1
|
Fomina P, Femenias A, Tafintseva V, Freitag S, Sulyok M, Aledda M, Kohler A, Krska R, Mizaikoff B. Prediction of Deoxynivalenol Contamination in Wheat via Infrared Attenuated Total Reflection Spectroscopy and Multivariate Data Analysis. ACS FOOD SCIENCE & TECHNOLOGY 2024; 4:895-904. [PMID: 38660051 PMCID: PMC11037394 DOI: 10.1021/acsfoodscitech.3c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/26/2024]
Abstract
The climate crisis further exacerbates the challenges for food production. For instance, the increasingly unpredictable growth of fungal species in the field can lead to an unprecedented high prevalence of several mycotoxins, including the most important toxic secondary metabolite produced by Fusarium spp., i.e., deoxynivalenol (DON). The presence of DON in crops may cause health problems in the population and livestock. Hence, there is a demand for advanced strategies facilitating the detection of DON contamination in cereal-based products. To address this need, we introduce infrared attenuated total reflection (IR-ATR) spectroscopy combined with advanced data modeling routines and optimized sample preparation protocols. In this study, we address the limited exploration of wheat commodities to date via IR-ATR spectroscopy. The focus of this study was optimizing the extraction protocol for wheat by testing various solvents aligned with a greener and more sustainable analytical approach. The employed chemometric method, i.e., sparse partial least-squares discriminant analysis, not only facilitated establishing robust classification models capable of discriminating between high vs low DON-contaminated samples adhering to the EU regulatory limit of 1250 μg/kg but also provided valuable insights into the relevant parameters shaping these models.
Collapse
Affiliation(s)
- Polina Fomina
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89075 Ulm, Germany
| | - Antoni Femenias
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89075 Ulm, Germany
| | - Valeria Tafintseva
- Faculty
of Science and Technology, Norwegian University
of Life Sciences, Drøbakveien 31, 1432 Ås, Norway
| | - Stephan Freitag
- University
of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology
IFA-Tulln, Institute of Bioanalytics and
Agro-Metabolomics, Konrad
Lorenzstr. 20, A-3430 Tulln, Austria
| | - Michael Sulyok
- University
of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology
IFA-Tulln, Institute of Bioanalytics and
Agro-Metabolomics, Konrad
Lorenzstr. 20, A-3430 Tulln, Austria
| | - Miriam Aledda
- Faculty
of Science and Technology, Norwegian University
of Life Sciences, Drøbakveien 31, 1432 Ås, Norway
| | - Achim Kohler
- Faculty
of Science and Technology, Norwegian University
of Life Sciences, Drøbakveien 31, 1432 Ås, Norway
| | - Rudolf Krska
- University
of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology
IFA-Tulln, Institute of Bioanalytics and
Agro-Metabolomics, Konrad
Lorenzstr. 20, A-3430 Tulln, Austria
- Institute
for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, BT9 5DL Belfast, Northern Ireland
| | - Boris Mizaikoff
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89075 Ulm, Germany
- Hahn-Schickard, Sedanstraße 14, 89077 Ulm, Germany
| |
Collapse
|
2
|
Ciaccheri L, De Girolamo A, Cervellieri S, Lippolis V, Mencaglia AA, Pascale M, Mignani AG. Low-Cost Pocket Fluorometer and Chemometric Tools for Green and Rapid Screening of Deoxynivalenol in Durum Wheat Bran. Molecules 2023; 28:7808. [PMID: 38067538 PMCID: PMC10708224 DOI: 10.3390/molecules28237808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Cereal crops are frequently contaminated by deoxynivalenol (DON), a harmful type of mycotoxin produced by several Fusarium species fungi. The early detection of mycotoxin contamination is crucial for ensuring safety and quality of food and feed products, for preventing health risks and for avoiding economic losses because of product rejection or costly mycotoxin removal. A LED-based pocket-size fluorometer is presented that allows a rapid and low-cost screening of DON-contaminated durum wheat bran samples, without using chemicals or product handling. Forty-two samples with DON contamination in the 40-1650 µg/kg range were considered. A chemometric processing of spectroscopic data allowed distinguishing of samples based on their DON content using a cut-off level set at 400 µg/kg DON. Although much lower than the EU limit of 750 µg/kg for wheat bran, this cut-off limit was considered useful whether accepting the sample as safe or implying further inspection by means of more accurate but also more expensive standard analytical techniques. Chemometric data processing using Principal Component Analysis and Quadratic Discriminant Analysis demonstrated a classification rate of 79% in cross-validation. To the best of our knowledge, this is the first time that a pocket-size fluorometer was used for DON screening of wheat bran.
