1
|
Ebrahimzadegan R, Mirzaghaderi G. Variations in the composition and frequency of celiac disease epitopes among synthetic wheat lines. FRONTIERS IN PLANT SCIENCE 2025; 15:1517821. [PMID: 39931335 PMCID: PMC11807966 DOI: 10.3389/fpls.2024.1517821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/31/2024] [Indexed: 02/13/2025]
Abstract
Bread wheat serves as an important staple crop in the human diet, largely because of the physicochemical properties of its dough and its protein content. Gluten is the main and complex component of wheat proteins. Despite the significant importance in breadmaking properties, wheat gluten contains some immunogenic peptides capable of triggering a T cell reaction in celiac disease (CD) patients, leading to inflammation in the small intestine. Among gluten proteins, α-gliadins are the most immunogenic components because they possess the primary T-cell stimulating epitopes (DQ2.5-Glia-α1, DQ2.5-Glia-α2, and DQ2.5-Glia-α3), which are primarily located on the D subgenome. Developing new wheat varieties by integrating the D subgenome from various sources is not only useful for introducing low immunogenic gluten, but it can also circumvent the challenging policies arising from the manipulation of wheat genome through transgenic approaches. Here, we performed RNA amplicon sequencing of the most toxic region of alpha-gliadins to analyze the content and composition of CD-related alpha-gliadin epitopes across eight synthetic wheat lines developed from crosses between durum wheat and different Aegilops species containing the D-genome (Ae. tauschii, Ae. crassa, and Ae. ventricosa). By searching the previously identified 121 epitopes and those with one mismatch in our amplicons, we found 54 different α-gliadins epitopes across our genotypes, four of which were new variants. The canonical epitopes were present in all lines, although their expression patterns varied. The occurrence of DQ2.5-Glia-α1a and DQ2.5-Glia-α3 was higher than that of DQ2.5-Glia-α2 and DQ2.5-Glia-α1b across all genotypes. Since a higher quantity of toxic alpha-gliadin epitopes is associated with increased immunogenicity in individuals susceptible to celiac disease, we measured the frequency of the most toxic alpha-gliadin epitopes among different synthetic lines to estimate the overall immunogenic load of our lines. Generally, the immunogenic load of lines with the D-genome originating from Ae. crassa was much lower than those with the D-genome from Ae. tauschii. In this way, the Ae. tauschii derived lines 5 and 6 contained higher levels of toxic alpha-gliadin epitopes, while lines 3, 4, and 7 (derived from Ae. crassa) contained the lowest levels of toxic peptides. We conclude that replacing the bread wheat D-genome with that of the Ae. crassa may help lower the gluten immunogenicity in the deriving synthetic wheat lines.
Collapse
Affiliation(s)
- Rahman Ebrahimzadegan
- Department of Plant Production and Genetics, Faculty of Agriculture, University of
Kurdistan, Sanandaj, Iran
| | - Ghader Mirzaghaderi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of
Kurdistan, Sanandaj, Iran
| |
Collapse
|
2
|
Zhang Z, Liu D, Li B, Wang W, Zhang J, Xin M, Hu Z, Liu J, Du J, Peng H, Hao C, Zhang X, Ni Z, Sun Q, Guo W, Yao Y. A k-mer-based pangenome approach for cataloging seed-storage-protein genes in wheat to facilitate genotype-to-phenotype prediction and improvement of end-use quality. MOLECULAR PLANT 2024; 17:1038-1053. [PMID: 38796709 DOI: 10.1016/j.molp.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/06/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024]
Abstract
Wheat is a staple food for more than 35% of the world's population, with wheat flour used to make hundreds of baked goods. Superior end-use quality is a major breeding target; however, improving it is especially time-consuming and expensive. Furthermore, genes encoding seed-storage proteins (SSPs) form multi-gene families and are repetitive, with gaps commonplace in several genome assemblies. To overcome these barriers and efficiently identify superior wheat SSP alleles, we developed "PanSK" (Pan-SSP k-mer) for genotype-to-phenotype prediction based on an SSP-based pangenome resource. PanSK uses 29-mer sequences that represent each SSP gene at the pangenomic level to reveal untapped diversity across landraces and modern cultivars. Genome-wide association studies with k-mers identified 23 SSP genes associated with end-use quality that represent novel targets for improvement. We evaluated the effect of rye secalin genes on end-use quality and found that removal of ω-secalins from 1BL/1RS wheat translocation lines is associated with enhanced end-use quality. Finally, using machine-learning-based prediction inspired by PanSK, we predicted the quality phenotypes with high accuracy from genotypes alone. This study provides an effective approach for genome design based on SSP genes, enabling the breeding of wheat varieties with superior processing capabilities and improved end-use quality.
Collapse
Affiliation(s)
- Zhaoheng Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Dan Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Binyong Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Wenxi Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jize Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jinkun Du
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Liu D, Yang H, Zhang Z, Chen Q, Guo W, Rossi V, Xin M, Du J, Hu Z, Liu J, Peng H, Ni Z, Sun Q, Yao Y. An elite γ-gliadin allele improves end-use quality in wheat. THE NEW PHYTOLOGIST 2023; 239:87-101. [PMID: 36617723 DOI: 10.1111/nph.18722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 06/02/2023]
Abstract
Gluten is composed of glutenins and gliadins and determines the viscoelastic properties of dough and end-use quality in wheat (Triticum aestivum L.). Gliadins are important for wheat end-use traits, but the contribution of individual gliadin genes is unclear, since gliadins are encoded by a complex, multigenic family, including many pseudogenes. We used CRISPR/Cas9-mediated gene editing and map-based cloning to investigate the contribution of the γ-gliadin genes annotated in the wheat cultivar 'Fielder', showing that Gli-γ1-1D and Gli-γ2-1B account for most of the γ-gliadin accumulation. The impaired activity of only two γ-gliadin genes in knockout mutants improved end-use quality and reduced gluten epitopes associated with celiac disease (CD). Furthermore, we identified an elite haplotype of Gli-γ1-1D linked to higher end-use quality in a wheat germplasm collection and developed a molecular marker for this allele for marker-assisted selection. Our findings provide information and tools for biotechnology-based and classical breeding programs aimed at improving wheat end-use quality.
Collapse
Affiliation(s)
- Dan Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huaimao Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaoheng Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qian Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Vincenzo Rossi
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, I-24126, Bergamo, Italy
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jinkun Du
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
4
|
Bu Z, Fang G, Yu H, Kong D, Huo Y, Ma X, Chong H, Guan X, Liu D, Fan K, Yan M, Ma W, Chen J. Quality and Agronomic Trait Analyses of Pyramids Composed of Wheat Genes NGli-D2, Sec-1s and 1Dx5+1Dy10. Int J Mol Sci 2023; 24:ijms24119253. [PMID: 37298204 DOI: 10.3390/ijms24119253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Due to rising living standards, it is important to improve wheat's quality traits by adjusting its storage protein genes. The introduction or locus deletion of high molecular weight subunits could provide new options for improving wheat quality and food safety. In this study, digenic and trigenic wheat lines were identified, in which the 1Dx5+1Dy10 subunit, and NGli-D2 and Sec-1s genes were successfully polymerized to determine the role of gene pyramiding in wheat quality. In addition, the effects of ω-rye alkaloids during 1BL/1RS translocation on quality were eliminated by introducing and utilizing 1Dx5+1Dy10 subunits through gene pyramiding. Additionally, the content of alcohol-soluble proteins was reduced, the Glu/Gli ratio was increased and high-quality wheat lines were obtained. The sedimentation values and mixograph parameters of the gene pyramids under different genetic backgrounds were significantly increased. Among all the pyramids, the trigenic lines in Zhengmai 7698, which was the genetic background, had the highest sedimentation value. The mixograph parameters of the midline peak time (MPT), midline peak value (MPV), midline peak width (MPW), curve tail value (CTV), curve tail width (CTW), midline value at 8 min (MTxV), midline width at 8 min (MTxW) and midline integral at 8 min (MTxI) of the gene pyramids were markedly enhanced, especially in the trigenic lines. Therefore, the pyramiding processes of the 1Dx5+1Dy10, Sec-1S and NGli-D2 genes improved dough elasticity. The overall protein composition of the modified gene pyramids was better than that of the wild type. The Glu/Gli ratios of the type I digenic line and trigenic lines containing the NGli-D2 locus were higher than that of the type II digenic line without the NGli-D2 locus. The trigenic lines with Hengguan 35 as the genetic background had the highest Glu/Gli ratio among the specimens. The unextractable polymeric protein (UPP%) and Glu/Gli ratios of the type II digenic line and trigenic lines were significantly higher than those of the wild type. The UPP% of the type II digenic line was higher than that of the trigenic lines, while the Glu/Gli ratio was slightly lower than that of the trigenic lines. In addition, the celiac disease (CD) epitopes' level of the gene pyramids significantly decreased. The strategy and information reported in this study could be very useful for improving wheat processing quality and reducing wheat CD epitopes.
