1
|
Li D. Structure and Function of the Glycosylphosphatidylinositol Transamidase, a Transmembrane Complex Catalyzing GPI Anchoring of Proteins. Subcell Biochem 2024; 104:425-458. [PMID: 38963495 DOI: 10.1007/978-3-031-58843-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Glycosylphosphatidylinositol (GPI) anchoring of proteins is a ubiquitous posttranslational modification in eukaryotic cells. GPI-anchored proteins (GPI-APs) play critical roles in enzymatic, signaling, regulatory, and adhesion processes. Over 20 enzymes are involved in GPI synthesis, attachment to client proteins, and remodeling after attachment. The GPI transamidase (GPI-T), a large complex located in the endoplasmic reticulum membrane, catalyzes the attachment step by replacing a C-terminal signal peptide of proproteins with GPI. In the last three decades, extensive research has been conducted on the mechanism of the transamidation reaction, the components of the GPI-T complex, the role of each subunit, and the substrate specificity. Two recent studies have reported the three-dimensional architecture of GPI-T, which represent the first structures of the pathway. The structures provide detailed mechanisms for assembly that rationalizes previous biochemical results and subunit-dependent stability data. While the structural data confirm the catalytic role of PIGK, which likely uses a caspase-like mechanism to cleave the proproteins, they suggest that unlike previously proposed, GPAA1 is not a catalytic subunit. The structures also reveal a shared cavity for GPI binding. Somewhat unexpectedly, PIGT, a single-pass membrane protein, plays a crucial role in GPI recognition. Consistent with the assembly mechanisms and the active site architecture, most of the disease mutations occur near the active site or the subunit interfaces. Finally, the catalytic dyad is located ~22 Å away from the membrane interface of the GPI-binding site, and this architecture may confer substrate specificity through topological matching between the substrates and the elongated active site. The research conducted thus far sheds light on the intricate processes involved in GPI anchoring and paves the way for further mechanistic studies of GPI-T.
Collapse
Affiliation(s)
- Dianfan Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai, China.
| |
Collapse
|
2
|
Ness TJ, Gamage DG, Ekanayaka SA, Hendrickson TL. A Soluble, Minimalistic Glycosylphosphatidylinositol Transamidase (GPI-T) Retains Transamidation Activity. Biochemistry 2022; 61:1273-1285. [PMID: 35730892 DOI: 10.1021/acs.biochem.2c00196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glycosylphosphatidylinositol (GPI) anchoring of proteins is a eukaryotic, post-translational modification catalyzed by GPI transamidase (GPI-T). The Saccharomyces cerevisiae GPI-T is composed of five membrane-bound subunits: Gpi8, Gaa1, Gpi16, Gpi17, and Gab1. GPI-T has been recalcitrant to in vitro structure and function studies because of its complexity and membrane-solubility. Furthermore, a reliable, quantitative, in vitro assay for this important post-translational modification has remained elusive despite its discovery more than three decades ago.Three recent reports describe the structure of GPI-T from S. cerevisiae and humans, shedding critical light on this important enzyme and offering insight into the functions of its different subunits. Here, we present the purification and characterization of a truncated soluble GPI-T heterotrimer complex (Gpi823-306, Gaa150-343, and Gpi1620-551) without transmembrane domains. Using this simplified heterotrimer, we report the first quantitative method to measure GPI-T activity in vitro and demonstrate that this soluble, minimalistic GPI-T retains transamidase activity. These results contribute to our understanding of how this enzyme is organized and functions, and provide a method to screen potential GPI-T inhibitors.