Collapse
Affiliation(s)
- Leonardo Ciaccheri
- CNR—Istituto di Fisica Applicata “Nello Carrara” (IFAC), Via Madonna del Piano, 10, Sesto Fiorentino, 50019 Florence, Italy; (A.A.M.); (A.G.M.)
| | - Annalisa De Girolamo
- CNR—Istituto di Scienze delle Produzioni Alimentari (ISPA), Via G. Amendola, 122/O, 70126 Bari, Italy; (S.C.); (V.L.)
| | - Salvatore Cervellieri
- CNR—Istituto di Scienze delle Produzioni Alimentari (ISPA), Via G. Amendola, 122/O, 70126 Bari, Italy; (S.C.); (V.L.)
| | - Vincenzo Lippolis
- CNR—Istituto di Scienze delle Produzioni Alimentari (ISPA), Via G. Amendola, 122/O, 70126 Bari, Italy; (S.C.); (V.L.)
| | - Andrea Azelio Mencaglia
- CNR—Istituto di Fisica Applicata “Nello Carrara” (IFAC), Via Madonna del Piano, 10, Sesto Fiorentino, 50019 Florence, Italy; (A.A.M.); (A.G.M.)
| | - Michelangelo Pascale
- CNR—Istituto di Scienze dell’Alimentazione (ISA), Via Roma, 64, 83100 Avellino, Italy;
| | - Anna Grazia Mignani
- CNR—Istituto di Fisica Applicata “Nello Carrara” (IFAC), Via Madonna del Piano, 10, Sesto Fiorentino, 50019 Florence, Italy; (A.A.M.); (A.G.M.)
| |
Collapse
|
3
|
Wang J, Wang L, Zhang H, Mei X, Qiu L, Liu J, Zhou Y. Development of a time-resolved immunochromatographic strip for rapid and quantitative determination of deoxynivalenol. Front Vet Sci 2023; 10:1142820. [PMID: 37008353 PMCID: PMC10060663 DOI: 10.3389/fvets.2023.1142820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Deoxynivalenol (DON) contamination of food crops and feeds is almost impossible to avoid completely; however, through best management practices, this risk can be effectively managed and maximumly mitigated. Accurate and rapid detection of DON contamination as early in the entire value chain as possible is critical. To achieve this goal, we developed a DON test strip based on time-resolved fluorescence immunoassay (TRFIA) and a specific DON monoclonal antibody for the rapid quantification of DON in food crops and feeds. The strip displayed a good linearity (R2 = 0.9926), with a limit of quantification of 28.16 μg/kg, a wide linear range of 50 ~ 10,000 μg/kg. The intra-batch coefficient of variation (CV) and the inter-batch CV was <5.00 and 6.60%, respectively. This TRFIA-DON test strip was applied to detect DON in real samples, and the accuracy and reliability were confirmed by liquid chromatography-mass spectrometry (LC-MS/MS). Results showed that the relative standard deviation between the DON strips and LC-MS/MS was <9%. The recovery rates in corn samples ranged from 92 to 104%. The established TRFIA-DON test strip had the characteristics of high sensitivity, high accuracy, and a wide linear range which was suitable for rapid and quantitative determination of DON in food crops and feeds at both on-site and laboratory.
Collapse
Affiliation(s)
- Jingneng Wang
- Shanghai Xiongtu Biotechnology Co., Ltd., Shanghai, China
| | - Lihua Wang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Hui Zhang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xinglin Mei
- Shanghai Xiongtu Biotechnology Co., Ltd., Shanghai, China
| | - Liangzhu Qiu
- Shanghai Xiongtu Biotechnology Co., Ltd., Shanghai, China
| | - Jing Liu
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
- *Correspondence: Jing Liu
| | - Yongsong Zhou
- Shanghai Xiongtu Biotechnology Co., Ltd., Shanghai, China
- Yongsong Zhou
| |
Collapse
|
4
|
Femenias A, Fomina P, Tafintseva V, Freitag S, Shapaval V, Sulyok M, Zimmermann B, Marín S, Krska R, Kohler A, Mizaikoff B. Optimizing extraction solvents for deoxynivalenol analysis in maize via infrared attenuated total reflection spectroscopy and chemometric methods. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 15:36-47. [PMID: 36448527 DOI: 10.1039/d2ay00995a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Farmers, cereal suppliers and processors demand rapid techniques for the assessment of mould-associated contamination. Deoxynivalenol (DON) is among the most important Fusarium toxins and related to human and animal diseases besides causing significant economic losses. Routine analytical techniques for the analysis of DON are either based on chromatographic or immunoanalytical techniques, which are time-consuming and frequently rely on hazardous consumables. The present study evaluates the feasibility of infrared attenuated total reflection spectroscopy (IR-ATR) for the analysis of maize extracts via different solvents optimized for the determination of DON contamination along the regulatory requirements by the European Union (EU) for unprocessed maize (1750 μg kg-1). Reference analysis was done by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The studied maize samples were either naturally infected or had been artificially inoculated in the field with Fusarium graminearum, Fusarium culmorum or Fusarium verticillioides. Principal component analysis demonstrated that water and methanol-water (70 : 30% v) were optimum solvents for differentiating DON contamination levels. Supervised partial least squares discriminant analysis resulted in excellent classification accuracies of 86.7% and 90.8% for water and methanol-water extracts, respectively. The IR spectra of samples with fungal infection and high DON contamination had distinct spectral features, which could be related to carbohydrates, proteins and lipid content within the investigated extracts.
