1
|
Hsu SH, Yang HY, Chang CC, Tsai SK, Li C, Chang MY, Ko YC, Chou LF, Tsai CY, Tian YC, Yang CW. Blocking pathogenic Leptospira invasion with aptamer molecules targeting outer membrane LipL32 protein. Microbes Infect 2024; 26:105299. [PMID: 38224944 DOI: 10.1016/j.micinf.2024.105299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
This study aimed to develop aptamers targeting LipL32, a most abundant lipoprotein in pathogenic Leptospira, to hinder bacterial invasion. The objectives were to identify high-affinity aptamers through SELEX and evaluate their specificity and inhibitory effects. SELEX was employed to generate LipL32 aptamers (L32APs) over 15 rounds of selection. L32APs' binding affinity and specificity for pathogenic Leptospira were assessed. Their ability to inhibit LipL32-ECM interaction and Leptospira invasion was investigated. Animal studies were conducted to evaluate the impact of L32AP treatment on survival rates, Leptospira colonization, and kidney damage. Three L32APs with strong binding affinity were identified. They selectively detected pathogenic Leptospira, sparing non-pathogenic strains. L32APs inhibited LipL32-ECM interaction and Leptospira invasion. In animal studies, L32AP administration significantly improved survival rates, reduced Leptospira colonies, and mitigated kidney damage compared to infection alone. This pioneering research developed functional aptamers targeting pathogenic Leptospira. The identified L32APs exhibited high affinity, pathogen selectivity, and inhibition of invasion and ECM interaction. L32AP treatment showed promising results, enhancing survival rates and reducing Leptospira colonization and kidney damage. These findings demonstrate the potential of aptamers to impede pathogenic Leptospira invasion and aid in recovery from Leptospira-induced kidney injury (190 words).
Collapse
Affiliation(s)
- Shen-Hsing Hsu
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan.
| | - Huang-Yu Yang
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chia-Chen Chang
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | | | - Chien Li
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ming-Yang Chang
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Ching Ko
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Li-Fang Chou
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chung-Ying Tsai
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ya-Chung Tian
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Wei Yang
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Shafiei N, Mahmoodzadeh Hosseini H, Amani J, Mirhosseini SA, Jafary H. Screening and Identification of DNA Nanostructure Aptamer Using the SELEX Method for Detection of Epsilon Toxin. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e140505. [PMID: 38444705 PMCID: PMC10912870 DOI: 10.5812/ijpr-140505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 03/07/2024]
Abstract
Background Epsilon toxin (ETX), produced by Clostridium perfringens, is one of the most potent toxins known, with a lethal potency approaching that of botulinum neurotoxins. Epsilon toxin is responsible for enteritis. Therefore, the development of rapid and simple methods to detect ETX is imperative. Aptamers are single-stranded oligonucleotides that can bind tightly to specific target molecules with an affinity comparable to that of monoclonal antibodies (mAbs). DNA aptamers can serve as tools for the molecular identification of organisms, such as pathogen subspecies. Objectives This study aimed to isolate high-affinity single-stranded DNA (ssDNA) aptamers against ETX. Methods This study identified aptamers using the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) method, enzyme-linked apta-sorbent assay (ELASA), and surface plasmon resonance (SPR) to determine the affinity and specificity of the newly obtained aptamers targeting ETX. Results Several aptamers obtained through the SELEX process were studied. Among them, 2 aptamers, ETX clone 3 (ETX3; dissociation constant (Kd = 8.4 ± 2.4E-9M) and ETX11 (Kd = 6.3 ± 1.3E-9M) had favorable specificity for ETX. The limits of detection were 0.21 and 0.08 μg/mL for ETX3 and ETX11, respectively.. Conclusions The discovered aptamers can be used in various aptamer-based rapid diagnostic tests for the detection of ETX.
