ushida
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| | - Tatsuya Mikami
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Ken Itoh
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Hiroyuki Suganuma
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| |
Collapse
|
27
|
Zeng XP, Zeng JH, Wang R, Wang W. Pathogenesis, diagnosis, and treatment of malnutrition in patients with chronic pancreatitis. Shijie Huaren Xiaohua Zazhi 2023; 31:92-97. [DOI: 10.11569/wcjd.v31.i3.92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chronic pancreatitis (CP) is a persistent and progressive pancreatic inflammatory disease. Malnutrition is a common clinical manifestation in CP patients, which is mainly caused by pancreatic exocrine insufficiency but may also be related to pancreatic endocrine insufficiency and changes of living habit. At present, there is still a lack of gold standard for the diagnosis of malnutrition in patients with CP. Clinicians should comprehensively evaluate such patients through anthropometric parameters, test parameters, imaging diagnosis, pancreatic exocrine function detection, etc., detect malnutrition early, and take timely intervention measures, including improving diet and living habits, enteral/parenteral nutrition, pancreatic enzyme replacement therapy, acid suppressant adjuvant therapy, regulating intestinal flora, and administration of Chinese medicine. And endoscopic and surgical treatment should be used when necessary.
Collapse
Affiliation(s)
- Xiang-Peng Zeng
- Department of Gastroenterology, 900th Hospital of Joint Logistics Support Force, Fuzhou 350001, Fujian Province, China
| | - Jing-Hui Zeng
- Department of Gastroenterology, 900th Hospital of Joint Logistics Support Force, Fuzhou 350001, Fujian Province, China
| | - Rong Wang
- Department of Gastroenterology, 900th Hospital of Joint Logistics Support Force, Fuzhou 350001, Fujian Province, China
| | - Wen Wang
- Department of Gastroenterology, 900th Hospital of Joint Logistics Support Force, Fuzhou 350001, Fujian Province, China
| |
Collapse
|
28
|
Zhang Y, Xu S, Qian Y, Mo C, Ai P, Yang X, Xiao Q. Sodium butyrate ameliorates gut dysfunction and motor deficits in a mouse model of Parkinson's disease by regulating gut microbiota. Front Aging Neurosci 2023; 15:1099018. [PMID: 36761177 PMCID: PMC9905700 DOI: 10.3389/fnagi.2023.1099018] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Background A growing body of evidence showed that gut microbiota dysbiosis might be associated with the pathogenesis of Parkinson's disease (PD). Microbiota-targeted interventions could play a protective role in PD by regulating the gut microbiota-gut-brain axis. Sodium butyrate (NaB) could improve gut microbiota dysbiosis in PD and other neuropsychiatric disorders. However, the potential mechanism associated with the complex interaction between NaB and gut microbiota-gut-brain communication in PD needs further investigation. Methods C57BL/6 mice were subjected to a rotenone-induced PD model and were treated intragastrically with NaB for 4 weeks. The gut function and motor function were evaluated. The α-synuclein expression in colon and substantia nigra were detected by western blotting. Tyrosine hydroxylase (TH)-positive neurons in substantia nigra were measured by immunofluorescence. Moreover, gut microbiota composition was analyzed by 16S rRNA sequencing. Fecal short chain fatty acids (SCFAs) levels were determined by liquid chromatography tandem mass spectrometry (LC-MS). The levels of glucagon like peptide-1 (GLP-1) in tissues and serum were evaluated using enzyme-linked immunosorbent assay (ELISA). Results NaB ameliorated gut dysfunction and motor deficits in rotenone-induced mice. Meanwhile, NaB protected against rotenone-induced α-synuclein expression in colon and substantia nigra, and prevented the loss of TH-positive neurons. In addition, NaB could remodel gut microbiota composition, and regulate gut SCFAs metabolism, and restore GLP-1 levels in colon, serum, and substantia nigra in PD mice. Conclusion NaB could ameliorate gut dysfunction and motor deficits in rotenone-induced PD mice, and the mechanism might be associated with the regulation of gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoqing Xu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwei Qian
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengjun Mo
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Penghui Ai
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Qin Xiao, ; Xiaodong Yang,
| | - Qin Xiao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Qin Xiao, ; Xiaodong Yang,
| |
Collapse
|
29
|
Lv Y, Liu R, Jia H, Sun X, Gong Y, Ma L, Qiu W, Wang X. Alterations of the gut microbiota in type 2 diabetics with or without subclinical hypothyroidism. PeerJ 2023; 11:e15193. [PMID: 37073275 PMCID: PMC10106085 DOI: 10.7717/peerj.15193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/15/2023] [Indexed: 04/20/2023] Open
Abstract
Background Diabetes and thyroid dysfunction are two closely related endocrine diseases. Increasing evidences show that gut microbiota plays an important role in both glucose metabolism and thyroid homeostasis. Meanwhile, copy number variation (CNV) of host salivary α-amylase gene (AMY1) has been shown to correlate with glucose homeostasis. Hence, we aim to characterize the gut microbiota and CNV of AMY1 in type 2 diabetes (T2D) patients with or without subclinical hypothyroidism (SCH). Methods High-throughput sequencing was used to analyze the gut microbiota of euthyroid T2D patients, T2D patients with SCH and healthy controls. Highly sensitive droplet digital PCR was used to measure AMY1 CN. Results Our results revealed that T2D patients have lower gut microbial diversity, no matter with or without SCH. The characteristic taxa of T2D patients were Coriobacteriales, Coriobacteriaceae, Peptostreptococcaceae, Pseudomonadaceae, Collinsella, Pseudomonas and Romboutsia. Meanwhile, Escherichia/Shigella, Lactobacillus_Oris, Parabacteroides Distasonis_ATCC_8503, Acetanaerobacterium, Lactonifactor, uncultured bacterium of Acetanaerobacterium were enriched in T2D patients with SCH. Moreover, serum levels of free triiodothyronine (FT3) and free thyroxine (FT4) in T2D patients were both negatively correlated with richness of gut microbiota. A number of specific taxa were also associated with clinical parameters at the phylum and genus level. In contrast, no correlation was found between AMY1 CN and T2D or T2D_SCH. Conclusion This study identified characteristic bacterial taxa in gut microbiota of T2D patients with or without SCH, as well as the taxa associated with clinical indices in T2D patients. These results might be exploited in the prevention, diagnosis and treatment of endocrine disorders in the future.