Collapse
Affiliation(s)
- Antoni Femenias
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio, Av. Rovira Roure, 191, 25198 Lleida, Spain
| | - Polina Fomina
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Valeria Tafintseva
- Faculty of Science and Technology, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Stephan Freitag
- University of Natural Resources and Life Sciences, Vienna, Austria
- Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Michael Sulyok
- University of Natural Resources and Life Sciences, Vienna, Austria
- Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Sonia Marín
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio, Av. Rovira Roure, 191, 25198 Lleida, Spain
| | - Rudolf Krska
- University of Natural Resources and Life Sciences, Vienna, Austria
- Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, University Road, Belfast, BT7 1NN, Northern Ireland, UK
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
- Hahn-Schickard, Sedanstrasse 14, 89077 Ulm, Germany
| |
Collapse
|
5
|
Freitag S, Sulyok M, Logan N, Elliott CT, Krska R. The potential and applicability of infrared spectroscopic methods for the rapid screening and routine analysis of mycotoxins in food crops. Compr Rev Food Sci Food Saf 2022; 21:5199-5224. [PMID: 36215130 DOI: 10.1111/1541-4337.13054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/18/2022] [Accepted: 09/06/2022] [Indexed: 01/28/2023]
Abstract
Infrared (IR) spectroscopy is increasingly being used to analyze food crops for quality and safety purposes in a rapid, nondestructive, and eco-friendly manner. The lack of sensitivity and the overlapping absorption characteristics of major sample matrix components, however, often prevent the direct determination of food contaminants at trace levels. By measuring fungal-induced matrix changes with near IR and mid IR spectroscopy as well as hyperspectral imaging, the indirect determination of mycotoxins in food crops has been realized. Recent studies underline that such IR spectroscopic platforms have great potential for the rapid analysis of mycotoxins along the food and feed supply chain. However, there are no published reports on the validation of IR methods according to official regulations, and those publications that demonstrate their applicability in a routine analytical set-up are scarce. Therefore, the purpose of this review is to discuss the current state-of-the-art and the potential of IR spectroscopic methods for the rapid determination of mycotoxins in food crops. The study critically reflects on the applicability and limitations of IR spectroscopy in routine analysis and provides guidance to non-spectroscopists from the food and feed sector considering implementation of IR spectroscopy for rapid mycotoxin screening. Finally, an outlook on trends, possible fields of applications, and different ways of implementation in the food and feed safety area are discussed.
Collapse
Affiliation(s)
- Stephan Freitag
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Tulln, Austria.,FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, Tulln, Austria
| | - Michael Sulyok
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Tulln, Austria.,FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, Tulln, Austria
| | - Natasha Logan
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, Northern Ireland, UK
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, Northern Ireland, UK
| | - Rudolf Krska
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Tulln, Austria.,FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, Tulln, Austria.,Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
6
|
Infrared Spectroscopy–Quo Vadis? APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Given the exquisite capability of direct, non-destructive label-free sensing of molecular transitions, IR spectroscopy has become a ubiquitous and versatile analytical tool. IR application scenarios range from industrial manufacturing processes, surveillance tasks and environmental monitoring to elaborate evaluation of (bio)medical samples. Given recent developments in associated fields, IR spectroscopic devices increasingly evolve into reliable and robust tools for quality control purposes, for rapid analysis within at-line, in-line or on-line processes, and even for bed-side monitoring of patient health indicators. With the opportunity to guide light at or within dedicated optical structures, remote sensing as well as high-throughput sensing scenarios are being addressed by appropriate IR methodologies. In the present focused article, selected perspectives on future directions for IR spectroscopic tools and their applications are discussed. These visions are accompanied by a short introduction to the historic development, current trends, and emerging technological opportunities guiding the future path IR spectroscopy may take. Highlighted state-of-the art implementations along with novel concepts enhancing the performance of IR sensors are presented together with cutting-edge developments in related fields that drive IR spectroscopy forward in its role as a versatile analytical technology with a bright past and an even brighter future.
Collapse
|
7
|
Mayerhöfer TG, Pahlow S, Popp J. Recent technological and scientific developments concerning the use of infrared spectroscopy for point-of-care applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119411. [PMID: 33450450 DOI: 10.1016/j.saa.2020.119411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
In this contribution we review selected point-of-care applications of infrared spectroscopy and the technological innovations they are based on. After a short introduction summarizing the general idea behind point-of-care applications we introduce the reader to important infrared spectroscopy sensing principles on a very basic level. We discuss the role of optical components like quantum cascade lasers, supercontinuum sources, waveguides and how they are potentially going to revolutionize point-of-care applications. First, we focus on the technological solutions of some principal problems like increasing the pathlength in a transmission cell to enhance the sensitivity for solutes in aqueous solutions and discuss indirect methods which circumvent the problem of low transmittance. In the second part we show how the technological progress of the last decades enabled scientific progress leading to selected concrete and outstanding point-of-care solutions and applications based on infrared spectroscopy. These include the detection and quantification of malaria parasitemia, early recognition of Alzheimer's disease long before the onset of clinical symptoms and a non-invasive method for testing the blood glucose content. The selected examples demonstrate and showcase that infrared spectroscopy is on the way to become an indispensable technique for point-of-care applications.