Collapse
Affiliation(s)
- Nafiseh Shafiei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hanieh Jafary
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Onaş AM, Dascălu C, Raicopol MD, Pilan L. Critical Design Factors for Electrochemical Aptasensors Based on Target-Induced Conformational Changes: The Case of Small-Molecule Targets. BIOSENSORS 2022; 12:816. [PMID: 36290952 PMCID: PMC9599214 DOI: 10.3390/bios12100816] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Nucleic-acid aptamers consisting in single-stranded DNA oligonucleotides emerged as very promising biorecognition elements for electrochemical biosensors applied in various fields such as medicine, environmental, and food safety. Despite their outstanding features, such as high-binding affinity for a broad range of targets, high stability, low cost and ease of modification, numerous challenges had to be overcome from the aptamer selection process on the design of functioning biosensing devices. Moreover, in the case of small molecules such as metabolites, toxins, drugs, etc., obtaining efficient binding aptamer sequences proved a challenging task given their small molecular surface and limited interactions between their functional groups and aptamer sequences. Thus, establishing consistent evaluation standards for aptamer affinity is crucial for the success of these aptamers in biosensing applications. In this context, this article will give an overview on the thermodynamic and structural aspects of the aptamer-target interaction, its specificity and selectivity, and will also highlight the current methods employed for determining the aptamer-binding affinity and the structural characterization of the aptamer-target complex. The critical aspects regarding the generation of aptamer-modified electrodes suitable for electrochemical sensing, such as appropriate bioreceptor immobilization strategy and experimental conditions which facilitate a convenient anchoring and stability of the aptamer, are also discussed. The review also summarizes some effective small molecule aptasensing platforms from the recent literature.
Collapse
Affiliation(s)
- Andra Mihaela Onaş
- Advanced Polymer Materials Group, University ‘Politehnica’ of Bucharest, 1-7 Gheorghe Polizu, District 1, 011061 Bucharest, Romania
| | - Constanţa Dascălu
- Faculty of Applied Sciences, University ‘Politehnica’ of Bucharest, 313 Splaiul Independenţei, District 6, 060042 Bucharest, Romania
| | - Matei D. Raicopol
- Faculty of Chemical Engineering and Biotechnologies, University ‘Politehnica’ of Bucharest, 1-7 Gheorghe Polizu, District 1, 011061 Bucharest, Romania
| | - Luisa Pilan
- Faculty of Chemical Engineering and Biotechnologies, University ‘Politehnica’ of Bucharest, 1-7 Gheorghe Polizu, District 1, 011061 Bucharest, Romania
| |
Collapse
|
4
|
Evtugyn G, Porfireva A, Tsekenis G, Oravczova V, Hianik T. Electrochemical Aptasensors for Antibiotics Detection: Recent Achievements and Applications for Monitoring Food Safety. SENSORS (BASEL, SWITZERLAND) 2022; 22:3684. [PMID: 35632093 PMCID: PMC9143886 DOI: 10.3390/s22103684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics are often used in human and veterinary medicine for the treatment of bacterial diseases. However, extensive use of antibiotics in agriculture can result in the contamination of common food staples such as milk. Consumption of contaminated products can cause serious illness and a rise in antibiotic resistance. Conventional methods of antibiotics detection such are microbiological assays chromatographic and mass spectroscopy methods are sensitive; however, they require qualified personnel, expensive instruments, and sample pretreatment. Biosensor technology can overcome these drawbacks. This review is focused on the recent achievements in the electrochemical biosensors based on nucleic acid aptamers for antibiotic detection. A brief explanation of conventional methods of antibiotic detection is also provided. The methods of the aptamer selection are explained, together with the approach used for the improvement of aptamer affinity by post-SELEX modification and computer modeling. The substantial focus of this review is on the explanation of the principles of the electrochemical detection of antibiotics by aptasensors and on recent achievements in the development of electrochemical aptasensors. The current trends and problems in practical applications of aptasensors are also discussed.
Collapse
Affiliation(s)
- Gennady Evtugyn
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (G.E.); (A.P.)