Collapse
Affiliation(s)
- Yanrong Lv
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Rong Liu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Huaijie Jia
- State Key Laboratory of Veterinary of Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaolan Sun
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Yuhan Gong
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Li Ma
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Wei Qiu
- Department of Endocrinology, Xinxiang First People’s Hospital, The Affiliated People’s Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiaoxia Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
30
|
Binda C, Gibiino G, Sbrancia M, Coluccio C, Cazzato M, Carloni L, Cucchetti A, Ercolani G, Sambri V, Fabbri C. Microbiota in the Natural History of Pancreatic Cancer: From Predisposition to Therapy. Cancers (Basel) 2022; 15:cancers15010001. [PMID: 36611999 PMCID: PMC9817971 DOI: 10.3390/cancers15010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Early microbiome insights came from gut microbes and their role among intestinal and extraintestinal disease. The latest evidence suggests that the microbiota is a true organ, capable of several interactions throughout the digestive system, attracting specific interest in the biliopancreatic district. Despite advances in diagnostics over the last few decades and improvements in the management of this disease, pancreatic cancer is still a common cause of cancer death. Microbiota can influence the development of precancerous disease predisposing to pancreatic cancer (PC). At the same time, neoplastic tissue shows specific characteristics in terms of diversity and phenotype, determining the short- and long-term prognosis. Considering the above information, a role for microbiota has also been hypothesized in the different phases of the PC approach, providing future revolutionary therapeutic insights. Microbiota-modulating therapies could open new issues in the therapeutic landscape. The aim of this narrative review is to assess the most updated evidence on microbiome in all the steps regarding pancreatic adenocarcinoma, from early development to response to antineoplastic therapy and long-term prognosis.
Collapse
Affiliation(s)
- Cecilia Binda
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| | - Giulia Gibiino
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
- Correspondence: ; Tel.: +39-3488609557
| | - Monica Sbrancia
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| | - Chiara Coluccio
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| | - Maria Cazzato
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| | - Lorenzo Carloni
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
- Department of Medical and Surgical Sciences—DIMEC, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Alessandro Cucchetti
- Department of Medical and Surgical Sciences—DIMEC, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
- General and Oncologic Surgery, Morgagni—Pierantoni Hospital, AUSL Romagna, 47121 Forlì, Italy
| | - Giorgio Ercolani
- Department of Medical and Surgical Sciences—DIMEC, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
- General and Oncologic Surgery, Morgagni—Pierantoni Hospital, AUSL Romagna, 47121 Forlì, Italy
| | - Vittorio Sambri
- Department of Medical and Surgical Sciences—DIMEC, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
- Microbiology Unit, Hub Laboratory, AUSL della Romagna, 47121 Cesena, Italy
| | - Carlo Fabbri
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| |
Collapse
|
31
|
Maev IV, Levchenko AI, Andreev DN. Changes in the Intestinal Microbiota in Patients with Chronic Pancreatitis: Systematizing Literature Data. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2022; 32:17-26. [DOI: 10.22416/1382-4376-2022-32-4-17-26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The purpose of the review. To systematize literature data on changes in the structure of the intestinal microbiota in patients with chronic pancreatitis (CP).Key findings. The human intestinal microbiota is a dynamically changing system that is constantly undergoing qualitative and quantitative changes, especially in several pathological conditions of the digestive system. At present, the differences in the intestinal microbiota in pancreatic diseases are poorly understood. The severe CP is associated with impaired synthesis of antimicrobial peptides, bicarbonates, and digestive enzymes by the pancreas, which is a risk factor for dysbiotic changes in the intestinal microbiota, consisting in the development of small intestinal bacterial overgrowth (SIBO) and gut dysbiosis. The results of two large meta-analyses show that about a third of CP patients have SIBO. The colonic microbiota in patients with CP is also characterized by dysbiotic disorders, primarily in the reduction of alpha-diversity. Some studies have shown that these patients have an increase in Firmicutes, while Bacteroides and Faecalibacterium are reduced. In addition, as a rule, in patients with CP, the growth of Escherichia, Shigella and Streptococcus is recorded.Conclusion. In general, scientific papers have revealed significant heterogeneity in the profiles of the intestinal microbiota in patients with CP. Thus, several questions remain open, prioritizing the further study of the intestinal microbiota in patients with CP for identifying the specifics of its structure that can personalize the selection of enzyme replacement therapy and restrict the unreasonable prescription of additional pharmacotherapy (the use of proton pump inhibitors and / or antibacterial drugs).