Collapse
Affiliation(s)
- Zhimu Bu
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Gongyan Fang
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Haixia Yu
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Dewei Kong
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Yanbing Huo
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Xinyu Ma
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Hui Chong
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Xin Guan
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Daxin Liu
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Kexin Fan
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Min Yan
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Chengyang District, Qingdao 266109, China
| | - Jiansheng Chen
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
5
|
Marín-Sanz M, Barro F, Sánchez-León S. Unraveling the celiac disease-related immunogenic complexes in a set of wheat and tritordeum genotypes: implications for low-gluten precision breeding in cereal crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1171882. [PMID: 37251754 PMCID: PMC10210591 DOI: 10.3389/fpls.2023.1171882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/06/2023] [Indexed: 05/31/2023]
Abstract
The development of low-gluten immunogenic cereal varieties is a suitable way to fight the increment of pathologies associated with the consumption of cereals. Although RNAi and CRISPR/Cas technologies were effective in providing low-gluten wheat, the regulatory framework, particularly in the European Union, is an obstacle to the short- or medium-term implementation of such lines. In the present work, we carried out a high throughput amplicon sequencing of two highly immunogenic complexes of wheat gliadins in a set of bread and durum wheat, and tritordeum genotypes. Bread wheat genotypes harboring the 1BL/1RS translocation were included in the analysis and their amplicons successfully identified. The number of CD epitopes and their abundances were determined in the alpha- and gamma-gliadin amplicons, including 40k-γ-secalin ones. Bread wheat genotypes not containing the 1BL/1RS translocation showed a higher average number of both alpha- and gamma-gliadin epitopes than those containing such translocation. Interestingly, alpha-gliadin amplicons not containing CD epitopes accounted for the highest abundance (around 53%), and the alpha- and gamma-gliadin amplicons with the highest number of epitopes were present in the D-subgenome. The durum wheat and tritordeum genotypes showed the lowest number of alpha- and gamma-gliadin CD epitopes. Our results allow progress in unraveling the immunogenic complexes of alpha- and gamma-gliadins and can contribute to the development of low-immunogenic varieties within precision breeding programs, by crossing or by CRISPR/Cas gene editing.
Collapse
|
6
|
Kim S, Sim JR, Gu YQ, Altenbach SB, Denery-Papini S, Pineau F, Tranquet O, Yang YJ, Park EJ, Lim SH, Kang CS, Choi C, Lee JY. Toward reducing the immunogenic potential of wheat flour: identification and characterization of wheat lines missing omega-5 gliadins encoded by the 1D chromosome. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:33. [PMID: 36897507 DOI: 10.1007/s00122-023-04295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/18/2022] [Indexed: 06/18/2023]
Abstract
Eleven wheat lines that are missing genes for the 1D-encoded omega-5 gliadins will facilitate breeding efforts to reduce the immunogenic potential of wheat flour for patients susceptible to wheat allergy. Efforts to reduce the levels of allergens in wheat flour that cause wheat-dependent exercise-induced anaphylaxis are complicated by the presence of genes encoding omega-5 gliadins on both chromosomes 1B and 1D of hexaploid wheat. In this study, we screened 665 wheat germplasm samples using gene specific DNA markers for omega-5 gliadins encoded by the genes on 1D chromosome that were obtained from the reference wheat Chinese Spring. Eleven wheat lines missing the PCR product corresponding to 1D omega-5 gliadin gene sequences were identified. Two of the lines contained the 1BL·1RS translocation. Relative quantification of gene copy numbers by qPCR revealed that copy numbers of 1D omega-5 gliadins in the other nine lines were comparable to those in 1D null lines of Chinese Spring, while copy numbers of 1B omega-5 gliadins were like those of Chinese Spring. 2-D immunoblot analysis of total flour proteins from the selected lines using a specific monoclonal antibody against the N-terminal sequence of omega-5 gliadin showed no reactivity in regions of the blots containing previously identified 1D omega-5 gliadins. Interestingly, RP-UPLC analysis of the gliadin fractions of the selected lines indicated that the expression of omega-1,2 gliadins was also significantly reduced in seven of the lines, implying that 1D omega-5 gliadin and 1D omega-1,2 gliadin genes are tightly linked on the Gli-D1 loci of chromosome 1D. Wheat lines missing the omega-5 gliadins encoded by the genes on 1D chromosome should be useful in future breeding efforts to reduce the immunogenic potential of wheat flour.
Collapse
Affiliation(s)
- Sewon Kim
- National Institute of Agricultural Sciences, RDA, Jeonju, 54874, South Korea
| | - Jae-Ryeong Sim
- National Institute of Agricultural Sciences, RDA, Jeonju, 54874, South Korea
| | - Yong Q Gu
- USDA-ARS Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Susan B Altenbach
- USDA-ARS Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Sandra Denery-Papini
- UR1268 Biopolymers, Interactions, Assemblies, INRAE, Rue de la Géraudière, 44316, Nantes, France
| | - Florence Pineau
- UR1268 Biopolymers, Interactions, Assemblies, INRAE, Rue de la Géraudière, 44316, Nantes, France
| | - Olivier Tranquet
- UR1268 Biopolymers, Interactions, Assemblies, INRAE, Rue de la Géraudière, 44316, Nantes, France
| | - Yu-Jeong Yang
- National Institute of Agricultural Sciences, RDA, Jeonju, 54874, South Korea
| | - Eun Ji Park
- National Institute of Agricultural Sciences, RDA, Jeonju, 54874, South Korea
| | - Sun-Hyung Lim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong, 17579, South Korea
| | - Chon-Sik Kang
- National Institute of Crop Science, RDA, Wanju, 55365, South Korea
| | - Changhyun Choi
- National Institute of Crop Science, RDA, Wanju, 55365, South Korea
| | - Jong-Yeol Lee
- National Institute of Agricultural Sciences, RDA, Jeonju, 54874, South Korea.
| |
Collapse
|
7
|
Ren J, Jiang Z, Li W, Kang X, Bai S, Yang L, Li S, Zhang D. Characterization of Glutenin Genes in Bread Wheat by Third-Generation RNA Sequencing and the Development of a Glu-1Dx5 Marker Specific for the Extra Cysteine Residue. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7211-7219. [PMID: 35666675 DOI: 10.1021/acs.jafc.2c02050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-molecular-weight glutenin subunits (HMW-GS) and low-molecular-weight glutenin subunits (LMW-GS) in a mature grain play important roles in the formation of a glutenin macropolymer and gluten quality. To characterize the expressed glutenin genes of the bread wheat variety Xinmai 26 during seed development, a total of 18 full-length transcripts were obtained by the newly emerged third-generation RNA sequencing of the PacBio Sequel II platform, including 5 transcripts of HMW-GS genes and 13 transcripts of LMW-GS genes (8 intact genes and 5 pseudogenes). Combined with the patterns of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), allelic types of the obtained glutenin genes were, respectively, determined, wherein molecular characterization deduced by transcript1528 (1Dx5) and transcript907 (Glu-A3c) indicated their great influence on dough quality. In addition, a specific functional marker dCAPS5 was developed for the single-nucleotide substitution at position 353 of the 1Dx5 subunit, which was further intensively compared with the other proposed markers to efficiently utilize the 1Dx5 subunit with the extra cysteine residue. This study provides an efficient method to accurately identify and utilize glutenin genes in bread wheat, which is helpful in understanding the contributions of glutenin genes to wheat quality.
Collapse
Affiliation(s)
- Jiajia Ren
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, College of Agriculture, Henan University, Kaifeng 475001, China
| | - Zhikai Jiang
- Xinxiang Academy of Agricultural Sciences, Xinxiang 453003, China
| | - Wenjie Li
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, College of Agriculture, Henan University, Kaifeng 475001, China
| | - Xusen Kang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, College of Agriculture, Henan University, Kaifeng 475001, China
| | - Shenglong Bai
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, College of Agriculture, Henan University, Kaifeng 475001, China
| | - Lijuan Yang
- Xinxiang Academy of Agricultural Sciences, Xinxiang 453003, China
| | - Suoping Li
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, College of Agriculture, Henan University, Kaifeng 475001, China
| | - Dale Zhang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, College of Agriculture, Henan University, Kaifeng 475001, China
| |
Collapse
|
8
|
Zhou Z, Geng S, Guan H, Liu C, Qin M, Li W, Shi X, Dai Z, Yao W, Lei Z, Wu Z, Hou J. Dissection of the Genetic Architecture for Quantities of Gliadins Fractions in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:826909. [PMID: 35401644 PMCID: PMC8988047 DOI: 10.3389/fpls.2022.826909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Gliadin is a group of grain storage proteins that confers extensibility/viscosity to the dough and are vital to end-use quality in wheat. Moreover, gliadins are one of the important components for nutritional quality because they contain the nutritional unprofitable epitopes that cause chronic immune-mediated intestinal disorder in genetically susceptible individuals designated celiac disease (CD). The main genetic loci encoding the gliadins were revealed by previous studies; however, the genes related to the content of gliadins and their fractions were less elucidated. To illustrate the genetic basis of the content of gliadins and their fractions comprehensively, a recombinant inbred line (RIL) population that consisted of 196 lines was constructed from the two parents, Luozhen No.1 and Zhengyumai 9987. Quantitative trait loci (QTL) controlling the content of total gliadins and their fractions (ω-, α-, and γ-gliadin) were screened genome-widely under four environments across 2 years. Totally, thirty QTL which explained 1.97-12.83% of the phenotypic variation were detected to be distributed on 17 chromosomes and they were gathered into 12 clusters. One hundred and one pairs of epistatic QTL (E-QTL) were revealed, among which five were involved with the total gliadins and its fractions content QTL located on chromosome 1AS, 1DS, 4DS, 1DL, and 6AS. Three Kompetitive Allele-Specific PCR (KASP) markers were developed from three major QTL clusters located on chromosomes 6A, 6D, and 7D, respectively. The present research not only dissects the genetic loci for improving the content of gliadins and their three fractions, but may also contribute to marker-assisted selection of varieties with appropriate gliadin fractions content for end-use quality and health benefit at the early developmental stages and early breeding generations.
