1
|
Kim W, Sakai Y, Matsuoka M, Hosokawa Y, Fukuda R, Homan K, Onodera T, Iwasaki N. CCR7 depletion alleviates bony growth imbalance following physeal injury in mice. Sci Rep 2024; 14:24891. [PMID: 39438569 PMCID: PMC11496618 DOI: 10.1038/s41598-024-75877-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Growth plates are the frequent sites of skeletal injury in children, leading to skeletal growth imbalances. Chemokines, including the receptor CCR7, play a crucial role in stem cell recruitment and cartilage homeostasis, with previous studies linking CCR7 to osteoarthritis progression. However, its role in growth plate cartilage remains unclear. We analyzed the role of CCR7 in the physeal cartilage repair process in mice model. Physeal injury was created in the proximal tibia in 3-week-old C57BL/6 mice (WT) and CCR7-knockout mice (CCR7-/-). Tibial length was measured macroscopically and sections of the physeal injury were analyzed histologically and immunohistochemically. Height and bone volume of the tibial growth plate and bone mineral density (BMD) of the subchondral area were measured by micro-CT. Mesenchymal stem cells (MSCs) were harvested and gene expression after osteogenic differentiation was analyzed using qRT-PCR. At 1, 3 and 5 weeks postoperatively, injured tibiae of CCR7-/- mice were less shortened than those of WT mice. Bone volume of the physeal bridge was significantly lower in CCR7-/- mice than in WT mice. In contrast, BMD of the subchondral area was comparable between CCR-/- and WT mice, and between sham and operated tibiae. In osteogenic differentiation, CCR7-/- mice showed significantly lowered expression of osteogenic markers such as Osterix, Runx2 and Type X collagen. We demonstrated CCR7 depletion in mice inhibited physeal bridge formation and ameliorated growth imbalances after physeal injury.
Collapse
Affiliation(s)
- WooYoung Kim
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North-15 West-7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yuko Sakai
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North-15 West-7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Masatake Matsuoka
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North-15 West-7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.
| | - Yoshiaki Hosokawa
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North-15 West-7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Ryuichi Fukuda
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North-15 West-7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Kentaro Homan
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North-15 West-7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Tomohiro Onodera
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North-15 West-7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North-15 West-7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| |
Collapse
|
2
|
Hosokawa Y, Matsuoka M, Sakai Y, Fukuda R, Matsugasaki K, Homan K, Furukawa JI, Onodera T, Iwasaki N. Depletion of b-series ganglioside prevents limb length discrepancy after growth plate injury. BMC Musculoskelet Disord 2024; 25:565. [PMID: 39033138 PMCID: PMC11264953 DOI: 10.1186/s12891-024-07704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024] Open
Abstract
INTRODUCTION Growth plate damage in long bones often results in progressive skeletal growth imbalance and deformity, leading to significant physical problems. Gangliosides, key glycosphingolipids in cartilage, are notably abundant in articular cartilage and regulate chondrocyte homeostasis. This suggests their significant roles in regulating growth plate cartilage repair. METHODS Chondrocytes from 3 to 5 day-old C57BL/6 mice underwent glycoblotting and mass spectrometry. Based on the results of the glycoblotting analysis, we employed GD3 synthase knockout mice (GD3-/-), which lack b-series gangliosides. In 3-week-old mice, physeal injuries were induced in the left tibiae, with right tibiae sham operated. Tibiae were analyzed at 5 weeks postoperatively for length and micro-CT for growth plate height and bone volume at injury sites. Tibial shortening ratio and bone mineral density were measured by micro-CT. RESULTS Glycoblotting analysis indicated that b-series gangliosides were the most prevalent in physeal chondrocytes among ganglioside series. At 3 weeks, GD3-/- exhibited reduced tibial shortening (14.7 ± 0.2 mm) compared to WT (15.0 ± 0.1 mm, P = 0.03). By 5 weeks, the tibial lengths in GD3-/- (16.0 ± 0.4 mm) closely aligned with sham-operated lengths (P = 0.70). Micro-CT showed delayed physeal bridge formation in GD3-/-, with bone volume measuring 168.9 ± 5.8 HU at 3 weeks (WT: 180.2 ± 3.2 HU, P = 0.09), but normalizing by 5 weeks. CONCLUSION This study highlights that GD3 synthase knockout mice inhibit physeal bridge formation after growth plate injury, proposing a new non-invasive approach for treating skeletal growth disorders.