Collapse
Affiliation(s)
- I. V. Maev
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| | - A. I. Levchenko
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| | - D. N. Andreev
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| |
Collapse
|
32
|
The Role of the Microbiome in Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14184479. [PMID: 36139638 PMCID: PMC9496841 DOI: 10.3390/cancers14184479] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Pancreatic cancer is deadly cancer characterized by dense stroma creating an immunosuppressive tumor microenvironment. Accumulating evidences indicate that the microbiome plays an important role in pancreatic cancer development and progression via the local and systemic inflammation and immune responses. The alteration of the microbiome modulates the tumor microenvironment and immune system in pancreatic cancer, which affects the efficacy of chemotherapies including immune-targeted therapies. Understanding the role of microbiome and underlying mechanisms may lead to novel biomarkers and therapeutic strategies for pancreatic cancer. This review summarizes the current evidence on the role of the microbiome in pancreatic cancer. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, with little improvement in outcomes in recent decades, although the molecular and phenotypic characterization of PDAC has contributed to advances in tailored therapies. PDAC is characterized by dense stroma surrounding tumor cells, which limits the efficacy of treatment due to the creation of a physical barrier and immunosuppressive environment. Emerging evidence regarding the microbiome in PDAC implies its potential role in the initiation and progression of PDAC. However, the underlying mechanisms of how the microbiome affects the local tumor microenvironment (TME) as well as the systemic immune system have not been elucidated in PDAC. In addition, therapeutic strategies based on the microbiome have not been established. In this review, we summarize the current evidence regarding the role of the microbiome in the development of PDAC and discuss a possible role for the microbiome in the early detection of PDAC in relation to premalignant pancreatic diseases, such as chronic pancreatitis and intraductal papillary mucinous neoplasm (IPMN). In addition, we discuss the potential role of the microbiome in the treatment of PDAC, especially in immunotherapy, although the biomarkers used to predict the efficacy of immunotherapy in PDAC are still unknown. A comprehensive understanding of tumor-associated immune responses, including those involving the microbiome, holds promise for new treatments in PDAC.
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW This review aims to discuss recent developments in the nutritional management in chronic pancreatitis. RECENT FINDINGS Nutritional assessment should be comprehensive and include dietary history, anthropometry, and biochemical nutritional parameters. Micronutrients should be evaluated at least yearly and dual-energy X-ray absorptiometry (DEXA) at every 2-yearly intervals. Studies on pancreatic enzyme replacement therapy (PERT) have primarily evaluated coefficient of fat excretion (CFA), coefficient of nitrogen excretion (CNA), and stool weight. Two RCTs, in which patients were treated with PERT for 7 days in a blinded manner and subsequently extended for 6-12 months in an open-label manner, showed improvement in nutritional parameters. However, two subsequent RCTs failed to show any benefit, and the most recent observational study demonstrated persistence of malnutrition even after PERT. The reason for the latter findings were nonadherence to PERT and poor oral intake of calories. Therefore, it is essential to educate the patients on adherence, counsel on taking high-protein, high-calorie diet, and supplement nutrients in those with inadequate oral intake. Other associated manifestations, such as diabetes and related complications, and anxiety/depression could also contribute to malnutrition directly or indirectly, and should, therefore, be adequately managed. SUMMARY Nutritional assessment should be performed meticulously. Nutritional therapy should not be restricted to only PERT and nutritional supplementation, but should also include dietary counselling and disease related education.
Collapse
|
34
|
Daley D. The Role of the Microbiome in Pancreatic Oncogenesis. Int Immunol 2022; 34:447-454. [PMID: 35863313 DOI: 10.1093/intimm/dxac036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/20/2022] [Indexed: 11/12/2022] Open
Abstract
Bacterial dysbiosis is evolving as an advocate for carcinogenesis and has been associated with pancreatic cancer progression and survival outcomes. The gut and pancreas of cancer patients harbor a unique microbiome that differs significantly from that of healthy individuals. We believe that the pancreatic cancer microbiome regulates tumorigenesis by altering host cell function and modulating immune cells, skewing them towards an immunosuppressive phenotype. Moreover, altering this pathogenic microbiome may enhance the efficacy of current therapies in pancreatic cancer and improve survival outcomes. This review highlights the findings on microbial modulation across various pre-clinical and clinical studies and provides insight into the potential of targeting the microbiome for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Donnele Daley
- Department of Surgery, University of Michigan, 1500 E Medical Center Drive, Ann Arbor, MI, USA
| |
Collapse
|
35
|
Trukhachev VI, Buryakov NP, Shapovalov SO, Shvydkov AN, Buryakova MA, Khardik IV, Fathala MM, Komarova OE, Aleshin DE. Impact of Inclusion of Multicomponent Synbiotic Russian Holstein Dairy Cow's Rations on Milk Yield, Rumen Fermentation, and Some Blood Biochemical Parameters. Front Vet Sci 2022; 9:884177. [PMID: 35909699 PMCID: PMC9330005 DOI: 10.3389/fvets.2022.884177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to appraise the effect of the inclusion of multicomponent synbiotic “Kormomix® Rumin” in feeding lactating Holstein cows on milk productivity, indicators of rumen fermentation metabolism, and some hematological and biochemical parameters of the blood. For this study, 40 highly productive Russian Holstein cows were selected according to their productivity, physiological condition, live weight, and age. They were divided into four groups (10 heads/each). All animals received the basal total mixed ration (TMR), which was balanced and corresponded to the nutritional requirements for cows during the milking period with a milk yield of 36 kg/daily. The first group (control) fed basal (TMR) only while the 2nd, 3rd, and 4th group fed the basal (TMR) supplemented with a multicomponent synbiotic “Kormomix® Rumin” in amounts 25, 50, and 75 g/head/day, respectively, which was administered manually and individually after morning feeding daily and mixing carefully together with the concentrates directly after calving until 120 DIM. Milk, ruminal fluid, and blood samples were collected for studying the studied parameters. The highest values in all studied milk parameters were recorded in the 2nd experimental group but the differences were not significant. The inclusion of “Kormomix® Rumin” increased significantly the synthesis of volatile fatty acids in the 2nd experimental group (9.38 vs. 7.04 mmol/100 ml) in the control group. The level of serum α-Amylase (total) decreased significantly in the 2nd experimental group compared with other groups. The urea level recorded the lowest value in the control group, while the urea/creatinine ratio recorded the lowest value in the 4th group and the differences were significant when compared with the 2nd group. Accordingly, the inclusion of synbiotic “Kormomix® Rumin” in the diets of lactating cows has no impact on milk production. Whereas, it improves the intensity of rumen fermentation, which contributes to more efficient utilization of feed without any harmful effects on blood traits. Moreover, the recommended dose for use in their diets is 25 g/head/day.