Collapse
Affiliation(s)
- Zhengfu Zhou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shenghui Geng
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Huiyue Guan
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Congcong Liu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Maomao Qin
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Wenxu Li
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xia Shi
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Ziju Dai
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Wen Yao
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Zhensheng Lei
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Zhengqing Wu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinna Hou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
9
|
Wen N, Osorio CE, Brew-Appiah RAT, Mejías JH, Alam T, Kashyap S, Reinbothe S, Reinbothe C, Moehs CP, von Wettstein D, Rustgi S. Targeting Induced Local Lesions in the Wheat DEMETER and DRE2 Genes, Responsible for Transcriptional Derepression of Wheat Gluten Proteins in the Developing Endosperm. Front Nutr 2022; 9:847635. [PMID: 35308262 PMCID: PMC8928260 DOI: 10.3389/fnut.2022.847635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/28/2022] [Indexed: 01/05/2023] Open
Abstract
Wheat is a major source of energy and nutrition worldwide, but it is also a primary cause of frequent diet-induced health issues, specifically celiac disease, for which the only effective therapy so far is strict dietary abstinence from gluten-containing grains. Wheat gluten proteins are grouped into two major categories: high-molecular-weight glutenin subunits (HMWgs), vital for mixing and baking properties, and gliadins plus low-molecular-weight glutenin subunits (LMWgs) that contain the overwhelming majority of celiac-causing epitopes. We put forth a hypothesis that eliminating gliadins and LMWgs while retaining HMWgs might allow the development of reduced-immunogenicity wheat genotypes relevant to most gluten-sensitive individuals. This hypothesis stems from the knowledge that the molecular structures and regulatory mechanisms of the genes encoding the two groups of gluten proteins are quite different, and blocking one group's transcription, without affecting the other's, is possible. The genes for gliadins and LMWgs have to be de-methylated by 5-methylcytosine DNA glycosylase/lyase (DEMETER) and an iron-sulfur (Fe-S) cluster biogenesis enzyme (DRE2) early during endosperm development to permit their transcription. In this study, a TILLING (Targeting Induced Local Lesions IN Genomes) approach was undertaken to identify mutations in the homoeologous DEMETER (DME) and DRE2 genes in common and durum wheat. Lines with mutations in these genes were obtained that displayed reduced content of immunogenic gluten proteins while retaining essential baking properties. Although our data at first glance suggest new possibilities for treating celiac disease and are therefore of medical and agronomical interest, it also shows that inducing mutations in the DME and DRE2 genes analyzed here affected pollen viability and germination. Hence there is a need to develop other approaches in the future to overcome this undesired effect.
Collapse
Affiliation(s)
- Nuan Wen
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Claudia E. Osorio
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
- Instituto de Investigaciones Agropecuarias, INIA Carillanca, Temuco, Chile
| | - Rhoda A. T. Brew-Appiah
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Jaime H. Mejías
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
- Instituto de Investigaciones Agropecuarias, INIA Carillanca, Temuco, Chile
| | - Tariq Alam
- Department of Plant and Environmental Sciences, School of Health Research, Clemson University Pee Dee Research and Education Centre, Florence, SC, United States
| | - Samneet Kashyap
- Department of Plant and Environmental Sciences, School of Health Research, Clemson University Pee Dee Research and Education Centre, Florence, SC, United States
| | - Steffen Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes, Université Grenoble-Alpes, BP53F, Grenoble, France
| | - Christiane Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes, Université Grenoble-Alpes, BP53F, Grenoble, France
| | | | - Diter von Wettstein
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Sachin Rustgi
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
- Department of Plant and Environmental Sciences, School of Health Research, Clemson University Pee Dee Research and Education Centre, Florence, SC, United States
- *Correspondence: Sachin Rustgi
| |
Collapse
|
10
|
Wheat Breeding, Fertilizers, and Pesticides: Do They Contribute to the Increasing Immunogenic Properties of Modern Wheat? GASTROINTESTINAL DISORDERS 2021. [DOI: 10.3390/gidisord3040023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Celiac disease (CD) is a small intestinal inflammatory condition where consumption of gluten induces a T-cell mediated immune response that damages the intestinal mucosa in susceptible individuals. CD affects at least 1% of the world’s population. The increasing prevalence of CD has been reported over the last few decades. However, the reason for this increase is not known so far. Certain factors such as increase in awareness and the development of advanced and highly sensitive diagnostic screening markers are considered significant factors for this increase. Wheat breeding strategies, fertilizers, and pesticides, particularly herbicides, are also thought to have a role in the increasing prevalence. However, less is known about this issue. In this review, we investigated the role of these agronomic practices in depth. Our literature-based results showed that wheat breeding, use of nitrogen-based fertilizers, and herbicides cannot be solely responsible for the increase in celiac prevalence. However, applying nitrogen fertilizers is associated with an increase in gluten in wheat, which increases the risk of developing celiac-specific symptoms in gluten-sensitive individuals. Additionally, clustered regularly interspaced short palindromic repeats (CRISPR) techniques can edit multiple gliadin genes, resulting in a low-immunogenic wheat variety that is safe for such individuals.
Collapse
|
11
|
Paris R, Petruzzino G, Savino M, De Simone V, Ficco DBM, Trono D. Genome-Wide Identification, Characterization and Expression Pattern Analysis of the γ-Gliadin Gene Family in the Durum Wheat ( Triticum durum Desf.) Cultivar Svevo. Genes (Basel) 2021; 12:genes12111743. [PMID: 34828349 PMCID: PMC8621147 DOI: 10.3390/genes12111743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Very recently, the genome of the modern durum wheat cv. Svevo was fully sequenced, and its assembly is publicly available. So, we exploited the opportunity to carry out an in-depth study for the systematic characterization of the γ-gliadin gene family in the cv. Svevo by combining a bioinformatic approach with transcript and protein analysis. We found that the γ-gliadin family consists of nine genes that include seven functional genes and two pseudogenes. Three genes, Gli-γ1a, Gli-γ3a and Gli-γ4a, and the pseudogene Gli-γ2a* mapped on the A genome, whereas the remaining four genes, Gli-γ1b, Gli-γ2b, Gli-γ3b and Gli-γ5b, and the pseudogene Gli-γ4b* mapped on the B genome. The functional γ-gliadins presented all six domains and eight-cysteine residues typical of γ-gliadins. The Gli-γ1b also presented an additional cysteine that could possibly have a role in the formation of the gluten network through binding to HMW glutenins. The γ-gliadins from the A and B genome differed in their celiac disease (CD) epitope content and composition, with the γ-gliadins from the B genome showing the highest frequency of CD epitopes. In all the cases, almost all the CD epitopes clustered in the central region of the γ-gliadin proteins. Transcript analysis during seed development revealed that all the functional γ-gliadin genes were expressed with a similar pattern, although significant differences in the transcript levels were observed among individual genes that were sometimes more than 60-fold. A progressive accumulation of the γ-gliadin fraction was observed in the ripening seeds that reached 34% of the total gliadin fraction at harvest maturity. We believe that the insights generated in the present study could aid further studies on gliadin protein functions and future breeding programs aimed at the selection of new healthier durum wheat genotypes.
Collapse
Affiliation(s)
- Roberta Paris
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, Via di Corticella 133, 40128 Bologna, Italy;
| | - Giuseppe Petruzzino
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, Km 25,200, 71122 Foggia, Italy; (G.P.); (M.S.); (V.D.S.); (D.B.M.F.)
| | - Michele Savino
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, Km 25,200, 71122 Foggia, Italy; (G.P.); (M.S.); (V.D.S.); (D.B.M.F.)
| | - Vanessa De Simone
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, Km 25,200, 71122 Foggia, Italy; (G.P.); (M.S.); (V.D.S.); (D.B.M.F.)
| | - Donatella B. M. Ficco
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, Km 25,200, 71122 Foggia, Italy; (G.P.); (M.S.); (V.D.S.); (D.B.M.F.)
| | - Daniela Trono
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, Km 25,200, 71122 Foggia, Italy; (G.P.); (M.S.); (V.D.S.); (D.B.M.F.)
- Correspondence:
| |
Collapse
|
12
|
Expression analysis of α-gliadin isoforms in wheat grains. J Proteomics 2021; 246:104312. [PMID: 34224906 DOI: 10.1016/j.jprot.2021.104312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/14/2021] [Accepted: 06/18/2021] [Indexed: 11/20/2022]
Abstract
Gliadin is a major wheat seed storage protein that affects the extensibility of flour dough. Multiple genes encode gliadin, and there are numerous isoforms encoded by these genes, some of which might be related to flour quality. In this study, gliadin isoforms encoded by 30 α-gliadin genes from the wheat cultivar "Chinese Spring" (CS) were identified using 2-DE and MS/MS. The chromosomes where these isoform genes are located were determined using Gli-2 locus-deficient lines. A quantitative analysis by 2-DE revealed differences in expression levels among α-gliadin isoforms. We also separated the polymer and monomer fractions of the total protein by SEC. We found that an α-gliadin isoform with 7 cysteine residues was present at relatively higher levels in the polymer fraction than an α-gliadin isoform with 6 cysteine residues. The present study results can help in understanding the relationship between the properties of α-gliadin isoforms and the physical properties of dough in the future. SIGNIFICANCE: For investigating the relationship between isoforms and dough extensibility, we identified α-gliadin isoforms encoded by 30 genes among the 50 genes cloned until date. Moreover, the polymer and monomer fractions of the total protein were separated by SEC. We found that an α-gliadin isoform with 7 cysteine residues was present at relatively higher levels in the polymer fraction than an α-gliadin isoform with 6 cysteine residues. This study provided useful information for elucidating the relationship between the properties of α-gliadin isoforms and the physical properties of dough.