Collapse
Affiliation(s)
- Yoshiaki Hosokawa
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Masatake Matsuoka
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.
| | - Yuko Sakai
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Ryuichi Fukuda
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Keizumi Matsugasaki
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Kentaro Homan
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Jun-Ichi Furukawa
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, 464-8601, Japan
| | - Tomohiro Onodera
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| |
Collapse
|
3
|
Homan K, Onodera T, Matsuoka M, Iwasaki N. Glycosphingolipids in Osteoarthritis and Cartilage-Regeneration Therapy: Mechanisms and Therapeutic Prospects Based on a Narrative Review of the Literature. Int J Mol Sci 2024; 25:4890. [PMID: 38732111 PMCID: PMC11084896 DOI: 10.3390/ijms25094890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Glycosphingolipids (GSLs), a subtype of glycolipids containing sphingosine, are critical components of vertebrate plasma membranes, playing a pivotal role in cellular signaling and interactions. In human articular cartilage in osteoarthritis (OA), GSL expression is known notably to decrease. This review focuses on the roles of gangliosides, a specific type of GSL, in cartilage degeneration and regeneration, emphasizing their regulatory function in signal transduction. The expression of gangliosides, whether endogenous or augmented exogenously, is regulated at the enzymatic level, targeting specific glycosyltransferases. This regulation has significant implications for the composition of cell-surface gangliosides and their impact on signal transduction in chondrocytes and progenitor cells. Different levels of ganglioside expression can influence signaling pathways in various ways, potentially affecting cell properties, including malignancy. Moreover, gene manipulations against gangliosides have been shown to regulate cartilage metabolisms and chondrocyte differentiation in vivo and in vitro. This review highlights the potential of targeting gangliosides in the development of therapeutic strategies for osteoarthritis and cartilage injury and addresses promising directions for future research and treatment.
Collapse
Affiliation(s)
| | - Tomohiro Onodera
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan; (K.H.); (M.M.); (N.I.)
| | | | | |
Collapse
|
4
|
Komuro M, Mizugaki H, Nagane M, Morimoto M, Fukuyama T, Ogihara K, Naya Y, Yokomori E, Kaneshima K, Kawakami Y, Kamiie J, Shibata Y, Suzuki M, Shimizu T, Kawashima N, Okamoto M, Ikeda T, Yamashita T. Ganglioside GM3 deficiency enhances mast cell sensitivity. FEBS J 2023; 290:4268-4280. [PMID: 37098812 DOI: 10.1111/febs.16806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 04/27/2023]
Abstract
Mast cells are a significant source of cytokines and chemokines that play a role in pathological processes. Gangliosides, which are complex lipids with a sugar chain, are present in all eukaryotic cell membranes and comprise lipid rafts. Ganglioside GM3, the first ganglioside in the synthetic pathway, is a common precursor of the specifying derivatives and is well known for its various functions in biosystems. Mast cells contain high levels of gangliosides; however, the involvement of GM3 in mast cell sensitivity is unclear. Therefore, in this study, we elucidated the role of ganglioside GM3 in mast cells and skin inflammation. GM3 synthase (GM3S)-deficient mast cells showed cytosolic granule topological changes and hyperactivation upon IgE-DNP stimulation without affecting proliferation and differentiation. Additionally, inflammatory cytokine levels increased in GM3S-deficient bone marrow-derived mast cells (BMMC). Furthermore, GM3S-KO mice and GM3S-KO BMMC transplantation showed increased skin allergic reactions. Besides mast cell hypersensitivity caused by GM3S deficiency, membrane integrity decreased and GM3 supplementation rescued this loss of membrane integrity. Additionally, GM3S deficiency increased the phosphorylation of p38 mitogen-activated protein kinase. These results suggest that GM3 increases membrane integrity, leading to the suppression of the p38 signalling pathway in BMMC and contributing to skin allergic reaction.