Collapse
Affiliation(s)
- Vladimir I. Trukhachev
- Department of Feeding Animals, Institute of Animal Science and Biology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia
| | - Nikolai P. Buryakov
- Department of Feeding Animals, Institute of Animal Science and Biology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia
| | - Sergey O. Shapovalov
- Department of Feeding Animals, Institute of Animal Science and Biology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia
| | - Aleksandr N. Shvydkov
- Department of Breeding, Feeding and Private Animal Science, Novosibirsk State Agrarian University, Novosibirsk, Russia
| | - Maria A. Buryakova
- Department of Feeding Animals, Institute of Animal Science and Biology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia
| | - Irina V. Khardik
- Department of Feeding Animals, Institute of Animal Science and Biology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia
| | - Mohamed M. Fathala
- Department of Feeding Animals, Institute of Animal Science and Biology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia
- Faculty of Veterinary Medicine, Animal Husbandry and Wealth Development Department, Alexandria University, Alexandria, Egypt
| | - Oksana E. Komarova
- Department of Feeding Animals, Institute of Animal Science and Biology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia
| | - Dmitrii E. Aleshin
- Department of Feeding Animals, Institute of Animal Science and Biology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia
- *Correspondence: Dmitrii E. Aleshin
| |
Collapse
|
36
|
McEachron KR, Nalluri H, Beilman GJ, Kirchner VA, Pruett TL, Freeman ML, Trikudanathan G, Staley C, Bellin MD. Decreased Intestinal Microbiota Diversity Is Associated With Increased Gastrointestinal Symptoms in Patients With Chronic Pancreatitis. Pancreas 2022; 51:649-656. [PMID: 36099525 PMCID: PMC9547966 DOI: 10.1097/mpa.0000000000002096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Chronic pancreatitis (CP) is characterized by abdominal pain, recurrent hospitalizations, frequent exposure to antibiotics, nutritional deficiencies, and chronic opioid use. Data describing the gut microbial community structure of patients with CP is limited. We aimed to compare gut microbiota of a group of patients with severe CP being considered for total pancreatectomy with islet autotransplantation (TPIAT) with those of healthy controls and to associate these differences with severity of clinical symptoms. METHODS We collected stool from healthy donors (n = 14) and patients with CP (n = 20) undergoing workup for TPIAT, in addition to clinical metadata and a validated abdominal symptoms severity survey. RESULTS Patients with CP had significantly lower alpha diversity than healthy controls ( P < 0.001). There was a significantly increased mean relative abundance of Faecalibacterium in healthy controls compared with patients with CP ( P = 0.02). Among participants with CP, those with lower alpha diversity reported worse functional abdominal symptoms ( P = 0.006). CONCLUSIONS These findings indicate that changes in gut microbial community structure may contribute to gastrointestinal symptoms and provide basis for future studies on whether enrichment of healthy commensal bacteria such as Faecalibacterium could provide clinically meaningful improvements in outcomes for CP patients undergoing TPIAT.
Collapse
|
37
|
Guo S, Zhang H, Chu Y, Jiang Q, Ma Y. A neural network-based framework to understand the type 2 diabetes-related alteration of the human gut microbiome. IMETA 2022; 1:e20. [PMID: 38868565 PMCID: PMC10989819 DOI: 10.1002/imt2.20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2024]
Abstract
The identification of microbial markers adequate to delineate the disease-related microbiome alterations from the complex human gut microbiota is of great interest. Here, we develop a framework combining neural network (NN) and random forest, resulting in 40 marker species and 90 marker genes identified from the metagenomic data set (185 healthy and 183 type 2 diabetes [T2D] samples), respectively. In terms of these markers, the NN model obtained higher accuracy in classifying the T2D-related samples than other methods; the interaction network analyses identified the key species and functional modules; the regression analysis determined that fasting blood glucose is the most significant factor (p < 0.05) in the T2D-related alteration of the human gut microbiome. We also observed that those marker species varied little across the case and control samples greatly shift in the different stages of the T2D development, suggestive of their important roles in the T2D-related microbiome alteration. Our study provides a new way of identifying the disease-related biomarkers and analyzing the role they may play in the development of the disease.