Collapse
|
13
|
Sánchez-León S, Giménez MJ, Barro F. The α-Gliadins in Bread Wheat: Effect of Nitrogen Treatment on the Expression of the Major Celiac Disease Immunogenic Complex in Two RNAi Low-Gliadin Lines. FRONTIERS IN PLANT SCIENCE 2021; 12:663653. [PMID: 33995459 PMCID: PMC8116895 DOI: 10.3389/fpls.2021.663653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/06/2021] [Indexed: 06/01/2023]
Abstract
Celiac Disease (CD) is an autoimmune disorder that affects approximately 1% of the worldwide population. The α-gliadins of wheat contain the 33-mer peptide, the most active peptide in CD both in adults and pediatric patients. In this study, we have characterized the variants and expression profile of an α-gliadins amplicon, harboring the 33-mer peptide, in two low-gliadin RNAi wheat lines, under two different Nitrogen (N) treatments. We estimated that the amplicon expands 45 different α-gliadin variants with high variability due to length, randomly distributed SNPs, and the presence of encoded CD epitopes. Expression of this amplicon is reduced in both RNAi lines in comparison to the wild type. High N treatment significantly increases transcripts of the amplicon in the wild type, but not in the transgenic lines. Classification of α-gliadin variants, considering the number of epitopes, revealed that amplicon variants containing the full complement of 33-mer peptide were affected by N treatment, increasing their expression when N was increased. Line D793 provided higher and more stable silencing through different N fertilization regimes, expressing fewer CD epitopes than D783. Results of this study are important for better understanding of RNAi α-gliadin silencing in response to N treatments, and for undertaking new strategies by RNAi or CRISPR/Cas toward obtaining new varieties suitable for people suffering gluten intolerances.
Collapse
|
14
|
Suter DAI, Békés F. Who is to blame for the increasing prevalence of dietary sensitivity to wheat? CEREAL RESEARCH COMMUNICATIONS 2021; 49:1-19. [DOI: 10.1007/s42976-020-00114-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Indexed: 01/05/2025]
|
15
|
Asri N, Rostami-Nejad M, Anderson RP, Rostami K. The Gluten Gene: Unlocking the Understanding of Gluten Sensitivity and Intolerance. APPLICATION OF CLINICAL GENETICS 2021; 14:37-50. [PMID: 33603437 PMCID: PMC7886246 DOI: 10.2147/tacg.s276596] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
Wheat flour is one of the most important food ingredients containing several essential nutrients including proteins. Gluten is one of the major protein components of wheat consisted of glutenin (encoded on chromosome 1) and gliadin (encoded on chromosome 1 and 6) and there are around hundred genes encoding it in wheat. Gluten proteins have the ability of eliciting the pathogenic immune responses and hypersensitivity reactions in susceptible individuals called “gluten-related disorders (GRDs)”, which include celiac disease (CD), wheat allergy (WA), and non-celiac gluten sensitivity (NCGS). Currently removing gluten from the diet is the only effective treatment for mentioned GRDs and studies for the appropriate and alternative therapeutic approaches are ongoing. Accordingly, several genetic studies have focused on breeding wheat with low immunological properties through gene editing methods. The present review considers genetic characteristics of gluten protein components, focusing on their role in the incidence of gluten-related diseases, and genetic modifications conducted to produce wheat with less immunological properties.
Collapse
Affiliation(s)
- Nastaran Asri
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Robert P Anderson
- Wesley Medical Research - The Wesley Hospital, Brisbane, Queensland, Australia
| | - Kamran Rostami
- Department of Gastroenterology, MidCentral DHB, Palmerston North, New Zealand
| |
Collapse
|
16
|
Pilolli R, De Angelis M, Lamonaca A, De Angelis E, Rizzello CG, Siragusa S, Gadaleta A, Mamone G, Monaci L. Prototype Gluten-Free Breads from Processed Durum Wheat: Use of Monovarietal Flours and Implications for Gluten Detoxification Strategies. Nutrients 2020; 12:E3824. [PMID: 33327648 PMCID: PMC7765144 DOI: 10.3390/nu12123824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
In this investigation, we reported the production of prototype breads from the processed flours of three specific Triticum turgidum wheat genotypes that were selected in our previous investigation for their potential low toxic/immunogenic activity for celiac disease (CD) patients. The flours were subjected to sourdough fermentation with a mixture of selected Lactobacillus strains, and in presence of fungal endoproteases. The breads were characterized by R5 competitive enzyme linked immunosorbent assay in order to quantify the residual gluten, and the differential efficacy in gluten degradation was assessed. In particular, two of them were classified as gluten-free (<20 ppm) and very low-gluten content (<100 ppm) breads, respectively, whereas the third monovarietal prototype retained a gluten content that was well above the safety threshold prescribed for direct consumption by CD patients. In order to investigate such a genotype-dependent efficiency of the detoxification method applied, an advanced proteomic characterization by high-resolution tandem mass spectrometry was performed. Notably, to the best of our knowledge, this is the first proteomic investigation which benefitted, for protein identification, from the full sequencing of the Triticum turgidum ssp. durum genome. The differences of the proteins' primary structures affecting their susceptibility to hydrolysis were investigated. As a confirmation of the previous immunoassay-based results, two out of the three breads made with the processed flours presented an exhaustive degradation of the epitopic sequences that are relevant for CD immune stimulatory activity. The list of the detected epitopes was analyzed and critically discussed in light of their susceptibility to the detoxification strategy applied. Finally, in-vitro experiments of human gastroduodenal digestion were carried out in order to assess, in-silico, the toxicity risk of the prototype breads under investigation for direct consumption by CD patients. This approach allowed us to confirm the total degradation of the epitopic sequences upon gastro-duodenal digestion.
Collapse
Affiliation(s)
- Rosa Pilolli
- Institute of Sciences of Food Production, CNR-ISPA, 70126 Bari, Italy; (A.L.); (E.D.A.); (L.M.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (M.D.A.); (C.G.R.); (S.S.)
| | - Antonella Lamonaca
- Institute of Sciences of Food Production, CNR-ISPA, 70126 Bari, Italy; (A.L.); (E.D.A.); (L.M.)
| | - Elisabetta De Angelis
- Institute of Sciences of Food Production, CNR-ISPA, 70126 Bari, Italy; (A.L.); (E.D.A.); (L.M.)
| | - Carlo Giuseppe Rizzello
- Department of Soil, Plant and Food Science, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (M.D.A.); (C.G.R.); (S.S.)
| | - Sonya Siragusa
- Department of Soil, Plant and Food Science, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (M.D.A.); (C.G.R.); (S.S.)
| | - Agata Gadaleta
- Department of Agricultural and Environmental Sciences, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy;
| | | | - Linda Monaci
- Institute of Sciences of Food Production, CNR-ISPA, 70126 Bari, Italy; (A.L.); (E.D.A.); (L.M.)
| |
Collapse
|
17
|
Recent progress in analytical method development to ensure the safety of gluten-free foods for celiac disease patients. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
|
19
|
Jayawardana IA, Boland MJ, Higgs K, Zou M, Loo T, Mcnabb WC, Montoya CA. The kiwifruit enzyme actinidin enhances the hydrolysis of gluten proteins during simulated gastrointestinal digestion. Food Chem 2020; 341:128239. [PMID: 33035854 DOI: 10.1016/j.foodchem.2020.128239] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/07/2020] [Accepted: 09/26/2020] [Indexed: 12/21/2022]
Abstract
This study investigated the effect of actinidin, a cysteine protease in kiwifruit, on the hydrolysis of gluten proteins and digestion-resistant gluten peptides (synthetic 33-mer peptide and pentapeptide epitopes) under static simulated gastrointestinal conditions. Actinidin efficacy in hydrolysing gliadin was compared with that of other gluten-degrading enzymes. Actinidin hydrolysed usually resistant peptide bonds adjacent to proline residues in the 33-mer peptide. The gastric degree of hydrolysis of gluten proteins was influenced by an interaction between pH and actinidin concentration (P < 0.05), whereas the pentapeptide epitopes hydrolysis was influenced only by the actinidin concentration (P < 0.05). The rate of gastric degree of hydrolysis of gliadin was greater (P < 0.05) by actinidin (0.8%/min) when compared to papain, bromelain, and one commercial enzyme (on average 0.4%/min), while all exogenous enzymes were able to hydrolyse the pentapeptide epitopes effectively. Actinidin is able to hydrolyse gluten proteins under simulated gastric conditions.
Collapse
Affiliation(s)
- Isuri A Jayawardana
- School of Food and Advanced Technology, College of Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Mike J Boland
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Keriane Higgs
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Maggie Zou
- School of Food and Advanced Technology, College of Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Trevor Loo
- School of Fundamental Sciences, College of Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Warren C Mcnabb
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Carlos A Montoya
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; Food Nutrition & Health Team, AgResearch Limited, Grasslands Research Centre, Private Bag 11008, Palmerston North 4442, New Zealand.
| |
Collapse
|
20
|
Daly M, Bromilow SN, Nitride C, Shewry PR, Gethings LA, Mills ENC. Mapping Coeliac Toxic Motifs in the Prolamin Seed Storage Proteins of Barley, Rye, and Oats Using a Curated Sequence Database. Front Nutr 2020; 7:87. [PMID: 32766270 PMCID: PMC7379453 DOI: 10.3389/fnut.2020.00087] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Wheat gluten, and related prolamin proteins in rye, barley and oats cause the immune-mediated gluten intolerance syndrome, coeliac disease. Foods labelled as gluten-free which can be safely consumed by coeliac patients, must not contain gluten above a level of 20 mg/Kg. Current immunoassay methods for detection of gluten can give conflicting results and may underestimate levels of gluten in foods. Mass spectrometry methods have great potential as an orthogonal method, but require curated protein sequence databases to support method development. The GluPro database has been updated to include avenin-like sequences from bread wheat (n = 685; GluPro v1.1) and genes from the sequenced wheat genome (n = 699; GluPro v 1.2) and Triticum turgidum ssp durum (n = 210; GluPro v 2.1). Companion databases have been developed for prolamin sequences from barley (n = 64; GluPro v 3.0), rye (n = 41; GluPro v 4.0), and oats (n = 27; GluPro v 5.0) and combined to provide a complete cereal prolamin database, GluPro v 6.1 comprising 1,041 sequences. Analysis of the coeliac toxic motifs in the curated sequences showed that they were absent from the minor avenin-like proteins in bread and durum wheat and barley, unlike the related avenin proteins from oats. A comparison of prolamin proteins from the different cereal species also showed α- and γ-gliadins in bread and durum wheat, and the sulphur poor prolamins in all cereals had the highest density of coeliac toxic motifs. Analysis of ion-mobility mass spectrometry data for bread wheat (cvs Chinese Spring and Hereward) showed an increased number of identifications when using the GluPro v1.0, 1.1 and 1.2 databases compared to the limited number of verified sequences bread wheat sequences in reviewed UniProt. This family of databases will provide a basis for proteomic profiling of gluten proteins from all the gluten containing cereals and support identification of specific peptide markers for use in development of new methods for gluten quantitation based on coeliac toxic motifs found in all relevant cereal species.