Collapse
Affiliation(s)
- Thomas G Mayerhöfer
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, D-07745 Jena, Germany; Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Jena, D-07743, Helmholtzweg 4, Germany
| | - Susanne Pahlow
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, D-07745 Jena, Germany; Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Jena, D-07743, Helmholtzweg 4, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, D-07745 Jena, Germany; Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Jena, D-07743, Helmholtzweg 4, Germany.
| |
Collapse
|
8
|
Kumari A, Joshua R, Kumar R, Ahlawat P, Sindhu SC. Fungal Mycotoxins: Occurrence and Detection. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Vasilikos I, Haas J, Teixeira GQ, Nothelfer J, Neidlinger-Wilke C, Wilke HJ, Seitz A, Vavvas DG, Zentner J, Beck J, Hubbe U, Mizaikoff B. Infrared attenuated total reflection spectroscopic surface analysis of bovine-tail intervertebral discs after UV-light-activated riboflavin-induced collagen cross-linking. JOURNAL OF BIOPHOTONICS 2020; 13:e202000110. [PMID: 32589779 DOI: 10.1002/jbio.202000110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/31/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
The tensile strength of the intervertebral disc (IVD) is mainly maintained by collagen cross-links. Loss of collagen cross-linking combined with other age-related degenerative processes contributes to tissue weakening, biomechanical failure, disc herniation and pain. Exogenous collagen cross-linking has been identified as an effective therapeutic approach for restoring IVD tensile strength. The current state-of-the-art method to assess the extent of collagen cross-linking in tissues requires destructive procedures and high-performance liquid chromatography. In this study, we investigated the utility of infrared attenuated total reflection (IR-ATR) spectroscopy as a nondestructive analytical strategy to rapidly evaluate the extent of UV-light-activated riboflavin (B2)-induced collagen cross-linking in bovine IVD samples. Thirty-five fresh bovine-tail IVD samples were equally divided into five treatment groups: (a) untreated, (b) cell culture medium Dulbecco's Modified Eagle's Medium only, (c) B2 only, (d) UV-light only and (e) UV-light-B2. A total of 674 measurements have been acquired, and were analyzed via partial least squares discriminant analysis. This classification scheme unambiguously identified individual classes with a sensitivity >91% and specificity >92%. The obtained results demonstrate that IR-ATR spectroscopy reliably differentiates between different treatment categories, and promises an excellent tool for potential in vivo, nondestructive and real-time assessment of exogenous IVD cross-linking.
Collapse
Affiliation(s)
- Ioannis Vasilikos
- Department of Neurosurgery, University Medical Center Freiburg, Faculty of Medicine University of Freiburg, Freiburg, Germany
| | - Julian Haas
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Graciosa Q Teixeira
- Institute of Orthopedic Research and Biomechanics, Centre for Trauma Research Ulm (ZTF Ulm), Ulm University, Ulm, Germany
| | - Julia Nothelfer
- Institute of Orthopedic Research and Biomechanics, Centre for Trauma Research Ulm (ZTF Ulm), Ulm University, Ulm, Germany
| | - Cornelia Neidlinger-Wilke
- Institute of Orthopedic Research and Biomechanics, Centre for Trauma Research Ulm (ZTF Ulm), Ulm University, Ulm, Germany
| | - Hans-Joachim Wilke
- Institute of Orthopedic Research and Biomechanics, Centre for Trauma Research Ulm (ZTF Ulm), Ulm University, Ulm, Germany
| | - Andreas Seitz
- Institute of Orthopedic Research and Biomechanics, Centre for Trauma Research Ulm (ZTF Ulm), Ulm University, Ulm, Germany
| | - Demetrios G Vavvas
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Josef Zentner
- Department of Neurosurgery, University Medical Center Freiburg, Faculty of Medicine University of Freiburg, Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, University Medical Center Freiburg, Faculty of Medicine University of Freiburg, Freiburg, Germany
| | - Ulrich Hubbe
- Department of Neurosurgery, University Medical Center Freiburg, Faculty of Medicine University of Freiburg, Freiburg, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| |
Collapse
|
10
|
Mittal V, Mashanovich GZ, Wilkinson JS. Perspective on Thin Film Waveguides for on-Chip Mid-Infrared Spectroscopy of Liquid Biochemical Analytes. Anal Chem 2020; 92:10891-10901. [PMID: 32658466 DOI: 10.1021/acs.analchem.0c01296] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Miniaturized spectrometers offering low cost, low reagent consumption, high throughput, sensitivity and automation are the future of sensing and have significant applications in environmental monitoring, food safety, biotechnology, pharmaceuticals, and healthcare. Midinfrared (MIR) spectroscopy employing complementary metal oxide semiconductor (CMOS) compatible thin film waveguides and microfluidics shows great promise toward highly integrated and robust detection tools and liquid handling. This perspective provides an overview of the emergence of thin film optical waveguides used for evanescent field sensing of liquid chemical and biological samples for MIR absorption spectroscopy. The state of the art of new material and waveguide systems used for spectroscopic measurements in the MIR is presented. An outlook on the advantages and future of waveguide-based MIR spectroscopy for application in clinical settings for point-of-care biochemical analysis is discussed.