- Analytical Chemistry Department, Chemical Technology Institute, Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
| | - Anna Porfireva
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (G.E.); (A.P.)
| | - George Tsekenis
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece;
| | - Veronika Oravczova
- Department of Nuclear Physics and Biophysics, Comenius University, Mlynska Dolina F1, 842 48 Bratislava, Slovakia;
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Comenius University, Mlynska Dolina F1, 842 48 Bratislava, Slovakia;
| |
Collapse
|
5
|
Komarova N, Panova O, Titov A, Kuznetsov A. Aptamers Targeting Cardiac Biomarkers as an Analytical Tool for the Diagnostics of Cardiovascular Diseases: A Review. Biomedicines 2022; 10:biomedicines10051085. [PMID: 35625822 PMCID: PMC9138532 DOI: 10.3390/biomedicines10051085] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
The detection of cardiac biomarkers is used for diagnostics, prognostics, and the risk assessment of cardiovascular diseases. The analysis of cardiac biomarkers is routinely performed with high-sensitivity immunological assays. Aptamers offer an attractive alternative to antibodies for analytical applications but, to date, are not widely practically implemented in diagnostics and medicinal research. This review summarizes the information on the most common cardiac biomarkers and the current state of aptamer research regarding these biomarkers. Aptamers as an analytical tool are well established for troponin I, troponin T, myoglobin, and C-reactive protein. For the rest of the considered cardiac biomarkers, the isolation of novel aptamers or more detailed characterization of the known aptamers are required. More attention should be addressed to the development of dual-aptamer sandwich detection assays and to the studies of aptamer sensing in alternative biological fluids. The universalization of aptamer-based biomarker detection platforms and the integration of aptamer-based sensing to clinical studies are demanded for the practical implementation of aptamers to routine diagnostics. Nevertheless, the wide usage of aptamers for the diagnostics of cardiovascular diseases is promising for the future, with respect to both point-of-care and laboratory testing.
Collapse
|
6
|
Advances in aptamer-based sensing assays for C-reactive protein. Anal Bioanal Chem 2021; 414:867-884. [PMID: 34581827 DOI: 10.1007/s00216-021-03674-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/28/2022]
Abstract
C-reactive protein (CRP), a non-specific acute-phase indicator of inflammation, has been widely recognized for its value in clinical diagnostic applications. With the advancement of testing technologies, there have been many reports on fast, simple, and reliable methods for CRP testing. Among these, the aptamer-based biosensors are the focus and hotspot of research for achieving high-sensitivity analysis of CRP. This review summarizes the progress of in vitro aptamer screening for CRP and the recent advances in aptamer-based CRP sensor applications, thus developing insight for the new CRP aptasensor design strategy.
Collapse
|
7
|
Trunzo NE, Hong KL. Recent Progress in the Identification of Aptamers Against Bacterial Origins and Their Diagnostic Applications. Int J Mol Sci 2020; 21:ijms21145074. [PMID: 32708376 PMCID: PMC7404326 DOI: 10.3390/ijms21145074] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022] Open
Abstract
Aptamers have gained an increasing role as the molecular recognition element (MRE) in diagnostic assay development, since their first conception thirty years ago. The process to screen for nucleic acid-based binding elements (aptamers) was first described in 1990 by the Gold Laboratory. In the last three decades, many aptamers have been identified for a wide array of targets. In particular, the number of reports on investigating single-stranded DNA (ssDNA) aptamer applications in biosensing and diagnostic platforms have increased significantly in recent years. This review article summarizes the recent (2015 to 2020) progress of ssDNA aptamer research on bacteria, proteins, and lipids of bacterial origins that have implications for human infections. The basic process of aptamer selection, the principles of aptamer-based biosensors, and future perspectives will also be discussed.