Collapse
Affiliation(s)
- Travis J Ness
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Dilani G Gamage
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Sandamali A Ekanayaka
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Tamara L Hendrickson
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
3
|
Xu Y, Jia G, Li T, Zhou Z, Luo Y, Chao Y, Bao J, Su Z, Qu Q, Li D. Molecular insights into biogenesis of glycosylphosphatidylinositol anchor proteins. Nat Commun 2022; 13:2617. [PMID: 35551457 PMCID: PMC9098846 DOI: 10.1038/s41467-022-30250-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/22/2022] [Indexed: 02/08/2023] Open
Abstract
Eukaryotic cells are coated with an abundance of glycosylphosphatidylinositol anchor proteins (GPI-APs) that play crucial roles in fertilization, neurogenesis, and immunity. The removal of a hydrophobic signal peptide and covalent attachment of GPI at the new carboxyl terminus are catalyzed by an endoplasmic reticulum membrane GPI transamidase complex (GPI-T) conserved among all eukaryotes. Here, we report the cryo-electron microscopy (cryo-EM) structure of the human GPI-T at a global 2.53-Å resolution, revealing an equimolar heteropentameric assembly. Structure-based mutagenesis suggests a legumain-like mechanism for the recognition and cleavage of proprotein substrates, and an endogenous GPI in the structure defines a composite cavity for the lipid substrate. This elongated active site, stemming from the membrane and spanning an additional ~22-Å space toward the catalytic dyad, is structurally suited for both substrates which feature an amphipathic pattern that matches this geometry. Our work presents an important step towards the mechanistic understanding of GPI-AP biosynthesis. GPI-T catalyzes the committed step in GPI anchor protein biogenesis. Here, Xu et al. report the cryo-EM structure of the human GPI-T, revealing critical elements within an elongated, shared active site which is topologically arranged for substrate specificity.
Collapse
Affiliation(s)
- Yidan Xu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of CAS, Chinese Academy of Sciences (CAS), 320 Yueyang Road, 200030, Shanghai, China
| | - Guowen Jia
- State Key Laboratory of Biotherapy and Cancer Center, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, 610044, Chengdu, China
| | - Tingting Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of CAS, Chinese Academy of Sciences (CAS), 320 Yueyang Road, 200030, Shanghai, China
| | - Zixuan Zhou
- Shanghai Stomatological Hospital, School of Stomatology, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Fudan University, 200032, Shanghai, China
| | - Yitian Luo
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of CAS, Chinese Academy of Sciences (CAS), 320 Yueyang Road, 200030, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, 201210, Shanghai, China
| | - Yulin Chao
- Shanghai Stomatological Hospital, School of Stomatology, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Fudan University, 200032, Shanghai, China
| | - Juan Bao
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of CAS, Chinese Academy of Sciences (CAS), 320 Yueyang Road, 200030, Shanghai, China
| | - Zhaoming Su
- State Key Laboratory of Biotherapy and Cancer Center, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, 610044, Chengdu, China.
| | - Qianhui Qu
- Shanghai Stomatological Hospital, School of Stomatology, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Fudan University, 200032, Shanghai, China.
| | - Dianfan Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of CAS, Chinese Academy of Sciences (CAS), 320 Yueyang Road, 200030, Shanghai, China.
| |
Collapse
|
4
|
Bakshi T, Pham D, Kaur R, Sun B. Hidden Relationships between N-Glycosylation and Disulfide Bonds in Individual Proteins. Int J Mol Sci 2022; 23:ijms23073742. [PMID: 35409101 PMCID: PMC8998389 DOI: 10.3390/ijms23073742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
N-Glycosylation (NG) and disulfide bonds (DBs) are two prevalent co/post-translational modifications (PTMs) that are often conserved and coexist in membrane and secreted proteins involved in a large number of diseases. Both in the past and in recent times, the enzymes and chaperones regulating these PTMs have been constantly discovered to directly interact with each other or colocalize in the ER. However, beyond a few model proteins, how such cooperation affects N-glycan modification and disulfide bonding at selective sites in individual proteins is largely unknown. Here, we reviewed the literature to discover the current status in understanding the relationships between NG and DBs in individual proteins. Our results showed that more than 2700 human proteins carry both PTMs, and fewer than 2% of them have been investigated in the associations between NG and DBs. We summarized both these proteins with the reported relationships in the two PTMs and the tools used to discover the relationships. We hope that, by exposing this largely understudied field, more investigations can be encouraged to unveil the hidden relationships of NG and DBs in the majority of membranes and secreted proteins for pathophysiological understanding and biotherapeutic development.
