1
|
Ungar ED, Nevo Y. Rhythms, Patterns and Styles in the Jaw Movement Activity of Beef Cattle on Rangeland as Revealed by Acoustic Monitoring. SENSORS (BASEL, SWITZERLAND) 2025; 25:1210. [PMID: 40006439 PMCID: PMC11860019 DOI: 10.3390/s25041210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Grazing shapes rangelands globally, but it is difficult to study. Acoustic monitoring enables grazing to be described in terms of jaw movements, which are fundamental to how herbivores interact with their foraging environment. In an observational study on Mediterranean herbaceous rangeland, 10 beef cattle cows were monitored continuously over multiple days in two seasons. The algorithm used to analyze the acoustic signal furnished (without classification) a data sample of ≈5 M ingestive and ruminatory jaw movements. These were analyzed as between-event intervals and as minutely rates. The rumination displayed a consistent, strong rhythm and pattern of jaw movements. In contrast, there was no single "signature" jaw movement pattern for grazing (i.e., non-rumination). Although the underlying natural rhythm of rumination dominated non-rumination, it was intermittently and irregularly interrupted by longer intervals, whose size scaled logarithmically. There was evidence of further substructure, with a degree of separation between "grazing" and "resting" in the conventional sense. Three broad grazing styles emerged. In the "intense" style, animals sustained long runs of jaw movements in the natural rhythm, with relatively few interruptions. In the "regular" style, comprising the majority of non-rumination jaw activity, the natural rhythm still dominated, but was punctuated at irregular intervals by eruptions of somewhat longer intervals. The "diffuse" style comprised shorter runs in the natural rhythm, punctuated by highly erratic intervals spanning orders of magnitude. When the jaw movement events were viewed as minutely rates, the non-rumination population showed strong bimodality in the distribution of non-zero rates, with peaks at ≈60 and ≈15 jaw movements min-1, suggesting two modes of grazing. The results strongly support the notion of behavioral grazing intensity and call into question the approach of viewing grazing as a binary state or expecting measures of grazing time to be strongly indicative of intake rate. Rate- and interval-based analyses of information at the jaw movement level can yield a penetrating profile of how an animal interacts with its foraging environment, epitomized in a graphical formulation termed the time accumulation curve. These results strengthen the case for the further development of this sensor technology.
Collapse
Affiliation(s)
- Eugene David Ungar
- Department of Natural Resources, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel
| | - Ynon Nevo
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Herzl 229, Rehovot 7610001, Israel;
| |
Collapse
|
2
|
Richard BA, Spence M, Rull-Garza M, Roba YT, Schwarz D, Ramsay JB, Laurence-Chasen JD, Ross CF, Konow N. Rhythmic chew cycles with distinct fast and slow phases are ancestral to gnathostomes. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220539. [PMID: 37839454 PMCID: PMC10577039 DOI: 10.1098/rstb.2022.0539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/19/2023] [Indexed: 10/17/2023] Open
Abstract
Intra-oral food processing, including chewing, is important for safe swallowing and efficient nutrient assimilation across tetrapods. Gape cycles in tetrapod chewing consist of four phases (fast open and -close, and slow open and -close), with processing mainly occurring during slow close. Basal aquatic-feeding vertebrates also process food intraorally, but whether their chew cycles are partitioned into distinct phases, and how rhythmic their chewing is, remains unknown. Here, we show that chew cycles from sharks to salamanders are as rhythmic as those of mammals, and consist of at least three, and often four phases, with phase distinction occasionally lacking during jaw opening. In fishes and aquatic-feeding salamanders, fast open has the most variable duration, more closely resembling mammals than basal amniotes (lepidosaurs). Across ontogenetically or behaviourally mediated terrestrialization, salamanders show a distinct pattern of the second closing phase (near-contact) being faster than the first, with no clear pattern in partitioning of variability across phases. Our results suggest that distinct fast and slow chew cycle phases are ancestral for jawed vertebrates, followed by a complicated evolutionary history of cycle phase durations and jaw velocities across fishes, basal tetrapods and mammals. These results raise new questions about the mechanical and sensorimotor underpinnings of vertebrate food processing. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- Brian A. Richard