Collapse
|
8
|
Zhang N, Zhang ZK, Yu Y, Zhuo Z, Zhang G, Zhang BT. Pros and Cons of Denosumab Treatment for Osteoporosis and Implication for RANKL Aptamer Therapy. Front Cell Dev Biol 2020; 8:325. [PMID: 32478071 PMCID: PMC7240042 DOI: 10.3389/fcell.2020.00325] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/16/2020] [Indexed: 12/26/2022] Open
Abstract
Osteoporosis is age-related deterioration in bone mass and micro-architecture. Denosumab is a novel human monoclonal antibody for osteoporosis. It is a receptor activator of nuclear factor-κB ligand (RANKL) inhibitor, which binds to and inhibits osteoblast-produced RANKL, in turn reduces the binding between RANKL and osteoclast receptor RANK, therefore decreases osteoclast-mediated bone resorption and turnover. However, adverse events have also been reported after denosumab treatment, including skin eczema, flatulence, cellulitis and osteonecrosis of the jaw (ONJ). Extensive researches on the mechanism of adverse reactions caused by denosumab have been conducted and may provide new insights into developing new RANKL inhibitors that achieve better specificity and safety. Aptamers are single-stranded oligonucleotides that can bind to target molecules with high specificity and affinity. They are screened from large single-stranded synthetic oligonucleotides and enriched by a technology named SELEX (systematic evolution of ligands by exponential enrichment). With extra advantages such as high stability, low immunogenicity and easy production over antibodies, aptamers are hypothesized to be promising candidates for therapeutic drugs targeting RANKL to counteract osteoporosis. In this review, we focus on the pros and cons of denosumab treatment in osteoporosis and the implication for novel aptamer treatment.
Collapse
Affiliation(s)
- Ning Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zong-Kang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhenjian Zhuo
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Zhou Z, Zhao L, Li W, Chen M, Feng H, Shi X, Liang J, Li G. Glypican-3 electrochemical aptamer nanobiosensor based on hemin/graphene nanohybrids peroxidase-like catalytic silver deposition. Mikrochim Acta 2020; 187:305. [PMID: 32356075 DOI: 10.1007/s00604-020-04284-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/19/2020] [Indexed: 12/16/2022]
Abstract
A Glypican-3 (GPC3) electrochemical aptamer nanobiosensor based on hemin/graphene nanohybrids (HGNs) peroxidase-like catalytic silver deposition and GPC3 aptamer has been constructed for the determination of GPC3. The HGNs were prepared by an one-step reduction method. Fourier transform infrared spectroscopy (FT-IR), ultraviolet spectroscopy (UV-vis), and transmission electron microscopy (TEM) were used to study the structure and morphological characteristics of the HGNs. The GPC3 electrochemical aptamer nanobiosensor was constructed using HGNs-aptamer (HGNs-Apt) as the signal probe and GPC3 aptamer as the capture probe. With the help of the catalytic action of peroxidase-like properties of HGNs, H2O2 reduces the silver (Ag) ions in solution to metallic Ag, which deposit on the surface of the electrode. The amount of deposited Ag, which was derived from the amount of GPC3, was quantified by differential pulse voltammetry (DPV). Under optimal conditions, the current response of Ag had a good positive correlation with the GPC3 concentration in the range 10.0-100.0 μg mL-1 with a correlation coefficient of 0.9958. The detection limit was 3.16 μg mL-1 at a signal-to-noise ratio of 3, and the sensitivity was calculated to be 0.807 μA μM-1 cm-2. The method is validated by analyzing spiked human serum samples with good recovery ranging from 101 to 122%. In addition, the GPC3 electrochemical aptamer nanobiosensor has acceptable selectivity, stability, and reproducibility. Graphical abstract A Glypican-3 electrochemical aptamer nanobiosensor based on hemin/graphene nanohybrids (HGNs) peroxidase-like catalytic silver deposition and GPC3 aptamer has been constructed for the determination of GPC3. The electrochemical aptamer nanobiosensor exhibits high selectivity, acceptance reproducibility, and good recovery performances.