Collapse
Affiliation(s)
- Vinita Mittal
- Zepler Institute for Photonics and Nanoelectronics, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Goran Z Mashanovich
- Zepler Institute for Photonics and Nanoelectronics, University of Southampton, Southampton, SO17 1BJ, United Kingdom.,School of Electrical Engineering, University of Belgrade, 11120 Belgrade, Serbia
| | - James S Wilkinson
- Zepler Institute for Photonics and Nanoelectronics, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
11
|
Yin H, Gao D, Qiu Y, Yi G, Li J, Dong Y, Zhang K, Xia Z, Fu Q. Carbon source self-heating: ultrafast, energy-efficient and room temperature synthesis of highly fluorescent N, S-codoped carbon dots for quantitative detection of Fe(iii) ions in biological samples. NANOSCALE ADVANCES 2020; 2:1483-1492. [PMID: 36132331 PMCID: PMC9419051 DOI: 10.1039/c9na00806c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/22/2020] [Indexed: 06/15/2023]
Abstract
In recent years, photoluminescent (PL) carbon dots (CDs) have attracted enormous attention because of their many fascinating properties. However, the traditional synthesis routes of PL CDs usually suffer from relatively low quantum yields (QYs) and require complicated operation processes as well as lots of externally supplied energy. Herein, we report a room temperature, green, ultrafast and energy-efficient route for large scale synthesis of highly PL N, S-codoped CDs without any external energy supply. The N, S-codoped CDs are prepared through a novel carbon source self-heating strategy, using the sole precursor tetraethylenepentamine (TEPA) simultaneously as the carbon, nitrogen and heat source, triggered by the heat initiator sodium persulfate (Na2S2O8). The large amount of heat released from Na2S2O8-triggered oxidation of TEPA could effectively promote the spontaneous polymerization and carbonization of TEPA precursors themselves as well as the in situ co-doping of sulfur, which had marked synergistic effects on the fluorescence enhancement of CDs, eventually leading to the high-yield (58.0%) preparation of highly fluorescent N, S-codoped CDs (QY 26.4%) at room temperature within 2 min. Moreover, the fluorescence of N, S-codoped CDs could be selectively quenched by Fe3+ ions in the presence of EDTA, in an ultra-wide range of 0.2-600 μM, with a detection limit of 0.10 μM. Ultimately, the fluorescent nanoprobe was successfully used for the quantitative detection of Fe3+ in human serum samples, indicating its great potential for sensing and biomedical applications.
Collapse
Affiliation(s)
- Honggang Yin
- School of Pharmacy, Southwest Medical University Luzhou Sichuan 646000 China
| | - Die Gao
- School of Pharmacy, Southwest Medical University Luzhou Sichuan 646000 China
| | - Yan Qiu
- School of Pharmacy, Southwest Medical University Luzhou Sichuan 646000 China
| | - Gaoyi Yi
- School of Pharmacy, Southwest Medical University Luzhou Sichuan 646000 China
| | - Jun Li
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University Chongqing 400030 China
| | - Yingying Dong
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University Chongqing 400030 China
| | - Kailian Zhang
- School of Pharmacy, Southwest Medical University Luzhou Sichuan 646000 China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 China
| | - Qifeng Fu
- School of Pharmacy, Southwest Medical University Luzhou Sichuan 646000 China
| |
Collapse
|
12
|
Haas J, Stach R, Kolm C, Krska R, Mizaikoff B. Gallium arsenide waveguides as a platform for direct mid-infrared vibrational spectroscopy. Anal Bioanal Chem 2020; 412:3447-3456. [PMID: 32236656 PMCID: PMC7214513 DOI: 10.1007/s00216-020-02546-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/16/2020] [Accepted: 02/24/2020] [Indexed: 01/20/2023]
Abstract
During recent years, mid-infrared (MIR) spectroscopy has matured into a versatile and powerful sensing tool for a wide variety of analytical sensing tasks. Attenuated total reflection (ATR) techniques have gained increased interest due to their potential to perform non-destructive sensing tasks close to real time. In ATR, the essential component is the sampling interface, i.e., the ATR waveguide and its material properties interfacing the sample with the evanescent field ensuring efficient photon-molecule interaction. Gallium arsenide (GaAs) is a versatile alternative material vs. commonly used ATR waveguide materials including but not limited to silicon, zinc selenide, and diamond. GaAs-based internal reflection elements (IREs) are a new generation of semiconductor-based waveguides and are herein used for the first time in direct spectroscopic applications combined with conventional Fourier transform infrared (FT-IR) spectroscopy. Next to the characterization of the ATR waveguide, exemplary surface reactions were monitored, and trace-level analyte detection via signal amplification taking advantage of surface-enhanced infrared absorption (SEIRA) effects was demonstrated. As an example of real-world relevance, the mycotoxin aflatoxin B1 (AFB1) was used as a model analyte in food and feed safety analysis. Graphical abstract ![]()
Collapse
Affiliation(s)
- Julian Haas
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Robert Stach
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Claudia Kolm
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, 3430, Tulln, Austria
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, 3430, Tulln, Austria.,Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, University Road, Belfast, Northern Ireland, BT7 1NN, UK
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
13
|
A new approach for IR spectra matching using normalized local change. Anal Chim Acta 2019; 1103:49-57. [PMID: 32081188 DOI: 10.1016/j.aca.2019.12.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/07/2019] [Accepted: 12/18/2019] [Indexed: 11/21/2022]
Abstract
Spectra matching is widely used in various applications including the search for a spectrum of an unknown compound in an existing spectral database and quality control by means of comparing the spectra of products with standards. In this article, we present a new approach for calculating the similarities of Fourier-transform infrared (FTIR) spectra of organic compounds. Our method, named normalized local change (NLC) approach, incrementally calculates the spectral similarity based on the local spectral shapes. This allows for reducing the bias on the uneven weighing of large and/or broader peaks. In addition, the NLC approach is tolerant to the common issues in spectra matching including baseline offset, baseline sloping, and deviations in wavenumber axis alignment, suggesting its robustness and practical applicability. Performance evaluation confirmed that our NLC approach outperforms commonly used approaches for identifying FTIR spectra of an identical compound in a given dataset.