Collapse
Affiliation(s)
- Mariko Komuro
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Hinano Mizugaki
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Masaki Nagane
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
- Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara, Japan
| | - Misako Morimoto
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Tomoki Fukuyama
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Kikumi Ogihara
- School of Life and Environmental Science, Azabu University, Sagamihara, Japan
| | - Yuko Naya
- School of Life and Environmental Science, Azabu University, Sagamihara, Japan
| | - Emi Yokomori
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Kimika Kaneshima
- School of Life and Environmental Science, Azabu University, Sagamihara, Japan
| | - Yasushi Kawakami
- School of Life and Environmental Science, Azabu University, Sagamihara, Japan
| | - Junichi Kamiie
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Yuki Shibata
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Mira Suzuki
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Takuto Shimizu
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Nagako Kawashima
- Department of Nephrology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Mariko Okamoto
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Teruo Ikeda
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | | |
Collapse
|
5
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Liu J, Zeng W, Lin Q, Dai R, Lu L, Guo Z, Lian X, Pan X, Liu H, Xiu ZB. Proteomic Analyses Reveals the Mechanism of Acupotomy Intervention on the Treatment of Knee Osteoarthritis in Rabbits. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5698387. [PMID: 36437834 PMCID: PMC9691303 DOI: 10.1155/2022/5698387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/17/2022] [Accepted: 09/27/2022] [Indexed: 11/10/2023]
Abstract
Acupotomy intervention (AI) is an available treatment for knee osteoarthritis (KOA) in China, which is a common health problem over the world. However, the underlying mechanism of AI on the KOA treatment is still unknown. To further understand the mechanism of acupotomy in treating KOA, the morphological observation and TMT proteomic analyses were conducted in rabbits. By using X-ray and MRI, we found that the space of the knee joint was bigger in AI than in KOA. Moreover, the chondrocytes were neatly arranged in AI but disordered in KOA. With proteomic analyses in chondrocytes, 68 differently accumulated proteins (DAPs) were identified in AI vs. KOA and DAPs related to energy metabolism and the TCA cycle were suggested to play a central role in response to AI. Furthermore, AIFM1 was proposed to be an important regulator in controlling the energy production in mitochondrial. Besides, FN1, VIM, COL12A1, COL14A1, MYBPH, and DPYSL3 were suggested to play crucial roles in AI for the treatment of KOA. Our study was systematically elucidating the regulation mechanism of acupotomy intervention in the treatment of KOA.
Collapse
Affiliation(s)
- Jing Liu
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China
| | - Weiquan Zeng
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Qiaoxuan Lin
- The Third People's Hospital of Fujian Province, Fuzhou 350122, China
| | - Rongqiong Dai
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Liming Lu
- Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Zexing Guo
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Xiaowen Lian
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Xigui Pan
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Hong Liu
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China
| | - Zhong-Biao Xiu
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China
- Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation Ministry of Education, Fujian University of TCM, Fuzhou 350122, China
- Fujian Institute of Orthopaedics, Fuzhou, Fujian 350004, China
| |
Collapse
|
7
|
Naito S, Kawashima N, Ishii D, Fujita T, Iwamura M, Takeuchi Y. Decreased GM3 correlates with proteinuria in minimal change nephrotic syndrome and focal segmental glomerulosclerosis. Clin Exp Nephrol 2022; 26:1078-1085. [PMID: 35804208 DOI: 10.1007/s10157-022-02249-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/18/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Glycolipids on cell membrane rafts play various roles by interacting with glycoproteins. Recently, it was reported that the glycolipid GM3 is expressed in podocytes and may play a role in podocyte protection. In this report, we describe the correlation between changes in GM3 expression in glomeruli and proteinuria in minimal change nephrotic syndrome (MCNS) and focal segmental glomerulosclerosis (FSGS) patients. METHODS We performed a case-control study of the correlation between nephrin/GM3 expression levels and proteinuria in MCNS and FSGS patients who underwent renal biopsy at our institution between 2009 and 2014. Normal renal tissue sites were used from patients who had undergone nephrectomy at our institution and gave informed consent. RESULTS Both MCNS and FSGS had decreased GM3 and Nephrin expression compared with the normal (normal vs. MCNS, FSGS; all p < 0.01). Furthermore, in both MCNS and FSGS, GM3 expression was negatively correlated with proteinuria (MCNS: r = - 0.61, p < 0.01, FSGS: r = - 0.56, p < 0.05). However, nephrin expression had a trend to correlate with proteinuria in FSGS (MCNS: r = 0.19, p = 0.58, FSGS: r = - 0.48, p = 0.06). Furthermore, in a simple linear regression analysis, GM3 expression also correlated with proteinuric change after 12 months of treatment (MCNS: r = 0.40, p = 0.38, FSGS: r = 0. 68, p < 0.05). CONCLUSION We showed for the first time that decreased GM3 expression correlates with proteinuria in MCNS and FSGS patients. Further studies are needed on the podocyte-protective effects of GM3.