Collapse
Affiliation(s)
- Shun Guo
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
- Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
- Shenzhen Key Laboratory of Synthetic Genomics; Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
- Shenzhen Key Lab for High Performance Data Mining, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
| | - Haoran Zhang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
- Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
- Shenzhen Key Laboratory of Synthetic Genomics; Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
| | - Yunmeng Chu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
- Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
- Shenzhen Key Laboratory of Synthetic Genomics; Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
| | - Qingshan Jiang
- Shenzhen Key Lab for High Performance Data Mining, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
| | - Yingfei Ma
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
- Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
- Shenzhen Key Laboratory of Synthetic Genomics; Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
| |
Collapse
|
38
|
Hartmann P. Editorial: The Microbiome in Hepatobiliary and Intestinal Disease. Front Physiol 2022; 13:893074. [PMID: 35492588 PMCID: PMC9044070 DOI: 10.3389/fphys.2022.893074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Phillipp Hartmann
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Division of Gastroenterology, Hepatology and Nutrition, Rady Children’s Hospital San Diego, San Diego, CA, United States
- *Correspondence: Phillipp Hartmann,
| |
Collapse
|
39
|
Yang Q, Zhang J, Zhu Y. Potential Roles of the Gut Microbiota in Pancreatic Carcinogenesis and Therapeutics. Front Cell Infect Microbiol 2022; 12:872019. [PMID: 35463649 PMCID: PMC9019584 DOI: 10.3389/fcimb.2022.872019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/14/2022] [Indexed: 11/28/2022] Open
Abstract
The intestinal microenvironment is composed of normal gut microbiota and the environment in which it lives. The largest microecosystem in the human body is the gut microbiota, which is closely related to various diseases of the human body. Pancreatic cancer (PC) is a common malignancy of the digestive system worldwide, and it has a 5-year survival rate of only 5%. Early diagnosis of pancreatic cancer is difficult, so most patients have missed their best opportunity for surgery at the time of diagnosis. However, the etiology is not entirely clear, but there are certain associations between PC and diet, lifestyle, obesity, diabetes and chronic pancreatitis. Many studies have shown that the translocation of the gut microbiota, microbiota dysbiosis, imbalance of the oral microbiota, the interference of normal metabolism function and toxic metabolite products are closely associated with the incidence of PC and influence its prognosis. Therefore, understanding the correlation between the gut microbiota and PC could aid the diagnosis and treatment of PC. Here, we review the correlation between the gut microbiota and PC and the research progresses for the gut microbiota in the diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Qiaoyu Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Queen Mary College, Nanchang University, Nanchang, China
| | - Jihang Zhang
- Institute of Cardiovascular Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| |
Collapse
|
40
|
Wei J, Qing Y, Zhou H, Liu J, Qi C, Gao J. 16S rRNA gene amplicon sequencing of gut microbiota in gestational diabetes mellitus and their correlation with disease risk factors. J Endocrinol Invest 2022; 45:279-289. [PMID: 34302684 PMCID: PMC8308075 DOI: 10.1007/s40618-021-01595-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/15/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Although the gut microbiota (GM) are associated with various diseases, their role in gestational diabetes mellitus (GDM) remains uncharacterized. Further study is urgently needed to expose the real relationship between GM and GDM. METHODS We performed a prospective study in 33 pregnant Chinese individuals [15, GDM; 18, normal glucose tolerance (NGT)] to observe the fecal microbiota by 16S rRNA gene amplicon sequencing at 24-28 weeks of gestational age after a standard 75 g oral glucose tolerance test. Linear regression analysis was employed to assess the relationships between the GM and GDM clinical parameters. RESULTS Sequencing showed no difference in the microbiota alpha diversity but a significant difference in the beta diversity between the GDM and NGT groups, with the relative abundances of Ruminococcus bromii, Clostridium colinum, and Streptococcus infantis being higher in the GDM group (P < 0.05). The quantitative PCR results validated the putative bacterial markers of R. bromii and S. infantis. Moreover, a strong positive correlation was found between S. infantis and blood glucose levels after adjusting for body mass index (P < 0.05). CONCLUSION Three abnormally expressed intestinal bacteria (R. bromii, C. colinum, and S. infantis) were identified in GDM patients. S. infantis may confer an increased risk of GDM. Hence, the GM may serve as a potential therapeutic target for GDM.
Collapse
Affiliation(s)
- J Wei
- Department of Obstetrics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213003, China.
| | - Y Qing
- Bengbu Medical College, Bengbu, China
- Department of Endocrinology and Metabolism, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213003, China
| | - H Zhou
- Department of Obstetrics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213003, China
- Dalian Medical University, Dalian, China
| | - J Liu
- Diabetes Mellitus Research Institute of Changzhou, Changzhou, China
| | - C Qi
- Medical Research Center, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - J Gao
- Department of Endocrinology and Metabolism, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213003, China.