Collapse
Affiliation(s)
- Zhide Zhou
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, China
| | - Le Zhao
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, China
| | - Wenzhan Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, China
| | - Min Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, China
| | - Huafu Feng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, China
| | - Xiaohang Shi
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, China
| | - Jintao Liang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, China.
| | - Guiyin Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, China.
| |
Collapse
|
10
|
Modified DNA Aptamers for C-Reactive Protein and Lactate Dehydrogenase-5 with Sub-Nanomolar Affinities. Int J Mol Sci 2020; 21:ijms21082683. [PMID: 32294882 PMCID: PMC7215426 DOI: 10.3390/ijms21082683] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
Human C-reactive protein (CRP) and lactate dehydrogenase are important markers in clinical laboratory testing-the former is used to detect in vivo inflammation, and the latter is used to detect cell necrosis and tissue destruction. We developed aptamers that bind to human CRP and human lactate dehydrogenase-5 (LDH-5) with high affinities (dissociation constants of 6.2 pM and 235 pM, respectively), applying the systematic evolution of ligands by exponential enrichment (SELEX) method, and by using a modified DNA library containing the following base-appended base modifications: analog adenine derivative at the fifth position of uracil (Uad), analog guanine derivative at the fifth position of uracil (Ugu), and analog adenine derivative at the seventh position of adenine (Aad). A potential application of these aptamers as sensor elements includes high-sensitivity target detection in point-of-care testing.
Collapse
|
11
|
Nosaz Z, Rasoulinejad S, Mousavi Gargari SL. Development of a DNA aptamer to detect Brucella abortus and Brucella melitensis through cell SELEX. IRANIAN JOURNAL OF VETERINARY RESEARCH 2020; 21:294-300. [PMID: 33584842 PMCID: PMC7871736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Brucellosis is a zoonosis, caused by Brucella spp. which are small aerobic intracellular coccobacilli, localized in the reproductive organs of host animals, causing abortion and sterility. The diagnosis of this zoonosis is based on microbiological, serological or real time-polymerase chain reaction (RT-PCR) laboratory tests. Although the common microbiological and serological based assays have advantages, they are not able to solve the diagnosis problems. AIMS To overcome some of the limitations of present techniques, in this study, we developed an aptamer through whole-cell systematic evolution of Ligands by EXponential enrichment (SELEX) procedures to detect Brucella. METHODS We used mixture of Brucella melitensis and Brucella abortus as the target. In order to prepare the single-stranded DNA (ssDNA) aptamer, the DNA library was amplified with 5´-phosphorylated reverse primer and treated with lambda exonuclease. The SELEX procedure was performed by incubating the ssDNA pool with a bacterial suspension in a binding buffer. The selected procedures were monitored by flow cytometry using FITC-labelled forward primer. Aptamers with the highest binding affinity towards the target and the lowest to other strains were selected. RESULTS Two aptamers namely B20 and B21 showed significant binding affinity toward B. melitensis and B. abortus. The dissociation constant (Kd) for aptamers B20 and B21 was 40.179 ± 3.06 pM and 184.396 ± 465 pM, respectively. CONCLUSION The isolated aptamers were able to identify B. melitensis and B. abortus with a remarkable binding efficiency and appropriated Kd in a picoMolar range and therefore can be good candidates in the development of any rapid assay test implanted on routine brucellosis diagnoses.
Collapse
Affiliation(s)
- Z. Nosaz
- MSc in Microbial Biotechnology, Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran; ,These authors contributed equally to this work
| | - S. Rasoulinejad
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany; ,These authors contributed equally to this work
| | - S. L. Mousavi Gargari
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran,Correspondence: S. L. Mousavi Gargari, Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran. E-mail:
| |
Collapse
|
12
|
Wu Y, Belmonte I, Sykes KS, Xiao Y, White RJ. Perspective on the Future Role of Aptamers in Analytical Chemistry. Anal Chem 2019; 91:15335-15344. [PMID: 31714748 PMCID: PMC10184572 DOI: 10.1021/acs.analchem.9b03853] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It has been almost 30 years since the invention of Systematic Evolution of Ligands by Exponential Enrichment (SELEX) methodology and the description of the first aptamers. In retrospect over the past 30 years, advances in aptamer development and application have demonstrated that aptamers are potentially useful reagents that can be employed in diverse areas within analytical chemistry, biotechnology, biomedicine, and molecular biology. While often touted as artificial antibodies with an ability to be selected for any target, aptamer development, unfortunately, lags behind development of analytical methodologies that employ aptamers, hindering deeper integration into the application of analytical tool development. This perspective covers recent advances in SELEX methodology for improving efficiency of the SELEX procedure and enhancing affinity and specificity of the selected aptamers, what we view as a critical barrier in the future role of aptamers in analytical chemistry. We discuss postselection modifications that can be used for enhancing performance of the selected aptamers in an analytical device by including understanding intermolecular interaction forces in the binding domain. While highlighting promising properties of aptamers that enable several analytical advances, we provide discussion on the challenges of penetration of aptamers in the analytical field.