Collapse
Affiliation(s)
- Matthew Daly
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Sophie N Bromilow
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Chiara Nitride
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Peter R Shewry
- Centre for Crop Genetic Improvement, Rothamsted Research, Harpenden, United Kingdom
| | | | - E N Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
21
|
Lakhneko O, Danchenko M, Morgun B, Kováč A, Majerová P, Škultéty Ľ. Comprehensive Comparison of Clinically Relevant Grain Proteins in Modern and Traditional Bread Wheat Cultivars. Int J Mol Sci 2020; 21:E3445. [PMID: 32414116 PMCID: PMC7279209 DOI: 10.3390/ijms21103445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022] Open
Abstract
Bread wheat (Triticum aestivum L.) is one of the most valuable cereal crops for human consumption. Its grain storage proteins define bread quality, though they may cause food intolerances or allergies in susceptible individuals. Herein, we discovered a diversity of grain proteins in three Ukrainian wheat cultivars: Sotnytsia, Panna (both modern selection), and Ukrainka (landrace). Firstly, proteins were isolated with a detergent-containing buffer that allowed extraction of various groups of storage proteins (glutenins, gliadins, globulins, and albumins); secondly, the proteome was profiled by the two-dimensional gel electrophoresis. Using multi-enzymatic digestion, we identified 49 differentially accumulated proteins. Parallel ultrahigh-performance liquid chromatography separation followed by direct mass spectrometry quantification complemented the results. Principal component analysis confirmed that differences among genotypes were a major source of variation. Non-gluten fraction better discriminated bread wheat cultivars. Various accumulation of clinically relevant plant proteins highlighted one of the modern genotypes as a promising donor for the breeding of hypoallergenic cereals.
Collapse
Affiliation(s)
- Olha Lakhneko
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska 9, 84505 Bratislava, Slovak Republic; (O.L.); (Ľ.Š.)
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Akademika Zabolotnoho 148, 03143 Kyiv, Ukraine;
| | - Maksym Danchenko
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska 9, 84505 Bratislava, Slovak Republic; (O.L.); (Ľ.Š.)
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, 95007 Nitra, Slovak Republic
| | - Bogdan Morgun
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Akademika Zabolotnoho 148, 03143 Kyiv, Ukraine;
| | - Andrej Kováč
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska 9, 84510 Bratislava, Slovak Republic; (A.K.); (P.M.)
| | - Petra Majerová
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska 9, 84510 Bratislava, Slovak Republic; (A.K.); (P.M.)
| | - Ľudovit Škultéty
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska 9, 84505 Bratislava, Slovak Republic; (O.L.); (Ľ.Š.)
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| |
Collapse
|
22
|
Wang D, Li F, Cao S, Zhang K. Genomic and functional genomics analyses of gluten proteins and prospect for simultaneous improvement of end-use and health-related traits in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1521-1539. [PMID: 32020238 PMCID: PMC7214497 DOI: 10.1007/s00122-020-03557-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/24/2020] [Indexed: 05/09/2023]
Abstract
KEY MESSAGE Recent genomic and functional genomics analyses have substantially improved the understanding on gluten proteins, which are important determinants of wheat grain quality traits. The new insights obtained and the availability of precise, versatile and high-throughput genome editing technologies will accelerate simultaneous improvement of wheat end-use and health-related traits. Being a major staple food crop in the world, wheat provides an indispensable source of dietary energy and nutrients to the human population. As worldwide population grows and living standards rise in both developed and developing countries, the demand for wheat with high quality attributes increases globally. However, efficient breeding of high-quality wheat depends on critically the knowledge on gluten proteins, which mainly include several families of prolamin proteins specifically accumulated in the endospermic tissues of grains. Although gluten proteins have been studied for many decades, efficient manipulation of these proteins for simultaneous enhancement of end-use and health-related traits has been difficult because of high complexities in their expression, function and genetic variation. However, recent genomic and functional genomics analyses have substantially improved the understanding on gluten proteins. Therefore, the main objective of this review is to summarize the genomic and functional genomics information obtained in the last 10 years on gluten protein chromosome loci and genes and the cis- and trans-factors regulating their expression in the grains, as well as the efforts in elucidating the involvement of gluten proteins in several wheat sensitivities affecting genetically susceptible human individuals. The new insights gathered, plus the availability of precise, versatile and high-throughput genome editing technologies, promise to speed up the concurrent improvement of wheat end-use and health-related traits and the development of high-quality cultivars for different consumption needs.
Collapse
Affiliation(s)
- Daowen Wang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, 15 Longzi Lake College Park, Zhengzhou, 450046, China.
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Science, 1 West Beichen Road, Beijing, 100101, China.
| | - Feng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Science, 1 West Beichen Road, Beijing, 100101, China
| | - Shuanghe Cao
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Kunpu Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Science, 1 West Beichen Road, Beijing, 100101, China.
| |
Collapse
|
23
|
Watry H, Zerkle A, Laudencia-Chingcuanco D. Modified acid-PAGE method for rapid screening and phenotyping of wheat gliadin mutant lines. MethodsX 2020; 7:100858. [PMID: 32322542 PMCID: PMC7163331 DOI: 10.1016/j.mex.2020.100858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/07/2020] [Indexed: 12/19/2022] Open
Abstract
Acid-polyacrylamide gel electrophoresis (A-PAGE) is used to phenotype different varieties of wheat based on their gliadin profiles. The family of gliadin proteins is a major component of wheat gluten. Gluten is the major determinant of the unique viscoelastic property of wheat dough that is necessary in the production of important food products including bread, cake, cookies and pasta. However, several gliadin proteins are also known to be causal agents in triggering human immunogenic responses that lead to several gluten-related health risks like celiac disease and wheat-dependent exercise-induced anaphylaxis. Therefore, research to identify wheat lines with reduced levels of immunogenic proteins is being vigorously pursued in several laboratories around the world. Unfortunately, no commercial A-PAGE gels are currently available for cereal researchers to use for separating wheat gliadins. This work reports the development of an easy-to-use A-PAGE protocol to resolve gliadins with high reproducibility and resolution to screen and phenotype gliadin deficient lines in wheat.•This acetic acid based A-PAGE method with urea utilizes commercially available reagents and materials to make gel casting simpler and more efficient.•It can be used to phenotype different wheat varieties to establish purity and to identify mutants of wheat with altered gliadin protein profiles.
Collapse
Affiliation(s)
- Hannah Watry
- USDA-ARS, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, U.S.A
| | - Alexander Zerkle
- USDA-ARS, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, U.S.A
| | | |
Collapse
|
24
|
Sharma N, Bhatia S, Chunduri V, Kaur S, Sharma S, Kapoor P, Kumari A, Garg M. Pathogenesis of Celiac Disease and Other Gluten Related Disorders in Wheat and Strategies for Mitigating Them. Front Nutr 2020; 7:6. [PMID: 32118025 PMCID: PMC7020197 DOI: 10.3389/fnut.2020.00006] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Wheat is a major cereal crop providing energy and nutrients to the billions of people around the world. Gluten is a structural protein in wheat, that is necessary for its dough making properties, but it is responsible for imparting certain intolerances among some individuals, which are part of this review. Most important among these intolerances is celiac disease, that is gluten triggered T-cell mediated autoimmune enteropathy and results in villous atrophy, inflammation and damage to intestinal lining in genetically liable individuals containing human leukocyte antigen DQ2/DQ8 molecules on antigen presenting cells. Celiac disease occurs due to presence of celiac disease eliciting epitopes in gluten, particularly highly immunogenic alpha-gliadins. Another gluten related disorder is non-celiac gluten-sensitivity in which innate immune-response occurs in patients along with gastrointestinal and non-gastrointestinal symptoms, that disappear upon removal of gluten from the diet. In wheat allergy, either IgE or non-IgE mediated immune response occurs in individuals after inhalation or ingestion of wheat. Following a life-long gluten-free diet by celiac disease and non-celiac gluten-sensitivity patients is very challenging as none of wheat cultivar or related species stands safe for consumption. Hence, different molecular biology, genetic engineering, breeding, microbial, enzymatic, and chemical strategies have been worked upon to reduce the celiac disease epitopes and the gluten content in wheat. Currently, only 8.4% of total population is affected by wheat-related issues, while rest of population remains safe and should not remove wheat from the diet, based on false media coverage.