- Department of Biological Sciences, University of Massachusetts, Lowell, MA 01954, USA
| | - Meghan Spence
- Department of Biological Sciences, University of Massachusetts, Lowell, MA 01954, USA
| | - Mateo Rull-Garza
- Department of Biological Sciences, University of Massachusetts, Lowell, MA 01954, USA
| | - Yonas Tolosa Roba
- Department of Biological Sciences, University of Massachusetts, Lowell, MA 01954, USA
| | - Daniel Schwarz
- Department of Paleontology, State Museum of Natural History, 70191 Stuttgart, Germany
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University, 07743 Jena, Germany
| | - Jason B. Ramsay
- Biology Department, Westfield State University, Westfield, MA 01086, USA
| | - J. D. Laurence-Chasen
- Department of Organismic Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Callum F. Ross
- Department of Organismic Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Nicolai Konow
- Department of Biological Sciences, University of Massachusetts, Lowell, MA 01954, USA
| |
Collapse
|
3
|
Spence M, Rull-Garza M, Roba YT, Konow N. Do salamanders chew? An X-ray reconstruction of moving morphology analysis of ambystomatid intraoral feeding behaviours. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220540. [PMID: 37839445 PMCID: PMC10577041 DOI: 10.1098/rstb.2022.0540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/02/2023] [Indexed: 10/17/2023] Open
Abstract
Chewing is widespread across vertebrates, including mammals, lepidosaurs, and ray-finned and cartilaginous fishes, yet common wisdom about one group-amphibians-is that they swallow food whole, without processing. Earlier salamander studies lacked analyses of internal kinematics of the tongue, analyses of muscle function, and sampled few individuals, which may have caused erroneous conclusions. Specifically, without tongue and food kinematics, intraoral behaviours are difficult to disambiguate. We hypothesized that ambystomatid salamanders use diverse intraoral behaviours, including chewing, and tested this hypothesis with biplanar videofluoroscopy, X-ray reconstruction of moving morphology, and fluoromicrometry. We generated musculoskeletal kinematic profiles for intraoral behaviours in Axolotls (Ambystoma mexicanum), including three-dimensional skeletal kinematics associated with feeding, for gape, cranial and pectoral girdle rotations, and tongue translations. We also measured muscle fibre and muscle-tendon unit strains for six muscles involved in generating skull, jaw and tongue kinematics (adductor mandibulae, depressor mandibulae, geniohyoid, sternohyoid, epaxialis and hypaxialis). A principal component analysis recovered statistically significant differences between behaviour cycles, classified based on food movements as either chewing or transport. Thus, our data suggest that ambystomatid salamanders use a previously unrecognized diversity of intraoral behaviours, including chewing. Combined with existing knowledge, our data suggest that chewing is a basal trait for tetrapods and jaw-bearing vertebrates. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- Meghan Spence
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Mateo Rull-Garza
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Yonas Tolosa Roba
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Nicolai Konow
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
4
|
Ospina-Garcés SM, León-Paniagua L, Aguilar-Rodríguez PA, MacSwiney G. MC. Natural history of the fishing bat Noctilio leporinus (Chiroptera: Noctilionidae) in the Gulf of Mexico. MAMMALIA 2022. [DOI: 10.1515/mammalia-2022-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
We report feeding behaviour, dates of peak reproduction, and sexual size dimorphism of the fishing bat, Noctilio leporinus, in the Gulf of Mexico. For the first time we document the size of cheek pouches in N. leporinus and fish species consumed in the water bodies of southern Mexico and analyse differences in wing morphology and biomechanical flight descriptors between the sexes. We found sexual dimorphism in size for most of the external measurements but not in wing characters. This species can consume prey up to a third of its size. We confirmed the presence of N. leporinus in localities in Tabasco, Mexico 60 years after the first report.
Collapse
Affiliation(s)
- Sandra M. Ospina-Garcés
- Centro de Investigaciones Tropicales , Universidad Veracruzana , José María Morelos No. 44 y 46. Col. Centro, C.P. 91000 , Xalapa , Veracruz , Mexico
| | - Livia León-Paniagua
- Museo de Zoología “Alfonso L. Herrera”, Facultad de Ciencias , Universidad Nacional Autónoma de México , Exterior Circuit S/N, Ciudad Universitaria, Coyoacán, 04510 , Ciudad de México , Mexico
| | - Pedro A. Aguilar-Rodríguez
- Instituto de Investigaciones Forestales , Universidad Veracruzana , Parque Ecológico “El Haya”, C.P. 91070 , Xalapa , Veracruz , Mexico
| | - M. Cristina MacSwiney G.