| |
Collapse
|
41
|
Rossella C, Laura F, Grazia MM, Raffaele B, Antonio T, Maria P, Francesco DV, Giovanni G. The crosstalk between gut microbiota, intestinal immunological niche and visceral adipose tissue as a new model for the pathogenesis of metabolic and inflammatory diseases: the paradigm of type 2 diabetes mellitus. Curr Med Chem 2022; 29:3189-3201. [PMID: 34986766 DOI: 10.2174/0929867329666220105121124] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/12/2021] [Accepted: 11/21/2021] [Indexed: 11/22/2022]
Abstract
Gut microbiota (GM) comprises more than one thousand microorganisms between bacterial species, viruses, fungi, and protozoa, and represents the main actor of a wide net of molecular interactions, involving, among others, the endocrine system, immune responses, and metabolism. GM influences many endocrine functions such as adrenal steroidogenesis, thyroid function, sexual hormones, IGF-1 pathway and peptides produced in gastrointestinal system. It is fundamental in glycaemic control and obesity, while also exerting an important function in modulating the immune system and associated inflammatory disease. The result of this crosstalk in gut mucosa is the formation of the intestinal immunological niche. Visceral adipose tissue (VAT) produces about 600 different peptides, it is involved in lipid and glucose metabolism and in some immune reactions through several adipokines. GM and VAT interact in a bidirectional fashion: while gut dysbiosis can modify VAT adipokines and hormone secretion, VAT hyperplasia modifies GM composition. Acquired or genetic factors leading to gut dysbiosis or increasing VAT (i.e., Western diet) induce a proinflammatory condition, which plays a pivotal role in the development of dysmetabolic and immunologic conditions, such as diabetes mellitus. Diabetes is clearly associated with specific patterns of GM alterations, with an abundance or reduction of GM species involved in controlling mucosal barrier status, glycaemic levels and exerting a pro- or anti-inflammatory activity. All these factors could explain the higher incidence of several inflammatory conditions in Western countries; furthermore, besides the specific alterations observed in diabetes, this paradigm could represent a common pathway acting in many metabolic conditions and could pave the way to a new, interesting therapeutic approach.
Collapse
Affiliation(s)
- Cianci Rossella
- Dipartimento di Medicina e Chirurgia Traslazionale Università Cattolica del Sacro Cuore Fondazione Policlinico Universitario A. Gemelli, IRCCS Largo A. Gemelli, 8 00168 Rome, Italy
| | - Franza Laura
- Emergency Medicine, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Massaro Maria Grazia
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Borriello Raffaele
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Tota Antonio
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Pallozzi Maria
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - De Vito Francesco
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Gambassi Giovanni
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| |
Collapse
|
42
|
Tao J, Cheema H, Kesh K, Dudeja V, Dawra R, Roy S. Chronic pancreatitis in a caerulein-induced mouse model is associated with an altered gut microbiome. Pancreatology 2022; 22:30-42. [PMID: 34949545 PMCID: PMC8748396 DOI: 10.1016/j.pan.2021.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/29/2021] [Accepted: 12/12/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Chronic pancreatitis (CP) is an inflammatory disease of the pancreas with loss of exocrine/endocrine functions as well as development of fibrosis. Dysbiosis of gut microbiome has been shown to be involved in the pathogenesis of many disease processes. Therefore, we aim to investigate the alteration in gut microbiome associated with CP in caerulein-induced mouse model. METHODS CP was induced in C57Bl/6 by using caerulein injections (50 μg/kg/h, i.p., x7, twice weekly for 10 weeks). Stool samples were collected either one week after end of injection (10-week CP) or 6 weeks (16-week CP). DNA was extracted from stool samples and V4 region of 16S rDNA was sequenced for microbiome analysis. RESULTS CP was strongly associated with the alteration in the composition of the gut microbiome, evidenced by differences in α and β diversity. When β diversity was measured using both weighted and unweighted UniFrac distances, stool from control mice is significantly different from mice on 10-week or 16-week CP (q < 0.01). The α-diversity measured by Faith's phylogenetic diversity was lowest in stool from healthy control and highest in stool from mice with 16-week CP (p < 0.001). Bacteria taxa differentially enriched in CP samples were detected using linear discriminant analysis. Bacteria from genera Bifidobacterium, Akkermansia, and Desulfovibrio were enriched in samples from 10-week CP mice. Bacteria from genera Allobaculum, Prevotella, and Bacteroides were enriched in samples from 16-week CP mice. CONCLUSION Together, these analyses reveal pronounced alteration in the gut microbiome composition, diversity, and function when mice develop CP.
Collapse
Affiliation(s)
- J Tao
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
| | - H Cheema
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
| | - K Kesh
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
| | - V Dudeja
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
| | - R Dawra
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA.
| | - S Roy
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
43
|
Schepis T, De Lucia SS, Nista EC, Manilla V, Pignataro G, Ojetti V, Piccioni A, Gasbarrini A, Franceschi F, Candelli M. Microbiota in Pancreatic Diseases: A Review of the Literature. J Clin Med 2021; 10:jcm10245920. [PMID: 34945216 PMCID: PMC8704740 DOI: 10.3390/jcm10245920] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023] Open
Abstract
The gut microbiota is a critical element in the balance between human health and disease. Its impairment, defined as dysbiosis, is associated with gastroenterological and systemic diseases. Pancreatic secretions are involved in the composition and changes of the gut microbiota, and the gut microbiota may colonize the pancreatic parenchyma and be associated with the occurrence of diseases. The gut microbiota and the pancreas influence each other, resulting in a "gut microbiota-pancreas axis". Moreover, the gut microbiota may be involved in pancreatic diseases, both through direct bacterial colonization and an indirect effect of small molecules and toxins derived from dysbiosis. Pancreatic diseases such as acute pancreatitis, chronic pancreatitis, autoimmune pancreatitis, and pancreatic cancer are common gastroenterological diseases associated with high morbidity and mortality. The involvement of the microbiota in pancreatic diseases is increasingly recognized. Therefore, modifying the intestinal bacterial flora could have important therapeutic implications on these pathologies. The aim of this study is to review the literature to evaluate the alterations of the gut microbiota in pancreatic diseases, and the role of the microbiota in the treatment of these diseases.