Collapse
Affiliation(s)
- Natasha Sharma
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Simran Bhatia
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Venkatesh Chunduri
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Satveer Kaur
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Saloni Sharma
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Payal Kapoor
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Anita Kumari
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Monika Garg
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| |
Collapse
|
25
|
Altenbach SB, Chang HC, Rowe MH, Yu XB, Simon-Buss A, Seabourn BW, Green PH, Alaedini A. Reducing the Immunogenic Potential of Wheat Flour: Silencing of Alpha Gliadin Genes in a U.S. Wheat Cultivar. FRONTIERS IN PLANT SCIENCE 2020; 11:20. [PMID: 32161604 PMCID: PMC7052357 DOI: 10.3389/fpls.2020.00020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/10/2020] [Indexed: 05/03/2023]
Abstract
The alpha gliadins are a group of more than 20 proteins with very similar sequences that comprise about 15%-20% of the total flour protein and contribute to the functional properties of wheat flour dough. Some alpha gliadins also contain immunodominant epitopes that trigger celiac disease, a chronic autoimmune disease that affects approximately 1% of the worldwide population. In an attempt to reduce the immunogenic potential of wheat flour from the U.S. spring wheat cultivar Butte 86, RNA interference was used to silence a subset of alpha gliadin genes encoding proteins containing celiac disease epitopes. Two of the resulting transgenic lines were analyzed in detail by quantitative two-dimensional gel electrophoresis combined with tandem mass spectrometry. Although the RNA interference construct was designed to target only some alpha gliadin genes, all alpha gliadins were effectively silenced in the transgenic plants. In addition, some off-target silencing of high molecular weight glutenin subunits was detected in both transgenic lines. Compensatory effects were not observed within other gluten protein classes. Reactivities of IgG and IgA antibodies from a cohort of patients with celiac disease toward proteins from the transgenic lines were reduced significantly relative to the nontransgenic line. Both mixing properties and SDS sedimentation volumes suggested a decrease in dough strength in the transgenic lines when compared to the control. The data suggest that it will be difficult to selectively silence specific genes within families as complex as the wheat alpha gliadins. Nonetheless, it may be possible to reduce the immunogenic potential of the flour and still retain many of the functional properties essential for the utilization of wheat.
Collapse
Affiliation(s)
- Susan B. Altenbach
- Western Regional Research Center, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States
- *Correspondence: Susan B. Altenbach, ; Armin Alaedini,
| | - Han-Chang Chang
- Western Regional Research Center, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States
| | - Matthew H. Rowe
- Western Regional Research Center, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States
- Takara Bio USA, Inc., Mountain View, CA, United States
| | - Xuechen B. Yu
- Department of Medicine, Columbia University, New York, NY, United States
- Institute of Human Nutrition, Columbia University, New York, NY, United States
| | - Annamaria Simon-Buss
- Western Regional Research Center, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Hamburg, Germany
| | - Bradford W. Seabourn
- Hard Winter Wheat Quality Laboratory, Center for Grain and Animal Health Research, United States Department of Agriculture-Agricultural Research Service, Manhattan, KS, United States
| | - Peter H. Green
- Department of Medicine, Columbia University, New York, NY, United States
- Celiac Disease Center, Columbia University, New York, NY, United States
| | - Armin Alaedini
- Department of Medicine, Columbia University, New York, NY, United States
- Institute of Human Nutrition, Columbia University, New York, NY, United States
- Celiac Disease Center, Columbia University, New York, NY, United States
- Department of Medicine, New York Medical College, Valhalla, NY, United States
- *Correspondence: Susan B. Altenbach, ; Armin Alaedini,
| |
Collapse
|
26
|
Jayawardana IA, Montoya CA, McNabb WC, Boland MJ. Possibility of minimizing gluten intolerance by co-consumption of some fruits – A case for positive food synergy? Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Khakimova AG, Gubareva NK, Koshkin VА, Mitrofanova OP. Genetic diversity and breeding value of synthetic hexaploid wheat introduced into the VIR collection. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- A. G. Khakimova
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| | - N. K. Gubareva
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| | - V. А. Koshkin
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| | - O. P. Mitrofanova
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| |
Collapse
|
28
|
Altenbach SB, Chang HC, Simon-Buss A, Mohr T, Huo N, Gu YQ. Exploiting the reference genome sequence of hexaploid wheat: a proteomic study of flour proteins from the cultivar Chinese Spring. Funct Integr Genomics 2019; 20:1-16. [PMID: 31250230 PMCID: PMC6954139 DOI: 10.1007/s10142-019-00694-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/12/2019] [Accepted: 05/31/2019] [Indexed: 12/18/2022]
Abstract
Although the economic value of wheat flour is determined by the complement of gluten proteins, these proteins have been challenging to study because of the complexity of the major protein groups and the tremendous sequence diversity among wheat cultivars. The completion of a high-quality wheat genome sequence from the reference wheat Chinese Spring recently facilitated the assembly and annotation of a complete set of gluten protein genes from a single cultivar, making it possible to link individual proteins in the flour to specific gene sequences. In a proteomic analysis of total wheat flour protein from Chinese Spring using quantitative two-dimensional gel electrophoresis combined with tandem mass spectrometry, gliadins or low-molecular-weight glutenin subunits were identified as the predominant proteins in 72 protein spots. Individual spots were associated with 40 of 56 Chinese Spring gene sequences, including 16 of 26 alpha gliadins, 10 of 11 gamma gliadins, six of seven omega gliadins, one of two delta gliadins, and nine of ten LMW-GS. Most genes that were not associated with protein spots were either expressed at low levels in endosperm or encoded proteins with high similarity to other proteins. A wide range of protein accumulation levels were observed and discrepancies between transcript levels and protein levels were noted. This work together with similar studies using other commercial cultivars should provide new insight into the molecular basis of wheat flour quality and allergenic potential.
Collapse
Affiliation(s)
- Susan B Altenbach
- USDA-ARS Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA.
| | - Han-Chang Chang
- USDA-ARS Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Annamaria Simon-Buss
- USDA-ARS Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Toni Mohr
- USDA-ARS Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Naxin Huo
- USDA-ARS Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Yong Q Gu
- USDA-ARS Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA
| |
Collapse
|
29
|
Altenbach SB, Chang HC, Yu XB, Seabourn BW, Green PH, Alaedini A. Elimination of Omega-1,2 Gliadins From Bread Wheat ( Triticum aestivum) Flour: Effects on Immunogenic Potential and End-Use Quality. FRONTIERS IN PLANT SCIENCE 2019; 10:580. [PMID: 31143195 PMCID: PMC6521778 DOI: 10.3389/fpls.2019.00580] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/18/2019] [Indexed: 05/19/2023]
Abstract
The omega-1,2 gliadins are a group of wheat gluten proteins that contain immunodominant epitopes for celiac disease (CD) and also have been associated with food allergies. To reduce the levels of these proteins in the flour, bread wheat (Triticum aestivum cv. Butte 86) was genetically transformed with an RNA interference plasmid that targeted a 141 bp region at the 5' end of an omega-1,2 gliadin gene. Flour proteins from two transgenic lines were analyzed in detail by quantitative two-dimensional gel electrophoresis and tandem mass spectrometry. In one line, the omega-1,2 gliadins were missing with few other changes in the proteome. In the other line, striking changes in the proteome were observed and nearly all gliadins and low molecular weight glutenin subunits (LMW-GS) were absent. High molecular weight glutenin subunits (HMW-GS) increased in this line and those that showed the largest increases had molecular weights slightly less than those in the non-transgenic, possibly due to post-translational processing. In addition, there were increases in non-gluten proteins such as triticins, purinins, globulins, serpins, and alpha-amylase/protease inhibitors. Reactivity of flour proteins with serum IgG and IgA antibodies from a cohort of CD patients was reduced significantly in both transgenic lines. Both mixing time and tolerance were improved in the line without omega-1,2 gliadins while mixing properties were diminished in the line missing most gluten proteins. The data suggest that biotechnology approaches may be used to create wheat lines with reduced immunogenic potential in the context of gluten sensitivity without compromising end-use quality.
Collapse
Affiliation(s)
- Susan B. Altenbach
- Western Regional Research Center, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States
| | - Han-Chang Chang
- Western Regional Research Center, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States
| | - Xuechen B. Yu
- Department of Medicine, Columbia University, New York, NY, United States
- Institute of Human Nutrition, Columbia University, New York, NY, United States
| | - Bradford W. Seabourn
- Hard Winter Wheat Quality Laboratory, Center for Grain and Animal Health Research, United States Department of Agriculture-Agricultural Research Service, Manhattan, KS, United States
| | - Peter H. Green
- Institute of Human Nutrition, Columbia University, New York, NY, United States
- Celiac Disease Center, Columbia University, New York, NY, United States
| | - Armin Alaedini
- Department of Medicine, Columbia University, New York, NY, United States
- Institute of Human Nutrition, Columbia University, New York, NY, United States
- Celiac Disease Center, Columbia University, New York, NY, United States
- Department of Medicine, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
30
|
Pei J, Wei S, Pei Y, Wu H, Wang D. Role of Dietary Gluten in Development of Celiac Disease and Type I Diabetes: Management Beyond Gluten-Free Diet. Curr Med Chem 2019; 27:3555-3576. [PMID: 30963964 DOI: 10.2174/0929867326666190409120716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 11/22/2022]
Abstract
Gluten triggers Celiac Disease (CD) and type I diabetes in genetically predisposed population of human leukocyte antigen DQ2/DQ8+ and associates with disorders such as schizophrenia and autism. Application of a strict gluten-free diet is the only well-established treatment for patients with CD, whereas the treatment for patients with celiac type I diabetes may be depend on the timing and frequency of the diet. The application of a gluten-free diet in patients with CD may contribute to the development of metabolic syndrome and nonalcoholic fatty liver disease and may also lead to a high glycemic index, low fiber diet and micronutrient deficiencies. The alteration of copper bioavailability (deficient, excess or aberrant coordination) may contribute to the onset and progress of related pathologies. Therefore, nutrient intake of patients on a gluten-free diet should be the focus of future researches. Other gluten-based therapies have been rising with interest such as enzymatic pretreatment of gluten, oral enzyme supplements to digest dietary gluten, gluten removal by breeding wheat varieties with reduced or deleted gluten toxicity, the development of polymeric binders to suppress gluten induced pathology.