- Centro de Investigaciones Tropicales , Universidad Veracruzana , José María Morelos No. 44 y 46. Col. Centro, C.P. 91000 , Xalapa , Veracruz , Mexico
| |
Collapse
|
5
|
de Oliveira LR, Borges LS, Sarmet M, Kagiyama K, Silva BO, Picinato-Pirola M, Takehara S, Kumei Y, Zeredo JLL. "Anatomical, behavioral, and physiological analyses of craniofacial development by cineradiographic imaging in marmosets". J Oral Rehabil 2022; 49:701-711. [PMID: 35340028 DOI: 10.1111/joor.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/01/2022] [Accepted: 03/19/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Nonhuman primates are the closest animal models to humans regarding genetics, physiology, and behavior. Marmoset monkeys in particular are one of the most versatile species for biomedical research. OBJECTIVE To assess the craniofacial growth and development of the masticatory function in the common marmoset (Callithrix jacchus), from birth to the fourth month of life through minimally invasive cineradiographic imaging. METHODS Ten individuals were followed-up from zero to four months of age regarding craniofacial growth and masticatory function assessed by cineradiography. For the experimental procedure, we used a microfocal x-ray source apparatus and a beryllium fast-response image-intensifier. RESULTS The duration of the masticatory cycles was stable across age groups. Chewing a very soft Castella cake or the slightly harder Marshmallow did not change the masticatory cycle in the time domain. On the other hand, linear and angular measurements of the jaw-opening movement showed a tendency for bigger movements at the latter stages of craniofacial growth. Qualitative analysis showed that marmosets had a small preference for Castella over Marshmallow, that they most often bit off pieces of food to chew with their posterior teeth, that they manipulated the food with their hands, and that they chewed the food continuously. CONCLUSION We observed critical developmental events during the first three months of life in marmosets. Cineradiographic imaging in marmosets may provide valuable information on craniofacial form and function for basic and preclinical research models.
Collapse
Affiliation(s)
| | - Luana Siqueira Borges
- Graduate School of Health Science and Technology, University of Brasília (UnB), Brasília, Brazil
| | - Max Sarmet
- Graduate School of Health Science and Technology, University of Brasília (UnB), Brasília, Brazil
| | | | - Brena Oliveira Silva
- Graduate School of Health Science and Technology, University of Brasília (UnB), Brasília, Brazil
| | - Melissa Picinato-Pirola
- Graduate School of Health Science and Technology, University of Brasília (UnB), Brasília, Brazil
| | - Sachiko Takehara
- Division of Preventive Dentistry, Department of Oral Health Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yasuhiro Kumei
- Department of Pathological Biochemistry, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jorge Luís Lopes Zeredo
- Graduate School of Health Science and Technology, University of Brasília (UnB), Brasília, Brazil
| |
Collapse
|
6
|
Wilmers J, Bargmann S. Nature's design solutions in dental enamel: Uniting high strength and extreme damage resistance. Acta Biomater 2020; 107:1-24. [PMID: 32087326 DOI: 10.1016/j.actbio.2020.02.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
The most important demand of today's high-performance materials is to unite high strength with extreme fracture toughness. The combination of withstanding large forces (strength) and resistance to fracture (toughness), especially preventing catastrophic material failure by cracking, is of utmost importance when it comes to structural applications of these materials. However, these two properties are commonly found to be mutually exclusive: strong materials are brittle and tough materials are soft. In dental enamel, nature has combined both properties with outstanding success - despite a limited number of available constituents. Made up of brittle mineral crystals arranged in a sophisticated hierarchical microstructure, enamel exhibits high stiffness and excellent toughness. Different species exhibit a variety of structural adaptations on varying scales in their dental enamel which optimise not only fracture toughness, but also hardness and abrasion behaviour. Nature's materials still outperform their synthetic counterparts due to these complex structure-property relationships that are not yet fully understood. By analysing structure variations and the underlying mechanical mechanisms systematically, design principles which are the key for the development of advanced synthetic materials uniting high strength and toughness can be formulated. STATEMENT OF SIGNIFICANCE: Dental enamel is a hard protective tissue that combines high strength with an exceptional resistance to catastrophic fracture, properties that in classical materials are commonly found to be mutually exclusive. The biological material is able to outperform its synthetic counterparts due to a sophisticated hierarchical microstructure. Between different species, microstructural adaptations can vary significantly. In this contribution, the different types of dental enamel present in different species are reviewed and connections between microstructure and (mechanical) properties are drawn. By consolidating available information for various species and reviewing it from a materials science point of view, design principles for the development of advanced biomimetic materials uniting high strength and toughness can be formulated.
Collapse
|
7
|
Hite NJ, Germain C, Cain BW, Sheldon M, Perala SSN, Sarko DK. The Better to Eat You With: Bite Force in the Naked Mole-Rat ( Heterocephalus glaber) Is Stronger Than Predicted Based on Body Size. Front Integr Neurosci 2019; 13:70. [PMID: 31866840 PMCID: PMC6904307 DOI: 10.3389/fnint.2019.00070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/19/2019] [Indexed: 12/30/2022] Open
Abstract
Naked mole-rats (Heterocephalus glaber) are subterranean rodents that utilize their incisors for feeding, chisel-tooth digging of complex tunnel systems, social interactions, and defense in their eusocial colony structure. Previous studies have shown that naked mole-rats have morphological and anatomical adaptations that predict strong bite forces, namely, skulls that are relatively tall and wide, in addition to impressive masticatory musculature. However, no studies to date have directly measured bite force in this species or analyzed the relationship between bite force and social caste. In the current study, we assessed adult naked mole-rat maximum bite force in relation to body mass, in addition to considering each animal's position within the eusocial hierarchy (i.e., dominant versus subordinate). Each animal was permitted to freely interact with a piezo-resistive bite force sensor. Our results showed that bite force was correlated with body mass in subordinate but not in dominant naked mole-rats, and that subordinate animals exhibited a shorter latency in producing their first bite. Maximum bite force was significantly influenced by caste. In comparing bite force with available data from previous studies across 82 additional mammalian species, subordinate naked mole-rats exhibited a bite force that was 65% higher than predicted for their body size, comparable to Tasmanian devils and exceeding bite force values for all of the carnivorans included for comparison. These results supported the hypothesis that the naked mole-rat's bite force would exceed predictions based on body size due to the behavioral importance and specialization of the naked mole-rat incisors. This study provides insight into the differences in bite force across species, and the significant role that social and ecological factors might play in the evolutionary relationship between bite force performance and underlying anatomical structures.