Collapse
Affiliation(s)
- Tommaso Schepis
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (T.S.); (S.S.D.L.); (E.C.N.); (V.M.); (A.G.)
| | - Sara S. De Lucia
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (T.S.); (S.S.D.L.); (E.C.N.); (V.M.); (A.G.)
| | - Enrico C. Nista
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (T.S.); (S.S.D.L.); (E.C.N.); (V.M.); (A.G.)
| | - Vittoria Manilla
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (T.S.); (S.S.D.L.); (E.C.N.); (V.M.); (A.G.)
| | - Giulia Pignataro
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (G.P.); (V.O.); (A.P.); (F.F.)
| | - Veronica Ojetti
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (G.P.); (V.O.); (A.P.); (F.F.)
| | - Andrea Piccioni
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (G.P.); (V.O.); (A.P.); (F.F.)
| | - Antonio Gasbarrini
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (T.S.); (S.S.D.L.); (E.C.N.); (V.M.); (A.G.)
| | - Francesco Franceschi
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (G.P.); (V.O.); (A.P.); (F.F.)
| | - Marcello Candelli
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (G.P.); (V.O.); (A.P.); (F.F.)
- Correspondence: ; Tel.: +39-063-0153-188
| |
Collapse
|
44
|
Xu F, Yang C, Tang M, Wang M, Cheng Z, Chen D, Chen X, Liu K. The Role of Gut Microbiota and Genetic Susceptibility in the Pathogenesis of Pancreatitis. Gut Liver 2021; 16:686-696. [PMID: 34911043 PMCID: PMC9474482 DOI: 10.5009/gnl210362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022] Open
Abstract
Pancreatitis is one of the most common inflammatory diseases of the pancreas caused by autodigestion induced by excessive premature protease activation. However, recognition of novel pathophysiological mechanisms remains a still challenge. Both genetic and environmental factors contribute to the pathogenesis of pancreatitis, and the gut microbiota is a potential source of an environmental effect. In recent years, several new frontiers in gut microbiota and genetic risk assessment research have emerged and improved the understanding of the disease. These investigations showed that the disease progression of pancreatitis could be regulated by the gut microbiome, either through a translocation influence or in a host immune response manner. Meanwhile, the onset of the disease is also associated with the heritage of a pathogenic mutation, and the disease progression could be modified by genetic risk factors. In this review, we focused on the recent advances in the role of gut microbiota in the pathogenesis of pancreatitis, and the genetic susceptibility in pancreatitis.
Collapse
Affiliation(s)
- Fumin Xu
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Chunmei Yang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Mingcheng Tang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Ming Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhenhao Cheng
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Dongfeng Chen
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Kaijun Liu
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
45
|
Wen H, Li Q, Lu N, Su YY, Ma PH, Zhang MX. Intestinal flora and pancreatitis: Present and future. Shijie Huaren Xiaohua Zazhi 2021; 29:1269-1275. [DOI: 10.11569/wcjd.v29.i22.1269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of intestinal flora in human health and diseases has attracted more and more attention. At present, there have been some reports on the relationship between intestinal flora and pancreatitis. These reports reveal that intestinal flora plays some important roles in the occurrence and development of pancreatitis. The specific mechanisms of action are unclear, but there is preliminary consensus that intestinal microbiome dysregulation promotes inflammatory changes in the pancreas. This paper summarizes the correlation between intestinal flora and pancreatitis, in order to provide some references and ideas for further research.
Collapse
Affiliation(s)
- Hua Wen
- Xi'an Medical University, Xi'an 710000, Shaanxi Province, China,Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| | - Qian Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| | - Ning Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| | - Yuan-Yuan Su
- Xi'an Medical University, Xi'an 710000, Shaanxi Province, China,Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| | - Pei-Han Ma
- The Second Clinical Medical College, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Ming-Xin Zhang
- The Second Clinical Medical College, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| |
Collapse
|
46
|
Malesza IJ, Malesza M, Walkowiak J, Mussin N, Walkowiak D, Aringazina R, Bartkowiak-Wieczorek J, Mądry E. High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells 2021; 10:cells10113164. [PMID: 34831387 PMCID: PMC8619527 DOI: 10.3390/cells10113164] [Citation(s) in RCA: 292] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is responsible for recovering energy from food, providing hosts with vitamins, and providing a barrier function against exogenous pathogens. In addition, it is involved in maintaining the integrity of the intestinal epithelial barrier, crucial for the functional maturation of the gut immune system. The Western diet (WD)—an unhealthy diet with high consumption of fats—can be broadly characterized by overeating, frequent snacking, and a prolonged postprandial state. The term WD is commonly known and intuitively understood. However, the strict digital expression of nutrient ratios is not precisely defined. Based on the US data for 1908–1989, the calory intake available from fats increased from 32% to 45%. Besides the metabolic aspects (hyperinsulinemia, insulin resistance, dyslipidemia, sympathetic nervous system and renin-angiotensin system overstimulation, and oxidative stress), the consequences of excessive fat consumption (high-fat diet—HFD) comprise dysbiosis, gut barrier dysfunction, increased intestinal permeability, and leakage of toxic bacterial metabolites into the circulation. These can strongly contribute to the development of low-grade systemic inflammation. This narrative review highlights the most important recent advances linking HFD-driven dysbiosis and HFD-related inflammation, presents the pathomechanisms for these phenomena, and examines the possible causative relationship between pro-inflammatory status and gut microbiota changes.
Collapse
Affiliation(s)
- Ida Judyta Malesza
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (I.J.M.); (J.W.)
| | - Michał Malesza
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (M.M.); (J.B.-W.)