Collapse
Affiliation(s)
- Yao Wu
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Israel Belmonte
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Kiana S Sykes
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Yi Xiao
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Ryan J White
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221 , United States.,Department of Electrical Engineering and Computer Science , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| |
Collapse
|
13
|
Komarova N, Kuznetsov A. Inside the Black Box: What Makes SELEX Better? Molecules 2019; 24:E3598. [PMID: 31591283 PMCID: PMC6804172 DOI: 10.3390/molecules24193598] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023] Open
Abstract
Aptamers are small oligonucleotides that are capable of binding specifically to a target, with impressive potential for analysis, diagnostics, and therapeutics applications. Aptamers are isolated from large nucleic acid combinatorial libraries using an iterative selection process called SELEX (Systematic Evolution of Ligands by EXponential enrichment). Since being implemented 30 years ago, the SELEX protocol has undergone many modifications and improvements, but it remains a laborious, time-consuming, and costly method, and the results are not always successful. Each step in the aptamer selection protocol can influence its results. This review discusses key technical points of the SELEX procedure and their influence on the outcome of aptamer selection.
Collapse
Affiliation(s)
- Natalia Komarova
- Scientific-Manufacturing Complex Technological Centre, 1-7 Shokin Square, Zelenograd, Moscow 124498, Russia.
| | - Alexander Kuznetsov
- Scientific-Manufacturing Complex Technological Centre, 1-7 Shokin Square, Zelenograd, Moscow 124498, Russia.
| |
Collapse
|
14
|
Yan J, Xiong H, Cai S, Wen N, He Q, Liu Y, Peng D, Liu Z. Advances in aptamer screening technologies. Talanta 2019; 200:124-144. [DOI: 10.1016/j.talanta.2019.03.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/20/2019] [Accepted: 03/02/2019] [Indexed: 02/07/2023]
|
15
|
Wang T, Chen C, Larcher LM, Barrero RA, Veedu RN. Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development. Biotechnol Adv 2018; 37:28-50. [PMID: 30408510 DOI: 10.1016/j.biotechadv.2018.11.001] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/28/2018] [Accepted: 11/04/2018] [Indexed: 02/07/2023]
Abstract
Aptamers are short single-stranded nucleic acid sequences capable of binding to target molecules in a way similar to antibodies. Due to various advantages such as prolonged shelf life, low batch to batch variation, low/no immunogenicity, freedom to incorporate chemical modification for enhanced stability and targeting capacity, aptamers quickly found their potential in diverse applications ranging from therapy, drug delivery, diagnosis, and functional genomics to bio-sensing. Aptamers are generated by a process called SELEX. However, the current overall success rate of SELEX is far from being satisfactory, and still presents a major obstacle for aptamer-based research and application. The need for an efficient selection strategy consisting of defined procedures to deal with a wide variety of targets is significantly important. In this work, by analyzing key aspects of SELEX including initial library design, target preparation, PCR optimization, and single strand DNA separation, we provide a comprehensive analysis of individual steps to facilitate researchers intending to develop personalized protocols to address many of the obstacles in SELEX. In addition, this review provides suggestions and opinions for future aptamer development procedures to address the concerns on key SELEX steps, and post-SELEX modifications.