Collapse
|
14
|
Pedroso Pereira LT, Putnik P, Tadashi Iwase CH, de Oliveira Rocha L. Deoxynivalenol: insights on genetics, analytical methods and occurrence. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Kim JS, Nam H, Kim HJ, Lee JH, Park BH. Real-Time Measurement of Ammonia (NH 3) in Artillery Smoke Using a Passive FT-IR Remote Sensor. ACS OMEGA 2019; 4:16768-16773. [PMID: 31646221 PMCID: PMC6796882 DOI: 10.1021/acsomega.9b01305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/19/2019] [Indexed: 05/14/2023]
Abstract
Early alerts for avoiding exposure to toxic chemical threats are critical applications of sensors to protect both military troops and civilian populations. Among the various sensing techniques developed, the passive Fourier transform-infrared (FT-IR) spectroscopy method has been demonstrated to work well as a remote (kilometer-scale) sensor for such early-alert systems. The passive type FT-IR detector is capable of mobile detection of toxic gas clouds because of its small-scale interferometer and optical instruments. In this article, real-time FT-IR measurements of ammonia (NH3) in 76 mm artillery smoke are reported using a commercial remote sensor and scored by a real-time analysis conducted using a custom algorithm based on the generalized likelihood ratio test (GLRT). Using these methods, we measured the real-time change in the ammonia spectrum and GLRT scores against concrete and forest backgrounds following artillery propellant detonation. We confirmed that the GLRT score characteristics depend on the background and found that the effect of rapid heat transfer from the propellant detonation to the ammonia was detected in the accumulated ammonia FT-IR spectra.
Collapse
|
16
|
Eskola M, Kos G, Elliott CT, Hajšlová J, Mayar S, Krska R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit Rev Food Sci Nutr 2019; 60:2773-2789. [DOI: 10.1080/10408398.2019.1658570] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Mari Eskola
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - Gregor Kos
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada
| | - Christopher T. Elliott
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, Northern Ireland, UK
| | - Jana Hajšlová
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague 6, Czech Republic
| | - Sultan Mayar
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
17
|
Haas J, Artmann P, Mizaikoff B. Mid-infrared GaAs/AlGaAs micro-ring resonators characterized via thermal tuning. RSC Adv 2019; 9:8594-8599. [PMID: 35518680 PMCID: PMC9061883 DOI: 10.1039/c8ra10395j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/05/2019] [Indexed: 11/21/2022] Open
Abstract
Micro-ring resonators with a decoupling waveguide have been fabricated from thin-film GaAs/Al0.2Ga0.8As waveguides accommodating mid-infrared wavelengths, and were characterized in detail via thermal tuning.
Collapse
Affiliation(s)
- Julian Haas
- Institute of Analytical and Bioanalytical Chemistry
- Ulm University
- D-89081 Ulm
- Germany
| | - Philipp Artmann
- Institute of Analytical and Bioanalytical Chemistry
- Ulm University
- D-89081 Ulm
- Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry
- Ulm University
- D-89081 Ulm
- Germany
| |
Collapse
|
18
|
Haas J, Catalán EV, Piron P, Nikolajeff F, Österlund L, Karlsson M, Mizaikoff B. Polycrystalline Diamond Thin-Film Waveguides for Mid-Infrared Evanescent Field Sensors. ACS OMEGA 2018; 3:6190-6198. [PMID: 31458801 PMCID: PMC6644763 DOI: 10.1021/acsomega.8b00623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/22/2018] [Indexed: 05/17/2023]
Abstract
Photonic design and optimization of thin-film polycrystalline diamond waveguides are shown, serving as advanced evanescent field transducers in the mid-infrared fingerprint regime (2000-909 cm-1; 5-11 μm). Design constraints inherent to optical/system considerations and the material were implemented in a finite element method (FEM)-based simulation method that allowed three-dimensional modeling of the overall structure. Thus, lateral mode confinement, attenuation in the direction of radiation propagation, and physical resilience were evaluated. In a final step, the designed structures were fabricated, and their utility in combination with a broadly tunable external cavity quantum cascade laser for chemical sensing of a liquid phase analyte was demonstrated.
