1
|
Midroni J, Salunkhe R, Liu Z, Chow R, Boldt G, Palma D, Hoover D, Vinogradskiy Y, Raman S. Incorporation of Functional Lung Imaging Into Radiation Therapy Planning in Patients With Lung Cancer: A Systematic Review and Meta-Analysis. Int J Radiat Oncol Biol Phys 2024; 120:370-408. [PMID: 38631538 PMCID: PMC11580018 DOI: 10.1016/j.ijrobp.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
Our purpose was to provide an understanding of current functional lung imaging (FLI) techniques and their potential to improve dosimetry and outcomes for patients with lung cancer receiving radiation therapy (RT). Excerpta Medica dataBASE (EMBASE), PubMed, and Cochrane Library were searched from 1990 until April 2023. Articles were included if they reported on FLI in one of: techniques, incorporation into RT planning for lung cancer, or quantification of RT-related outcomes for patients with lung cancer. Studies involving all RT modalities, including stereotactic body RT and particle therapy, were included. Meta-analyses were conducted to investigate differences in dose-function parameters between anatomic and functional RT planning techniques, as well as to investigate correlations of dose-function parameters with grade 2+ radiation pneumonitis (RP). One hundred seventy-eight studies were included in the narrative synthesis. We report on FLI modalities, dose-response quantification, functional lung (FL) definitions, FL avoidance techniques, and correlations between FL irradiation and toxicity. Meta-analysis results show that FL avoidance planning gives statistically significant absolute reductions of 3.22% to the fraction of well-ventilated lung receiving 20 Gy or more, 3.52% to the fraction of well-perfused lung receiving 20 Gy or more, 1.3 Gy to the mean dose to the well-ventilated lung, and 2.41 Gy to the mean dose to the well-perfused lung. Increases in the threshold value for defining FL are associated with decreases in functional parameters. For intensity modulated RT and volumetric modulated arc therapy, avoidance planning results in a 13% rate of grade 2+ RP, which is reduced compared with results from conventional planning cohorts. A trend of increased predictive ability for grade 2+ RP was seen in models using FL information but was not statistically significant. FLI shows promise as a method to spare FL during thoracic RT, but interventional trials related to FL avoidance planning are sparse. Such trials are critical to understanding the effect of FL avoidance planning on toxicity reduction and patient outcomes.
Collapse
Affiliation(s)
- Julie Midroni
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Radiation Medicine Program, Princess Margaret Cancer Center, Toronto, Canada
| | - Rohan Salunkhe
- Radiation Medicine Program, Princess Margaret Cancer Center, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Zhihui Liu
- Biostatistics, Princess Margaret Cancer Center, Toronto, Canada
| | - Ronald Chow
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Radiation Medicine Program, Princess Margaret Cancer Center, Toronto, Canada; London Regional Cancer Program, London Health Sciences Centre, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Gabriel Boldt
- London Regional Cancer Program, London Health Sciences Centre, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - David Palma
- London Regional Cancer Program, London Health Sciences Centre, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada; Ontario Institute for Cancer Research, Toronto, Canada
| | - Douglas Hoover
- London Regional Cancer Program, London Health Sciences Centre, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Yevgeniy Vinogradskiy
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, United States of America; Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, United States of America
| | - Srinivas Raman
- Radiation Medicine Program, Princess Margaret Cancer Center, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada.
| |
Collapse
|
2
|
Zhou PX, Zhang SX. Functional lung imaging in thoracic tumor radiotherapy: Application and progress. Front Oncol 2022; 12:908345. [PMID: 36212454 PMCID: PMC9544588 DOI: 10.3389/fonc.2022.908345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy plays an irreplaceable and unique role in treating thoracic tumors, but the occurrence of radiation-induced lung injury has limited the increase in tumor target doses and has influenced patients' quality of life. However, the introduction of functional lung imaging has been incorporating functional lungs into radiotherapy planning. The design of the functional lung protection plan, while meeting the target dose requirements and dose limitations of the organs at risk (OARs), minimizes the radiation dose to the functional lung, thus reducing the occurrence of radiation-induced lung injury. In this manuscript, we mainly reviewed the lung ventilation or/and perfusion functional imaging modalities, application, and progress, as well as the results based on the functional lung protection planning in thoracic tumors. In addition, we also discussed the problems that should be explored and further studied in the practical application based on functional lung radiotherapy planning.
Collapse
Affiliation(s)
- Pi-Xiao Zhou
- Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Department of Oncology, The First People's Hospital of Changde City, Changde, China
| | - Shu-Xu Zhang
- Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Functional lung imaging in radiation therapy for lung cancer: A systematic review and meta-analysis. Radiother Oncol 2018; 129:196-208. [PMID: 30082143 DOI: 10.1016/j.radonc.2018.07.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/14/2018] [Accepted: 07/18/2018] [Indexed: 12/25/2022]
Abstract
RATIONALE Advanced imaging techniques allow functional information to be derived and integrated into treatment planning. METHODS A systematic review was conducted with the primary objective to evaluate the ability of functional lung imaging to predict risk of radiation pneumonitis. Secondary objectives were to evaluate dose-response relationships on post treatment functional imaging and assess the utility in including functional lung information into treatment planning. A structured search for publications was performed following PRISMA guidelines and registered on PROSPERO. RESULTS 814 articles were screened against review criteria and 114 publications met criteria. Methods of identifying functional lung included using CT, MRI, SPECT and PET to image ventilation or perfusion. Six studies compared differences between functional and anatomical lung imaging at predicting radiation pneumonitis. These found higher predictive values using functional lung imaging. Twenty-one studies identified a dose-response relationship on post-treatment functional lung imaging. Nineteen planning studies demonstrated the ability of functional lung optimised planning techniques to spare regions of functional lung. Meta-analysis of these studies found that mean (95% CI) functional volume receiving 20 Gy was reduced by 4.2% [95% CI: 2.3: 6.0] and mean lung dose by 2.2 Gy [95% CI: 1.2: 3.3] when plans were optimised to spare functional lung. There was significant variation between publications in the definition of functional lung. CONCLUSION Functional lung imaging may have potential utility in radiation therapy planning and delivery, although significant heterogeneity was identified in approaches and reporting. Recommendations have been made based on the available evidence for future functional lung trials.
Collapse
|