Collapse
Affiliation(s)
- Tao Wang
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia; Perron Institute for Neurological and Translational Science, Perth 6009, Australia; School of Nursing, Zhengzhou University & Nursing Department, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou 450001, China
| | - Changying Chen
- School of Nursing, Zhengzhou University & Nursing Department, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou 450001, China
| | - Leon M Larcher
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia
| | - Roberto A Barrero
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia
| | - Rakesh N Veedu
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia; Perron Institute for Neurological and Translational Science, Perth 6009, Australia.
| |
Collapse
|
16
|
Jia W, Lu Z, Yang H, Li H, Xu D. Elimination terminal fixed region screening and high-throughput kinetic determination of aptamer for lipocalin-1 by surface plasmon resonance imaging. Anal Chim Acta 2018; 1043:158-166. [PMID: 30392664 DOI: 10.1016/j.aca.2018.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022]
Abstract
A highly efficient method for eliminating terminal fixed region interference of aptamer with real-time monitoring of the SELEX process was described by silver decahedra nanoparticles probe (Ag10-A10-RP(15)) capture and block the terminal fixed region candidates. A microarray chip was developed by immobilization of target protein (lipocalin-1 (LCN-1)) and control proteins (Human serum albumin (HSA), Bovine serum albumin (BSA) and Holo-transferrin) on the biochip surface. The nucleic acid pool was first incubated with target and then captured by hybridization with Ag10-A10-RP(15). The work allows rapid screening of aptamer elimination fixed-region interference, and the kinetic constants of candidate sequences can be quickly determined using SPRi technology. Eventually, ten aptamers with high affinity and specific for LCN-1 after only fifth-round of selection was acquired.
Collapse
Affiliation(s)
- Wenchao Jia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhongyi Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Hao Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Hui Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Danke Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
17
|
Kalra P, Dhiman A, Cho WC, Bruno JG, Sharma TK. Simple Methods and Rational Design for Enhancing Aptamer Sensitivity and Specificity. Front Mol Biosci 2018; 5:41. [PMID: 29868605 PMCID: PMC5966647 DOI: 10.3389/fmolb.2018.00041] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/13/2018] [Indexed: 12/27/2022] Open
Abstract
Aptamers are structured nucleic acid molecules that can bind to their targets with high affinity and specificity. However, conventional SELEX (Systematic Evolution of Ligands by EXponential enrichment) methods may not necessarily produce aptamers of desired affinity and specificity. Thus, to address these questions, this perspective is intended to suggest some approaches and tips along with novel selection methods to enhance evolution of aptamers. This perspective covers latest novel innovations as well as a broad range of well-established approaches to improve the individual binding parameters (aptamer affinity, avidity, specificity and/or selectivity) of aptamers during and/or post-SELEX. The advantages and limitations of individual aptamer selection methods and post-SELEX optimizations, along with rational approaches to overcome these limitations are elucidated in each case. Further the impact of chosen selection milieus, linker-systems, aptamer cocktails and detection modules utilized in conjunction with target-specific aptamers, on the overall assay performance are discussed in detail, each with its own advantages and limitations. The simple variations suggested are easily available for facile implementation during and/or post-SELEX to develop ultrasensitive and specific assays. Finally, success studies of established aptamer-based assays are discussed, highlighting how they utilized some of the suggested methodologies to develop commercially successful point-of-care diagnostic assays.
Collapse
Affiliation(s)
- Priya Kalra
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Abhijeet Dhiman
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India.,Faculty of Pharmacy, Uttarakhand Technical University, Dehradun, India
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - John G Bruno
- Operational Technologies Corporation, San Antonio, TX, United States
| | - Tarun K Sharma
- Center for Biodesign and Diagnostics, Translational Health Science and Technology Institute, Faridabad, India.,AptaBharat Innovation Private Limited, Translational Health Science and Technology Institute Incubator, Faridabad, India
| |
Collapse
|
18
|
Vorobyeva MA, Davydova AS, Vorobjev PE, Pyshnyi DV, Venyaminova AG. Key Aspects of Nucleic Acid Library Design for in Vitro Selection. Int J Mol Sci 2018; 19:E470. [PMID: 29401748 PMCID: PMC5855692 DOI: 10.3390/ijms19020470] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid aptamers capable of selectively recognizing their target molecules have nowadays been established as powerful and tunable tools for biospecific applications, be it therapeutics, drug delivery systems or biosensors. It is now generally acknowledged that in vitro selection enables one to generate aptamers to almost any target of interest. However, the success of selection and the affinity of the resulting aptamers depend to a large extent on the nature and design of an initial random nucleic acid library. In this review, we summarize and discuss the most important features of the design of nucleic acid libraries for in vitro selection such as the nature of the library (DNA, RNA or modified nucleotides), the length of a randomized region and the presence of fixed sequences. We also compare and contrast different randomization strategies and consider computer methods of library design and some other aspects.