Collapse
Affiliation(s)
- Shokichi Naito
- Department of Nephrology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Nagako Kawashima
- Department of Nephrology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Daisuke Ishii
- Department of Urology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Tetsuo Fujita
- Department of Urology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Masatsugu Iwamura
- Department of Urology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yasuo Takeuchi
- Department of Nephrology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| |
Collapse
|
8
|
Lin Y, Qin J, Zhao H, Xia C. Construction and analysis of finite element model of defected articular cartilage. Saudi J Biol Sci 2020; 27:556-560. [PMID: 31889881 PMCID: PMC6933165 DOI: 10.1016/j.sjbs.2019.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 11/24/2022] Open
Abstract
In order to construct a finite element model of defected articular cartilage, the mechanical behavior and degeneration of articular cartilage after injury were studied. The simplified analytical models of normal and defected articular cartilage and finite element models were established, respectively. Firstly, the analytical solution model and finite element model of hollow defect were constructed by using the elasticity theory of multi-hollow medium. Then, the analytical results of each model were calculated and programmed. The software MATLAB was used for programming calculation. Finally, a finite element solid model of defected articular cartilage was established by using human femoral joint. The solid model was analyzed and calculated by magnetic resonance imaging (MRI). The results showed that when the radius of articular cartilage defect r = 0, i.e. there was no defect in articular cartilage, the internal pore pressure of the defect cartilage was the largest, and its pore pressure value was 27 × 10 3 pa. When the depth of articular cartilage defect r = 0, i.e. there was no defect in articular cartilage, the internal pore pressure of the defect cartilage was the largest, and its pore pressure value was 27.5 × 10 3 pa, and it gradually decreased towards the outer boundary of cartilage. When the surface of femoral cartilage began to defect, with the increase of the depth of the defect (from shallow to deep), the maximum pore pressure in the defect cartilage gradually decreased, but the speed is slowly. With the increase of the defect radius, that is, the area of the defect, the maximum pore pressure in the defect cartilage gradually decreased. When there was no defect of articular cartilage, the internal pore pressure of the defect cartilage was the maximum, the value of pore pressure was 8.7 × 10 3 pa, the value of pore pressure at the contact position of femoral cartilage was the largest, and it gradually decreased towards the outer boundary of cartilage. At the same location, the pore pressure of normal cartilage was significantly higher than that of defected cartilage. With the change of defect location, the pore pressure was reduced accordingly. Moreover, when the defect position moved from the outside to the inside, the corresponding pore pressure value was decreased gradually. To sum up, the finite element model of defected articular cartilage based on porous elasticity theory has better calculation ability, which proves the validity of the finite element software, and provides a strong basis for future model establishment and clinical treatment of articular cartilage.
Collapse
Affiliation(s)
| | | | | | - Chun Xia
- Department of Joint Surgery & Sports Medicine, Zhongshan Hospital Xiamen University, Xiamen 361004, China
| |
Collapse
|
9
|
Torretta E, Barbacini P, Al-Daghri NM, Gelfi C. Sphingolipids in Obesity and Correlated Co-Morbidities: The Contribution of Gender, Age and Environment. Int J Mol Sci 2019; 20:ijms20235901. [PMID: 31771303 PMCID: PMC6929069 DOI: 10.3390/ijms20235901] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
This paper reviews our present knowledge on the contribution of ceramide (Cer), sphingomyelin (SM), dihydroceramide (DhCer) and sphingosine-1-phosphate (S1P) in obesity and related co-morbidities. Specifically, in this paper, we address the role of acyl chain composition in bodily fluids for monitoring obesity in males and females, in aging persons and in situations of environmental hypoxia adaptation. After a brief introduction on sphingolipid synthesis and compartmentalization, the node of detection methods has been critically revised as the node of the use of animal models. The latter do not recapitulate the human condition, making it difficult to compare levels of sphingolipids found in animal tissues and human bodily fluids, and thus, to find definitive conclusions. In human subjects, the search for putative biomarkers has to be performed on easily accessible material, such as serum. The serum “sphingolipidome” profile indicates that attention should be focused on specific acyl chains associated with obesity, per se, since total Cer and SM levels coupled with dyslipidemia and vitamin D deficiency can be confounding factors. Furthermore, exposure to hypoxia indicates a relationship between dyslipidemia, obesity, oxygen level and aerobic/anaerobic metabolism, thus, opening new research avenues in the role of sphingolipids.