Collapse
Affiliation(s)
- Julian Haas
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Department
of Engineering Sciences, Uppsala University, Box 534, SE-75121 Uppsala, Sweden
| | - Ernesto Vargas Catalán
- Department
of Engineering Sciences, Uppsala University, Box 534, SE-75121 Uppsala, Sweden
| | - Pierre Piron
- Department
of Engineering Sciences, Uppsala University, Box 534, SE-75121 Uppsala, Sweden
| | - Fredrik Nikolajeff
- Department
of Engineering Sciences, Uppsala University, Box 534, SE-75121 Uppsala, Sweden
- Molecular
Fingerprint Sweden AB, Eksätravägen 130, SE-756
55 Uppsala, Sweden
| | - Lars Österlund
- Department
of Engineering Sciences, Uppsala University, Box 534, SE-75121 Uppsala, Sweden
- Molecular
Fingerprint Sweden AB, Eksätravägen 130, SE-756
55 Uppsala, Sweden
| | - Mikael Karlsson
- Department
of Engineering Sciences, Uppsala University, Box 534, SE-75121 Uppsala, Sweden
- Molecular
Fingerprint Sweden AB, Eksätravägen 130, SE-756
55 Uppsala, Sweden
- E-mail: (M.K.)
| | - Boris Mizaikoff
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- E-mail: (B.M.)
| |
Collapse
|
19
|
Wu Q, Xie L, Xu H. Determination of toxigenic fungi and aflatoxins in nuts and dried fruits using imaging and spectroscopic techniques. Food Chem 2018; 252:228-242. [DOI: 10.1016/j.foodchem.2018.01.076] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/06/2017] [Accepted: 01/09/2018] [Indexed: 12/29/2022]
|
20
|
Soares RRG, Santos DR, Pinto IF, Azevedo AM, Aires-Barros MR, Chu V, Conde JP. Multiplexed microfluidic fluorescence immunoassay with photodiode array signal acquisition for sub-minute and point-of-need detection of mycotoxins. LAB ON A CHIP 2018; 18:1569-1580. [PMID: 29736505 DOI: 10.1039/c8lc00259b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Portable, rapid, cost effective and simple analytical tools are in increasing demand to facilitate the routine monitoring of target chemical/biological compounds at the point-of-need. Such devices are highly relevant within the context of food safety, particularly concerning the screening of highly toxic and strictly regulated mycotoxins. To achieve ultrarapid detection of mycotoxins, namely aflatoxin B1, ochratoxin A and deoxynivalenol, at the point-of-need, a novel multiplexed bead-based microfluidic competitive immunosensor, coupled with an array of a-Si:H thin-film photodiodes for integrated fluorescence signal acquisition, is reported. Simultaneously measuring the initial binding rate for each analyte of the sample under analysis against an internal reference, this device provided limits of detection below 1 ng mL-1 for all mycotoxins in a single-step assay and within 1 minute after mixing the sample under analysis with a fluorescent conjugate. The compatibility of the device with the analysis of mycotoxins spiked in corn samples was further demonstrated after performing a sample preparation procedure based on aqueous two-phase extraction. The short times of analysis and sensitivities in the low ng mL-1 range make these devices potentially competitive with the lateral flow devices that are currently the standard for this application. Furthermore, this device architecture and concept is amenable of being expanded to other analytes in food safety, biomedical and other applications.
Collapse
Affiliation(s)
- Ruben R G Soares
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal.
| | | | | | | | | | | | | |
Collapse
|
21
|
Berthiller F, Cramer B, Iha M, Krska R, Lattanzio V, MacDonald S, Malone R, Maragos C, Solfrizzo M, Stranska-Zachariasova M, Stroka J, Tittlemier S. Developments in mycotoxin analysis: an update for 2016-2017. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2250] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This review summarises developments in the determination of mycotoxins over a period between mid-2016 and mid-2017. Analytical methods to determine aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxins, patulin, trichothecenes and zearalenone are covered in individual sections. Advances in proper sampling strategies are discussed in a dedicated section, as are methods used to analyse botanicals and spices and newly developed LC-MS based multi-mycotoxin methods. This critical review aims to briefly discuss the most important recent developments and trends in mycotoxin determination as well as to address limitations of the presented methodologies.