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (I.J.M.); (J.W.)
| | - Nadiar Mussin
- Department of General Surgery, West Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan;
| | - Dariusz Walkowiak
- Department of Organization and Management in Health Care, Poznan University of Medical Sciences, 61-701 Poznań, Poland;
| | - Raisa Aringazina
- Department of Internal Diseases No. 1, West Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan;
| | | | - Edyta Mądry
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (M.M.); (J.B.-W.)
- Correspondence:
| |
Collapse
|
47
|
Gut microbiome linked to pancreatitis. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2021.100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
The Gut Microbiome in Patients With Chronic Pancreatitis Is Characterized by Significant Dysbiosis and Overgrowth by Opportunistic Pathogens. Clin Transl Gastroenterol 2021; 11:e00232. [PMID: 33094959 PMCID: PMC7494146 DOI: 10.14309/ctg.0000000000000232] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Exocrine pancreatic function is a critical host factor in determining the intestinal microbiota composition. Diseases affecting the exocrine pancreas could therefore influence the gut microbiome. We investigated the changes in gut microbiota of patients with chronic pancreatitis (CP).
Collapse
|
49
|
Gut microbiota in pancreatic diseases: possible new therapeutic strategies. Acta Pharmacol Sin 2021; 42:1027-1039. [PMID: 33093569 DOI: 10.1038/s41401-020-00532-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic diseases such as pancreatitis, type 1 diabetes and pancreatic cancer impose substantial health-care costs and contribute to marked morbidity and mortality. Recent studies have suggested a link between gut microbiota dysbiosis and pancreatic diseases; however, the potential roles and mechanisms of action of gut microbiota in pancreatic diseases remain to be fully elucidated. In this review, we summarize the evidence that supports relationship between alterations of gut microbiota and development of pancreatic diseases, and discuss the potential molecular mechanisms of gut microbiota dysbiosis in the pathogenesis of pancreatic diseases. We also propose current strategies toward gut microbiota to advance a developing research field that has clinical potential to reduce the cost of pancreatic diseases.
Collapse
|
50
|
Talukdar R, Sarkar P, Jakkampudi A, Sarkar S, Aslam M, Jandhyala M, Deepika G, Unnisa M, Reddy DN. The gut microbiome in pancreatogenic diabetes differs from that of Type 1 and Type 2 diabetes. Sci Rep 2021; 11:10978. [PMID: 34040023 PMCID: PMC8155207 DOI: 10.1038/s41598-021-90024-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 05/04/2021] [Indexed: 12/25/2022] Open
Abstract
We hypothesized that the gut microbiome in patients with diabetes secondary to chronic pancreatitis (Type 3c) is different from those with Type 1 and Type 2 diabetes. This was a cross-sectional preliminary study that included 8 patients with Type 1, 10 with Type 2, 17 with Type 3c diabetes and 9 healthy controls. Demographic, clinical, biochemical, imaging and treatment data were recorded and sequencing of the V3-V4 region of the bacterial 16SrRNA was done on fecal samples. Bioinformatics and statistical analyses was performed to evaluate the differences in the diversity indices, distance matrices, relative abundances and uniqueness of organisms between the types of diabetes. There was significant difference in the species richness. Beta diversity was significantly different between patients with Type 3c diabetes and the other groups. 31 genera were common to all the three types of diabetes. There was significant differences in the species level taxa between Type 3c diabetes and the other groups. The unique bacterial species signature in Type 3c diabetes compared to Type 1 and Type 2 diabetes included Nesterenkonia sp. AN1, Clostridium magnum, Acinetobacter lwoffii, Clostridium septicum, Porphyromonas somerae, Terrabacter tumescens, and Synechococus sp.
Collapse
Affiliation(s)
- Rupjyoti Talukdar
- Pancreas Research Group and Division of Gut Microbiome Research, Wellcome DBT India Alliance Laboratories, Institute of Basic and Translational Research, Asian Healthcare Foundation, Asian Institute of Gastroenterology, Hyderabad, Telangana, 500032, India.
- Department of Medical Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, India.
| | - Priyanka Sarkar
- Pancreas Research Group and Division of Gut Microbiome Research, Wellcome DBT India Alliance Laboratories, Institute of Basic and Translational Research, Asian Healthcare Foundation, Asian Institute of Gastroenterology, Hyderabad, Telangana, 500032, India
| | - Aparna Jakkampudi
- Pancreas Research Group and Division of Gut Microbiome Research, Wellcome DBT India Alliance Laboratories, Institute of Basic and Translational Research, Asian Healthcare Foundation, Asian Institute of Gastroenterology, Hyderabad, Telangana, 500032, India
| | - Subhaleena Sarkar
- Pancreas Research Group and Division of Gut Microbiome Research, Wellcome DBT India Alliance Laboratories, Institute of Basic and Translational Research, Asian Healthcare Foundation, Asian Institute of Gastroenterology, Hyderabad, Telangana, 500032, India
| | - Mohsin Aslam
- Department of Endocrinology, Asian Institute of Gastroenterology, Hyderabad, India
| | - Manasa Jandhyala
- Pancreas Research Group and Division of Gut Microbiome Research, Wellcome DBT India Alliance Laboratories, Institute of Basic and Translational Research, Asian Healthcare Foundation, Asian Institute of Gastroenterology, Hyderabad, Telangana, 500032, India
| | - G Deepika
- Department of Biochemistry, Asian Institute of Gastroenterology, Hyderabad, India
| | - Misbah Unnisa
- Department of Medical Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, India
| | - D Nageshwar Reddy
- Department of Medical Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, India
| |
Collapse
|