Collapse
Affiliation(s)
- Enrica Torretta
- Department of Biomedical Sciences for Health, University of Milan, Luigi Mangiagalli 31, 20133 Milan, Italy; (E.T.); (P.B.)
| | - Pietro Barbacini
- Department of Biomedical Sciences for Health, University of Milan, Luigi Mangiagalli 31, 20133 Milan, Italy; (E.T.); (P.B.)
- Ph.D. school in Molecular and Translational Medicine, University of Milan, 20142 Milan, Italy
| | - Nasser M. Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department,College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Luigi Mangiagalli 31, 20133 Milan, Italy; (E.T.); (P.B.)
- I.R.C.C.S Orthopedic Institute Galeazzi, R. Galeazzi 4, 20161 Milan, Italy
- Correspondence: ; Tel.: +39-025-033-0475
| |
Collapse
|
10
|
Alteration of the Total Cellular Glycome during Late Differentiation of Chondrocytes. Int J Mol Sci 2019; 20:ijms20143546. [PMID: 31331074 PMCID: PMC6678350 DOI: 10.3390/ijms20143546] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/24/2022] Open
Abstract
In normal articular cartilage, chondrocytes do not readily proliferate or terminally differentiate, and exhibit a low level of metabolism. Hypertrophy-like changes of chondrocytes have been proposed to play a role in the pathogenesis of osteoarthritis by inducing protease-mediated cartilage degradation and calcification; however, the molecular mechanisms underlying these changes are unclear. Glycans are located on the outermost cell surface. Dynamic cellular differentiation can be monitored and quantitatively characterized by profiling the glycan structures of total cellular glycoproteins. This study aimed to clarify the alterations in glycans upon late differentiation of chondrocytes, during which hypertrophy-like changes occur. Primary mouse chondrocytes were differentiated using an insulin-induced chondro-osteogenic differentiation model. Comprehensive glycomics, including N-glycans, O-glycans, free oligosaccharides, glycosaminoglycan, and glycosphingolipid, were analyzed for the chondrocytes after 0-, 10- and 20-days cultivation. The comparison and clustering of the alteration of glycans upon hypertrophy-like changes of primary chondrocytes were performed. Comprehensive glycomic analyses provided complementary alterations in the levels of various glycans derived from glycoconjugates during hypertrophic differentiation. In addition, expression of genes related to glycan biosynthesis and metabolic processes was significantly correlated with glycan alterations. Our results indicate that total cellular glycan alterations are closely associated with chondrocyte hypertrophy and help to describe the glycophenotype by chondrocytes and their hypertrophic differentiation. our results will assist the identification of diagnostic and differentiation biomarkers in the future.
Collapse
|
11
|
Joutoku Z, Onodera T, Matsuoka M, Homan K, Momma D, Baba R, Hontani K, Hamasaki M, Matsubara S, Hishimura R, Iwasaki N. CCL21/CCR7 axis regulating juvenile cartilage repair can enhance cartilage healing in adults. Sci Rep 2019; 9:5165. [PMID: 30914733 PMCID: PMC6435673 DOI: 10.1038/s41598-019-41621-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
Juvenile tissue healing is capable of extensive scarless healing that is distinct from the scar-forming process of the adult healing response. Although many growth factors can be found in the juvenile healing process, the molecular mechanisms of juvenile tissue healing are poorly understood. Here we show that juvenile mice deficient in the chemokine receptor CCR7 exhibit diminished large-scale healing potential, whereas CCR7-depleted adult mice undergo normal scar-forming healing similar to wild type mice. In addition, the CCR7 ligand CCL21 was transiently expressed around damaged cartilage in juvenile mice, whereas it is rarely expressed in adults. Notably, exogenous CCL21 administration to adults decreased scar-forming healing and enhanced hyaline-cartilage repair in rabbit osteochondral defects. Our data indicate that the CCL21/CCR7 axis may play a role in the molecular control mechanism of juvenile cartilage repair, raising the possibility that agents modulating the production of CCL21 in vivo can improve the quality of cartilage repair in adults. Such a strategy may prevent post-traumatic arthritis by mimicking the self-repair in juvenile individuals.