Collapse
Affiliation(s)
- F. Berthiller
- Department of Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - B. Cramer
- Institute of Food Chemistry, University of Münster, Corrensstr. 45, 48149 Münster, Germany
| | - M.H. Iha
- Nucleous of Chemistry and Bromatology Science, Adolfo Lutz Institute of Ribeirão Preto, Rua Minas 866, CEP 14085-410, Ribeirão Preto, SP, Brazil
| | - R. Krska
- Department of Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - V.M.T. Lattanzio
- National Research Council of Italy, Institute of Sciences of Food Production, via amendola 122/O, 70126 Bari, Italy
| | - S. MacDonald
- Department of Contaminants and Authenticity, Fera Science Ltd., Sand Hutton, York YO41 1LZ, United Kingdom
| | - R.J. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Dr, Washington, MO 63090, USA
| | - C. Maragos
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA, ARS National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604, USA
| | - M. Solfrizzo
- National Research Council of Italy, Institute of Sciences of Food Production, via amendola 122/O, 70126 Bari, Italy
| | - M. Stranska-Zachariasova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 – Dejvice, Czech Republic
| | - J. Stroka
- European Commission, Joint Research Centre, Retieseweg 111, 2440 Geel, Belgium
| | - S.A. Tittlemier
- Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main Street, Winnipeg, MB R3C 3G8, Canada
| |
Collapse
|
22
|
Levasseur-Garcia C. Updated Overview of Infrared Spectroscopy Methods for Detecting Mycotoxins on Cereals (Corn, Wheat, and Barley). Toxins (Basel) 2018; 10:E38. [PMID: 29320435 PMCID: PMC5793125 DOI: 10.3390/toxins10010038] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 12/03/2022] Open
Abstract
Each year, mycotoxins cause economic losses of several billion US dollars worldwide. Consequently, methods must be developed, for producers and cereal manufacturers, to detect these toxins and to comply with regulations. Chromatographic reference methods are time consuming and costly. Thus, alternative methods such as infrared spectroscopy are being increasingly developed to provide simple, rapid, and nondestructive methods to detect mycotoxins. This article reviews research conducted over the last eight years into the use of near-infrared and mid-infrared spectroscopy to monitor mycotoxins in corn, wheat, and barley. More specifically, we focus on the Fusarium species and on the main fusariotoxins of deoxynivalenol, zearalenone, and fumonisin B1 and B2. Quantification models are insufficiently precise to satisfy the legal requirements. Sorting models with cutoff levels are the most promising applications.
Collapse
|
23
|
Soares RRG, Ricelli A, Fanelli C, Caputo D, de Cesare G, Chu V, Aires-Barros MR, Conde JP. Advances, challenges and opportunities for point-of-need screening of mycotoxins in foods and feeds. Analyst 2018; 143:1015-1035. [DOI: 10.1039/c7an01762f] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recent advances in analytical methods for mycotoxin screening in foods and feeds are reviewed, focusing on point-of-need detection using integrated devices.
Collapse
Affiliation(s)
- Ruben R. G. Soares
- Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC MN) and IN – Institute of Nanoscience and Nanotechnology
- Portugal
- IBB – Institute for Bioengineering and Biosciences
- Instituto Superior Técnico
- Universidade de Lisboa
| | | | - Corrado Fanelli
- Department of Environmental Biology
- University of Rome “La Sapienza”
- Rome
- Italy
| | - Domenico Caputo
- Department of Information Engineering
- Electronics and Telecommunications
- University of Rome “La Sapienza”
- Rome
- Italy
| | - Giampiero de Cesare
- Department of Information Engineering
- Electronics and Telecommunications
- University of Rome “La Sapienza”
- Rome
- Italy
| | - Virginia Chu
- Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC MN) and IN – Institute of Nanoscience and Nanotechnology
- Portugal
| | - M. Raquel Aires-Barros
- IBB – Institute for Bioengineering and Biosciences
- Instituto Superior Técnico
- Universidade de Lisboa
- Lisbon
- Portugal
| | - João P. Conde
- Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC MN) and IN – Institute of Nanoscience and Nanotechnology
- Portugal
- Department of Bioengineering
- Instituto Superior Técnico
- Universidade de Lisboa
| |
Collapse
|
24
|
Alshannaq A, Yu JH. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E632. [PMID: 28608841 PMCID: PMC5486318 DOI: 10.3390/ijerph14060632] [Citation(s) in RCA: 613] [Impact Index Per Article: 87.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 11/16/2022]
Abstract
Mycotoxins are toxic secondary metabolites produced by certain filamentous fungi (molds). These low molecular weight compounds (usually less than 1000 Daltons) are naturally occurring and practically unavoidable. They can enter our food chain either directly from plant-based food components contaminated with mycotoxins or by indirect contamination from the growth of toxigenic fungi on food. Mycotoxins can accumulate in maturing corn, cereals, soybeans, sorghum, peanuts, and other food and feed crops in the field and in grain during transportation. Consumption of mycotoxin-contaminated food or feed can cause acute or chronic toxicity in human and animals. In addition to concerns over adverse effects from direct consumption of mycotoxin-contaminated foods and feeds, there is also public health concern over the potential ingestion of animal-derived food products, such as meat, milk, or eggs, containing residues or metabolites of mycotoxins. Members of three fungal genera, Aspergillus, Fusarium, and Penicillium, are the major mycotoxin producers. While over 300 mycotoxins have been identified, six (aflatoxins, trichothecenes, zearalenone, fumonisins, ochratoxins, and patulin) are regularly found in food, posing unpredictable and ongoing food safety problems worldwide. This review summarizes the toxicity of the six mycotoxins, foods commonly contaminated by one or more of them, and the current methods for detection and analysis of these mycotoxins.
Collapse
Affiliation(s)
- Ahmad Alshannaq
- Department of Food Science, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA.
- Food Research Institute, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA.
| | - Jae-Hyuk Yu
- Food Research Institute, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA.
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|