Collapse
Affiliation(s)
- Natalee J. Hite
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, United States
| | - Cody Germain
- Southern Illinois University, Carbondale, IL, United States
| | - Blake W. Cain
- School of Medicine, Southern Illinois University, Carbondale, IL, United States
| | - Mason Sheldon
- Southern Illinois University, Carbondale, IL, United States
| | - Sai Saketh Nandan Perala
- Department of Electrical and Computer Engineering, Southern Illinois University, Carbondale, IL, United States
| | - Diana K. Sarko
- Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale, IL, United States
| |
Collapse
|
8
|
Abstract
ABSTRACT
Frogs, chameleons and anteaters are striking examples of animals that can grab food using only their tongue. How does the soft and wet surface of a tongue grip onto objects before they are ingested? Here, we review the diversity of tongue projection methods, tongue roughnesses and tongue coatings, our goal being to highlight conditions for effective grip and mobility. A softer tongue can reach farther: the frog Rana pipiens tongue is 10 times softer than the human tongue and can extend to 130% of its length when propelled in a whip-like motion. Roughness can improve a tongue's grip: the spikes on a penguin Eudyptes chrysolophus tongue can be as large as fingernails, and help the penguin swallow fish. The saliva coating on the tongue, a non-Newtonian biofluid, can either lubricate or adhere to food. Frog saliva is 175 times more viscous than human saliva, adhering the tongue to slippery, furry or feathery food. We pay particular attention to using mathematical models such as the theory of capillarity, elasticity and friction to elucidate the parameters for effective tongue use across a variety of vertebrate species. Finally, we postulate how the use of wet and rough surfaces to simultaneously sense and grip may inspire new strategies in emerging technologies such as soft robots.
Collapse
Affiliation(s)
- Alexis C. Noel
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David L. Hu
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
9
|
Žliobaitė I, Fortelius M. Dental functional morphology predicts the scaling of chewing rate in mammals. J Biomech 2018; 67:32-36. [PMID: 29223494 DOI: 10.1016/j.jbiomech.2017.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/08/2017] [Accepted: 11/19/2017] [Indexed: 10/18/2022]
Abstract
How food intake and mastication scale to satisfy the metabolic needs of mammals has been the subject of considerable scientific debate. Existing theory suggests that the negative allometric scaling of metabolic rate with body mass is compensated by a matching allometric scaling of the chewing rate. Why empirical studies have found that the scaling coefficients of the chewing rate seem to be systematically smaller than expected from theory remains unknown. Here we explain this imparity by decoupling the functional surface area of teeth from overall surface area. The functional surface area is relatively reduced in forms emphasizing linear edges (e.g., lophodont) compared with forms lacking linear structures (e.g., bunodont). In forms with reduced relative functional surface, the deficit in food processed per chew appears to be compensated for by increased chewing rate, such that the metabolic requirements are met. This compensation accounts for the apparent difference between theoretically predicted and observed scaling of chewing rates. We suggest that this reflects adaptive functional evolution to plant foods with different fracture properties and extend the theory to incorporate differences in functional morphology.
Collapse
Affiliation(s)
- Indrė Žliobaitė
- Dept. of Computer Science, University of Helsinki, Finland; Dept. of Geosciences of Geography, University of Helsinki, Finland.
| | - Mikael Fortelius
- Dept. of Geosciences of Geography, University of Helsinki, Finland; Finnish Museum of Natural History, University of Helsinki, Finland
| |
Collapse
|
10
|
Fulks BA, Callaghan KX, Tewksbury CD, Gerstner GE. Relationships between chewing rate, occlusion, cephalometric anatomy, muscle activity, and masticatory performance. Arch Oral Biol 2017; 83:161-168. [DOI: 10.1016/j.archoralbio.2017.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/15/2017] [Accepted: 07/26/2017] [Indexed: 11/16/2022]
|