Collapse
Affiliation(s)
- Jinli Pei
- Hainan Province Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Hainan, 570228, China.,Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Hainan 570228, China
| | - Shuangshuang Wei
- Hainan Province Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Hainan, 570228, China.,Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Hainan 570228, China
| | - Yechun Pei
- Hainan Province Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Hainan, 570228, China.,Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Hainan 570228, China
| | - Hao Wu
- Hainan Province Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Hainan, 570228, China.,Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Hainan 570228, China
| | - Dayong Wang
- Hainan Province Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Hainan, 570228, China.,Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Hainan 570228, China
| |
Collapse
|
31
|
Kumar A, Kapoor P, Chunduri V, Sharma S, Garg M. Potential of Aegilops sp. for Improvement of Grain Processing and Nutritional Quality in Wheat ( Triticum aestivum). FRONTIERS IN PLANT SCIENCE 2019; 10:308. [PMID: 30936886 PMCID: PMC6431632 DOI: 10.3389/fpls.2019.00308] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Wheat is one of the most important staple crops in the world and good source of calories and nutrition. Its flour and dough have unique physical properties and can be processed to make unique products like bread, cakes, biscuits, pasta, noodles etc., which is not possible from other staple crops. Due to domestication, the genetic variability of the genes coding for different economically important traits in wheat is narrow. This genetic variability can be increased by utilizing its wild relatives. Its closest relative, genus Aegilops can be an important source of new alleles. Aegilops has played a very important role in evolution of tetraploid and hexaploid wheat. It consists of 22 species with C, D, M, N, S, T and U genomes with high allelic diversity relative to wheat. Its utilization for wheat improvement for various abiotic and biotic stresses has been reported by various scientific publications. Here in, for the first time, we review the potential of Aegilops for improvement of processing and nutritional traits in wheat. Among processing quality related gluten proteins; high molecular weight glutenins (HMW GS), being easiest to study have been explored in highest number of accessions or lines i.e., 681 belonging to 13 species and selected ones like Ae. searsii, Ae. geniculata and Ae. longissima have been linked with improved bread making quality of wheat. Gliadins and low molecular weight glutenins (LMW GS) have also been extensively explored for wheat improvement and Ae. umbellulata specific LMW GS have been linked with wheat bread making quality improvement. Aegilops has been explored for seed texture diversity and proteins like puroindolins (Pin) and grain softness proteins (GSP). For nutrition quality improvement, it has been screened for essential micronutrients like Fe, Zn, phytochemicals like carotenoids and dietary fibers like arabinoxylan and β-glucan. Ae. kotschyi and Ae. biuncialis transfer in wheat have been associated with higher Fe, Zn content. In this article we have tried to compile information available on exploration of nutritional and processing quality related traits in Aegilops section and their utilization for wheat improvement by different approaches.
Collapse
|
32
|
Noma S, Hayakawa K, Abe C, Suzuki S, Kawaura K. Contribution of α-gliadin alleles to the extensibility of flour dough in Japanese wheat cultivars. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2018.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
33
|
Dubois B, Bertin P, Hautier L, Muhovski Y, Escarnot E, Mingeot D. Genetic and environmental factors affecting the expression of α-gliadin canonical epitopes involved in celiac disease in a wide collection of spelt (Triticum aestivum ssp. spelta) cultivars and landraces. BMC PLANT BIOLOGY 2018; 18:262. [PMID: 30382818 PMCID: PMC6211434 DOI: 10.1186/s12870-018-1487-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Celiac disease (CD) is an autoimmune disorder affecting genetically predisposed individuals whose dietary gluten proteins trigger an inflammatory reaction in the small intestine. Gluten is found in the seeds of cereals like bread wheat (Triticum aestivum ssp. aestivum) and spelt (Triticum aestivum ssp. spelta). The development of new varieties lacking immunogenic peptides is one of the strategies currently investigated to address the CD problem. Among gluten proteins, α-gliadins display the strongest immunogenicity with four main T-cell stimulatory epitopes. The objective of this work was to study the expression of α-gliadin epitopes related to CD in a wide collection of 121 spelt accessions (landraces and varieties, spring and winter accessions) from different provenances, and to analyze the correlation between the presence of epitope sequences in gDNA and their expression (cDNA). The effect of environmental factors (harvest year and N fertilization) on the epitope expression was also investigated. RESULTS TaqMan probes targeting the canonical form of the epitopes were used to evaluate the epitope expression levels. Significant variations in the amount of epitope transcripts were identified between accessions and according to the provenances. Spring accessions showed a significantly higher immunogenicity than winter ones and no influence of spelt breeding on the epitope expression levels could be assessed when comparing landraces and varieties from Northwestern Europe. No correlation was observed between quantitative PCR results obtained from cDNA and gDNA for 45 accessions tested, stressing the need to use markers focusing on epitope transcripts rather than on genomic sequences. A relative stability of the amount of epitopes expressed by a same accession across four harvest years was detected. The fertilization strategy, evaluated through seven N fertilization modalities applied to two commercial spelt varieties, did not influence the epitope expression of the first variety, whereas it had a slight effect for the second one. CONCLUSIONS The results obtained in this work showed that the CD-related epitope expression greatly fluctuated among the spelt accessions studied. This expression was not correlated to the epitope genomic occurrence and environmental factors had almost no influence on the amount of epitope transcripts.
Collapse
Affiliation(s)
- Benjamin Dubois
- Unit of Bioengineering, Department of Life Sciences, Walloon Agricultural Research Center, Gembloux, Belgium
- Earth and Life Institute-Agronomy, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Pierre Bertin
- Earth and Life Institute-Agronomy, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Louis Hautier
- Unit of Plant protection and ecotoxicology, Department of Life Sciences, Walloon Agricultural Research Center, Gembloux, Belgium
| | - Yordan Muhovski
- Unit of Bioengineering, Department of Life Sciences, Walloon Agricultural Research Center, Gembloux, Belgium
| | - Emmanuelle Escarnot
- Unit of Breeding and biodiversity, Department of Life Sciences, Walloon Agricultural Research Center, Gembloux, Belgium
| | - Dominique Mingeot
- Unit of Bioengineering, Department of Life Sciences, Walloon Agricultural Research Center, Gembloux, Belgium
| |
Collapse
|
34
|
Pearson RM, Podojil JR, Shea LD, King NJC, Miller SD, Getts DR. Overcoming challenges in treating autoimmuntity: Development of tolerogenic immune-modifying nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 18:282-291. [PMID: 30352312 DOI: 10.1016/j.nano.2018.10.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/02/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022]
Abstract
Autoimmune diseases, such as celiac disease, multiple sclerosis, and type 1 diabetes, are leading causes of morbidity and mortality in the United States. In these disease states, immune regulatory mechanisms fail that result in T and B cell-mediated destruction of self-tissues. The known role of T cells in mediating autoimmune diseases has led to the emergence of numerous therapies aimed at inactivating T cells, however successful 'tolerance-inducing' strategies have not yet emerged for approved standard-of-care clinical use. In this review, we describe relevant examples of antigen-specific tolerance approaches that have been applied in clinical trials for human diseases. Furthermore, we describe the evolution of biomaterial approaches from cell-based therapies to induce immune tolerance with a focus on the Tolerogenic Immune-Modifying nanoParticle (TIMP) platform. The TIMP platform can be designed to treat various autoimmune conditions and is currently in clinical trials testing its ability to reverse celiac disease.
Collapse
Affiliation(s)
- Ryan M Pearson
- Research & Development, Cour Pharmaceuticals Development Company, Northbrook, IL, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Joseph R Podojil
- Research & Development, Cour Pharmaceuticals Development Company, Northbrook, IL, USA; Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lonnie D Shea
- Research & Development, Cour Pharmaceuticals Development Company, Northbrook, IL, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas J C King
- Research & Development, Cour Pharmaceuticals Development Company, Northbrook, IL, USA; Bosch Institute and Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Medical Sciences Sydney Medical School, University of Sydney, Australia
| | - Stephen D Miller
- Research & Development, Cour Pharmaceuticals Development Company, Northbrook, IL, USA; Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Daniel R Getts
- Research & Development, Cour Pharmaceuticals Development Company, Northbrook, IL, USA; Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
35
|
Li D, Jin H, Zhang K, Wang Z, Wang F, Zhao Y, Huo N, Liu X, Gu YQ, Wang D, Dong L. Analysis of the Gli-D2 locus identifies a genetic target for simultaneously improving the breadmaking and health-related traits of common wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:414-426. [PMID: 29752764 DOI: 10.1111/tpj.13956] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 05/22/2023]
Abstract
Gliadins are a major component of wheat seed proteins. However, the complex homoeologous Gli-2 loci (Gli-A2, -B2 and -D2) that encode the α-gliadins in commercial wheat are still poorly understood. Here we analyzed the Gli-D2 locus of Xiaoyan 81 (Xy81), a winter wheat cultivar. A total of 421.091 kb of the Gli-D2 sequence was assembled from sequencing multiple bacterial artificial clones, and 10 α-gliadin genes were annotated. Comparative genomic analysis showed that Xy81 carried only eight of the α-gliadin genes of the D genome donor Aegilops tauschii, with two of them each experiencing a tandem duplication. A mutant line lacking Gli-D2 (DLGliD2) consistently exhibited better breadmaking quality and dough functionalities than its progenitor Xy81, but without penalties in other agronomic traits. It also had an elevated lysine content in the grains. Transcriptome analysis verified the lack of Gli-D2 α-gliadin gene expression in DLGliD2. Furthermore, the transcript and protein levels of protein disulfide isomerase were both upregulated in DLGliD2 grains. Consistent with this finding, DLGliD2 had increased disulfide content in the flour. Our work sheds light on the structure and function of Gli-D2 in commercial wheat, and suggests that the removal of Gli-D2 and the gliadins specified by it is likely to be useful for simultaneously enhancing the end-use and health-related traits of common wheat. Because gliadins and homologous proteins are widely present in grass species, the strategy and information reported here may be broadly useful for improving the quality traits of diverse cereal crops.