Collapse
Affiliation(s)
- Zenta Joutoku
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Onodera
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan. .,Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GSS, GI-CoRE), Hokkaido University, Sapporo, Japan.
| | - Masatake Matsuoka
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kentaro Homan
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Daisuke Momma
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Rikiya Baba
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kazutoshi Hontani
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masanari Hamasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinji Matsubara
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ryosuke Hishimura
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GSS, GI-CoRE), Hokkaido University, Sapporo, Japan
| |
Collapse
|
12
|
Martineau C, Naja RP, Husseini A, Hamade B, Kaufmann M, Akhouayri O, Arabian A, Jones G, St-Arnaud R. Optimal bone fracture repair requires 24R,25-dihydroxyvitamin D3 and its effector molecule FAM57B2. J Clin Invest 2018; 128:3546-3557. [PMID: 30010626 DOI: 10.1172/jci98093] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 05/08/2018] [Indexed: 12/18/2022] Open
Abstract
The biological activity of 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3] remains controversial, but it has been suggested that it contributes to fracture healing. Cyp24a1-/- mice, synthesizing no 24R,25(OH)2D3, show suboptimal endochondral ossification during fracture repair, with smaller callus and reduced stiffness. These defects were corrected by 24R,25(OH)2D3 treatment, but not by 1,25-dihydroxyvitamin D3. Microarrays with Cyp24a1-/- callus mRNA identified FAM57B2 as a mediator of the 24R,25(OH)2D3 effect. FAM57B2 produced lactosylceramide (LacCer) upon specific binding of 24R,25(OH)2D3. Fam57b inactivation in chondrocytes (Col2-Cre Fam57bfl/fl) phenocopied the callus formation defect of Cyp24a1-/- mice. LacCer or 24R,25(OH)2D3 injections restored callus volume, stiffness, and mineralized cartilage area in Cyp24a1-null mice, but only LacCer rescued Col2-Cre Fam57bfl/fl mice. Gene expression in callus tissue suggested that the 24R,25(OH)2D3/FAM57B2 cascade affects cartilage maturation. We describe a previously unrecognized pathway influencing endochondral ossification during bone repair through LacCer production upon binding of 24R,25(OH)2D3 to FAM57B2. Our results identify potential new approaches to ameliorate fracture healing.
Collapse
Affiliation(s)
- Corine Martineau
- Research Centre, Shriners Hospitals for Children - Canada, Montreal, Quebec, Canada
| | - Roy Pascal Naja
- Research Centre, Shriners Hospitals for Children - Canada, Montreal, Quebec, Canada.,Department of Human Genetics, and
| | - Abdallah Husseini
- Research Centre, Shriners Hospitals for Children - Canada, Montreal, Quebec, Canada.,Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Bachar Hamade
- Research Centre, Shriners Hospitals for Children - Canada, Montreal, Quebec, Canada.,Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Martin Kaufmann
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Omar Akhouayri
- Research Centre, Shriners Hospitals for Children - Canada, Montreal, Quebec, Canada
| | - Alice Arabian
- Research Centre, Shriners Hospitals for Children - Canada, Montreal, Quebec, Canada
| | - Glenville Jones
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - René St-Arnaud
- Research Centre, Shriners Hospitals for Children - Canada, Montreal, Quebec, Canada.,Department of Human Genetics, and.,Department of Surgery, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Sandhoff R, Schulze H, Sandhoff K. Ganglioside Metabolism in Health and Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:1-62. [DOI: 10.1016/bs.pmbts.2018.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|