Collapse
Affiliation(s)
- Maria A. Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentiev Ave., 8, 630090 Novosibirsk, Russia; (A.S.D.); (P.E.V.); (D.V.P.); (A.G.V.)
| | - Anna S. Davydova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentiev Ave., 8, 630090 Novosibirsk, Russia; (A.S.D.); (P.E.V.); (D.V.P.); (A.G.V.)
| | - Pavel E. Vorobjev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentiev Ave., 8, 630090 Novosibirsk, Russia; (A.S.D.); (P.E.V.); (D.V.P.); (A.G.V.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova St., 2, 630090 Novosibirsk, Russia
| | - Dmitrii V. Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentiev Ave., 8, 630090 Novosibirsk, Russia; (A.S.D.); (P.E.V.); (D.V.P.); (A.G.V.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova St., 2, 630090 Novosibirsk, Russia
| | - Alya G. Venyaminova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentiev Ave., 8, 630090 Novosibirsk, Russia; (A.S.D.); (P.E.V.); (D.V.P.); (A.G.V.)
| |
Collapse
|
19
|
Lai JC, Horng HE, Hong CY. Multiplex Immunoassays Utilizing Differential Affinity Using Aptamers Generated by MARAS. Sci Rep 2017; 7:6397. [PMID: 28743943 PMCID: PMC5527020 DOI: 10.1038/s41598-017-06950-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/19/2017] [Indexed: 11/25/2022] Open
Abstract
Disease diagnosis typically requires to determine concentration of multiple biomarkers in patient serums. Here, a novel method for multiplex immunoassays is proposed and the feasibility is demonstrated. The method utilizes the differential affinity between aptamers and multiple analytes for multiplex immunoassays. During the selection, aptamers capable of binding to multiple analytes with different affinities are screened from a random oligonucleotide library using the MARAS procedure with different magnetic field conditions for different target analytes. During the detection, the same magnetic field conditions are applied to differentiate different target analytes in blind serums. The results show that the recovery rates of the spiked targets in BD buffer and blind serums are similar. Moreover, there is a minimal interference resulting from non-specific binding of molecules in serums other than the target molecules. Therefore, the use of differential affinities between aptamers and different analytes for multiplex immunoassays is proved to be feasible.
Collapse
Affiliation(s)
- Ji-Ching Lai
- Research Assistant Center, Chang Hua Show Chwan Health Care System, Changhua, Taiwan
| | - Horng-Er Horng
- Institute of Electro-optical Science and Technology, National Taiwan Normal University, Taipei, Taiwan
| | - Chin-Yih Hong
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
20
|
Li HH, Wen CY, Hong CY, Lai JC. Evaluation of aptamer specificity with or without primers using clinical samples for C-reactive protein by magnetic-assisted rapid aptamer selection. RSC Adv 2017. [DOI: 10.1039/c7ra07249j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aptamers with primer binding sites are necessary for the SELEX (Systematic Evolution of Ligands by EXponential enrichment) process.
Collapse
Affiliation(s)
- Huan-Hao Li
- Department of Mechanical Engineering
- Hong Kong Polytechnic University
- Hong Kong Special Administrative Region
- Hong Kong
| | - Chih-Yung Wen
- Department of Mechanical Engineering
- Hong Kong Polytechnic University
- Hong Kong Special Administrative Region
- Hong Kong
| | - Chin-Yih Hong
- Graduate Institute of Biomedical Engineering
- National Chung Hsing University
- Taichung
- Taiwan
| | - Ji-Ching Lai
- Institute of Electro-optical Science and Technology
- National Taiwan Normal University
- Taipei
- Taiwan
- Research Assistant Center
| |
Collapse
|