Collapse
Affiliation(s)
- Da Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huaibing Jin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kunpu Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Agronomy and State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhaojun Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Faming Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yue Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Naxin Huo
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, 94710, USA
| | - Xin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong Q Gu
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, 94710, USA
| | - Daowen Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Agronomy and State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lingli Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
36
|
Cho K, Beom HR, Jang YR, Altenbach SB, Vensel WH, Simon-Buss A, Lim SH, Kim MG, Lee JY. Proteomic Profiling and Epitope Analysis of the Complex α-, γ-, and ω-Gliadin Families in a Commercial Bread Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:818. [PMID: 29971078 PMCID: PMC6018075 DOI: 10.3389/fpls.2018.00818] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/28/2018] [Indexed: 05/24/2023]
Abstract
Wheat gliadins are a complex group of proteins that contribute to the functional properties of wheat flour doughs and contain epitopes that are relevant for celiac disease (CD) and wheat-dependent exercise-induced anaphylaxis (WDEIA). In this study, we extracted ethanol-soluble gliadin fractions from flour of the Korean bread wheat cultivar Keumkang. Proteins were separated by 2-dimensional gel electrophoresis (2-DE) using a pI range of 6-11 in the first dimension and subjected to tandem mass spectrometry. α-, γ-, and ω-gliadins were identified as the predominant proteins in 31, 28, and one 2-DE spot, respectively. An additional six ω-gliadins were identified in a separate experiment in which a pI range of 3-11 was used for protein separation. We analyzed the composition of CD- and WDEIA-relevant epitopes in the gliadin sequences from Keumkang flour, demonstrating the immunogenic potential of this cultivar. Detailed knowledge about the complement of gliadins accumulated in Keumkang flour provides the background necessary to devise either breeding or biotechnology strategies to improve the functional properties and reduce the adverse health effects of the flour.
Collapse
Affiliation(s)
- Kyoungwon Cho
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Hye-Rang Beom
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - You-Ran Jang
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Susan B. Altenbach
- Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service, Albany, CA, United States
| | - William H. Vensel
- Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service, Albany, CA, United States
| | - Annamaria Simon-Buss
- Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service, Albany, CA, United States
| | - Sun-Hyung Lim
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Min G. Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Jong-Yeol Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| |
Collapse
|
37
|
Huo N, Zhu T, Altenbach S, Dong L, Wang Y, Mohr T, Liu Z, Dvorak J, Luo MC, Gu YQ. Dynamic Evolution of α-Gliadin Prolamin Gene Family in Homeologous Genomes of Hexaploid Wheat. Sci Rep 2018; 8:5181. [PMID: 29581476 PMCID: PMC5980091 DOI: 10.1038/s41598-018-23570-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
Wheat Gli-2 loci encode complex groups of α-gliadin prolamins that are important for breadmaking, but also major triggers of celiac disease (CD). Elucidation of α-gliadin evolution provides knowledge to produce wheat with better end-use properties and reduced immunogenic potential. The Gli-2 loci contain a large number of tandemly duplicated genes and highly repetitive DNA, making sequence assembly of their genomic regions challenging. Here, we constructed high-quality sequences spanning the three wheat homeologous α-gliadin loci by aligning PacBio-based sequence contigs with BioNano genome maps. A total of 47 α-gliadin genes were identified with only 26 encoding intact full-length protein products. Analyses of α-gliadin loci and phylogenetic tree reconstruction indicate significant duplications of α-gliadin genes in the last ~2.5 million years after the divergence of the A, B and D genomes, supporting its rapid lineage-independent expansion in different Triticeae genomes. We showed that dramatic divergence in expression of α-gliadin genes could not be attributed to sequence variations in the promoter regions. The study also provided insights into the evolution of CD epitopes and identified a single indel event in the hexaploid wheat D genome that likely resulted in the generation of the highly toxic 33-mer CD epitope.
Collapse
Affiliation(s)
- Naxin Huo
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, 94710, USA.,Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Tingting Zhu
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Susan Altenbach
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, 94710, USA
| | - Lingli Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Wang
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, 94710, USA
| | - Toni Mohr
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, 94710, USA
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| | - Yong Q Gu
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, 94710, USA.
| |
Collapse
|
38
|
Wang D, Zhang K, Dong L, Dong Z, Li Y, Hussain A, Zhai H. Molecular genetic and genomic analysis of wheat milling and end-use traits in China: Progress and perspectives. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2017.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Kawaura K, Miura M, Kamei Y, Ikeda TM, Ogihara Y. Molecular characterization of gliadins of Chinese Spring wheat in relation to celiac disease elicitors. Genes Genet Syst 2018; 93:9-20. [PMID: 29343665 DOI: 10.1266/ggs.17-00034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The wheat seed storage proteins gliadin and glutenin are encoded by multigenes. Gliadins are further classified into α-, γ-, δ- and ω-gliadins. Genes encoding α-gliadins belong to a large multigene family, whose members are located on the homoeologous group 6 chromosomes at the Gli-2 loci. Genes encoding other gliadins are located on the homoeologous group 1 chromosomes at the Gli-1 loci. Two-dimensional polyacrylamide gel electrophoresis (2-DE) was used to characterize and profile the gliadins. The gliadins in aneuploid Chinese Spring wheat lines were then compared in this study. Gliadin proteins separated into 70 spots after 2-DE and a total of 10, 10 and 16 spots were encoded on chromosomes 6A, 6B and 6D, respectively, which suggested that they were α-gliadins. Similarly, six, three and seven spots were encoded on chromosomes 1A, 1B and 1D, respectively, which indicated that they were γ-gliadins. Spots that could not be assigned to chromosomes were N-terminally sequenced and were all determined to be α-gliadins or γ-gliadins. The 2-DE profiles showed that specific α-gliadin spots assigned to chromosome 6D were lost in tetrasomic chromosome 2A lines. Furthermore, western blotting against the Glia-α9 peptide, an epitope for celiac disease (CD), suggested that α-gliadins harboring the CD epitope on chromosome 6D were absent in the tetrasomic chromosome 2A lines. Systematic analysis of α-gliadins using 2-DE, quantitative RT-PCR and genomic PCR revealed that tetrasomic 2A lines carry deletion of a chromosome segment at the Gli-D2 locus. This structural alteration at the Gli-D2 locus may provide a genetic resource in breeding programs for the reduction of CD immunotoxicity.
Collapse
Affiliation(s)
- Kanako Kawaura
- Kihara Institute for Biological Research, Yokohama City University
| | - Mayuko Miura
- Kihara Institute for Biological Research, Yokohama City University
| | - Yoko Kamei
- Kihara Institute for Biological Research, Yokohama City University
| | - Tatsuya M Ikeda
- Western Region Agricultural Research Center, National Agriculture and Food Research Organization
| | - Yasunari Ogihara
- Kihara Institute for Biological Research, Yokohama City University
| |
Collapse
|
40
|
Camerlengo F, Sestili F, Silvestri M, Colaprico G, Margiotta B, Ruggeri R, Lupi R, Masci S, Lafiandra D. Production and molecular characterization of bread wheat lines with reduced amount of α-type gliadins. BMC PLANT BIOLOGY 2017; 17:248. [PMID: 29258439 PMCID: PMC5738072 DOI: 10.1186/s12870-017-1211-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/08/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND Among wheat gluten proteins, the α-type gliadins are the major responsible for celiac disease, an autoimmune disorder that affects about 1% of the world population. In fact, these proteins contain several toxic and immunogenic epitopes that trigger the onset of the disease. The α-type gliadins are a multigene family, encoded by genes located at the complex Gli-2 loci. RESULTS Here, three bread wheat deletion lines (Gli-A2, Gli-D2 and Gli-A2/Gli-D2) at the Gli-2 loci were generated by the introgression in the bread wheat cultivar Pegaso of natural mutations, detected in different bread wheat cultivars. The molecular characterization of these lines allowed the isolation of 49 unique expressed genes coding α-type gliadins, that were assigned to each of the three Gli-2 loci. The number and the amount of α-type gliadin transcripts were drastically reduced in the deletion lines. In particular, the line Gli-A2/Gli-D2 contained only 12 active α-type gliadin genes (-75.6% respect to the cv. Pegaso) and a minor level of transcripts (-80% compared to cv. Pegaso). Compensatory pleiotropic effects were observed in the two other classes of gliadins (ω- and γ-gliadins) either at gene expression or protein levels. Although the comparative analysis of the deduced amino acid sequences highlighted the typical structural features of α-type gliadin proteins, substantial differences were displayed among the 49 proteins for the presence of toxic and immunogenic epitopes. CONCLUSION The deletion line Gli-A2/Gli-D2 did not contain the 33-mer peptide, one of the major epitopes triggering the celiac disease, representing an interesting material to develop less "toxic" wheat varieties.
Collapse
Affiliation(s)
- Francesco Camerlengo
- Department of Agriculture and Forestry Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Francesco Sestili
- Department of Agriculture and Forestry Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Marco Silvestri
- Institute of Biosciences and Bioresources, CNR, 70126 Bari, Italy
| | | | | | - Roberto Ruggeri
- Department of Agriculture and Forestry Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Roberta Lupi
- Department of Agriculture and Forestry Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Stefania Masci
- Department of Agriculture and Forestry Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Domenico Lafiandra
- Department of Agriculture and Forestry Sciences, University of Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
41
|
Kerpes R, Fischer S, Becker T. The production of gluten-free beer: Degradation of hordeins during malting and brewing and the application of modern process technology focusing on endogenous malt peptidases. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|