Collapse
Affiliation(s)
- Tania Bakshi
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - David Pham
- Department of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Raminderjeet Kaur
- Faculty of Health Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Bingyun Sun
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Correspondence:
| |
Collapse
|
5
|
Humphreys IR, Pei J, Baek M, Krishnakumar A, Anishchenko I, Ovchinnikov S, Zhang J, Ness TJ, Banjade S, Bagde SR, Stancheva VG, Li XH, Liu K, Zheng Z, Barrero DJ, Roy U, Kuper J, Femández IS, Szakal B, Branzei D, Rizo J, Kisker C, Greene EC, Biggins S, Keeney S, Miller EA, Fromme JC, Hendrickson TL, Cong Q, Baker D. Computed structures of core eukaryotic protein complexes. Science 2021; 374:eabm4805. [PMID: 34762488 PMCID: PMC7612107 DOI: 10.1126/science.abm4805] [Citation(s) in RCA: 251] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein-protein interactions play critical roles in biology, but the structures of many eukaryotic protein complexes are unknown, and there are likely many interactions not yet identified. We take advantage of advances in proteome-wide amino acid coevolution analysis and deep-learning–based structure modeling to systematically identify and build accurate models of core eukaryotic protein complexes within the Saccharomyces cerevisiae proteome. We use a combination of RoseTTAFold and AlphaFold to screen through paired multiple sequence alignments for 8.3 million pairs of yeast proteins, identify 1505 likely to interact, and build structure models for 106 previously unidentified assemblies and 806 that have not been structurally characterized. These complexes, which have as many as five subunits, play roles in almost all key processes in eukaryotic cells and provide broad insights into biological function.
Collapse
Affiliation(s)
- Ian R. Humphreys
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jimin Pei
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Minkyung Baek
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Aditya Krishnakumar
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Ivan Anishchenko
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Sergey Ovchinnikov
- Faculty of Arts and Sciences, Division of Science, Harvard University, Cambridge, MA, USA
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA, USA
| | - Jing Zhang
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Travis J. Ness
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Sudeep Banjade
- Department of Molecular Biology & Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Saket R. Bagde
- Department of Molecular Biology & Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | | | - Xiao-Han Li
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Kaixian Liu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zhi Zheng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY
| | - Daniel J. Barrero
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Upasana Roy
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Jochen Kuper
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Israel S. Femández
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Barnabas Szakal
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Dana Branzei
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Caroline Kisker
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Eric C. Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Sue Biggins
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - J. Christopher Fromme
- Department of Molecular Biology & Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | | | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Dong Z, Yang S, Lee BH. Bioinformatic mapping of a more precise Aspergillus niger degradome. Sci Rep 2021; 11:693. [PMID: 33436802 PMCID: PMC7804941 DOI: 10.1038/s41598-020-80028-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/15/2020] [Indexed: 11/21/2022] Open
Abstract
Aspergillus niger has the ability to produce a large variety of proteases, which are of particular importance for protein digestion, intracellular protein turnover, cell signaling, flavour development, extracellular matrix remodeling and microbial defense. However, the A. niger degradome (the full repertoire of peptidases encoded by the A. niger genome) available is not accurate and comprehensive. Herein, we have utilized annotations of A. niger proteases in AspGD, JGI, and version 12.2 MEROPS database to compile an index of at least 232 putative proteases that are distributed into the 71 families/subfamilies and 26 clans of the 6 known catalytic classes, which represents ~ 1.64% of the 14,165 putative A. niger protein content. The composition of the A. niger degradome comprises ~ 7.3% aspartic, ~ 2.2% glutamic, ~ 6.0% threonine, ~ 17.7% cysteine, ~ 31.0% serine, and ~ 35.8% metallopeptidases. One hundred and two proteases have been reassigned into the above six classes, while the active sites and/or metal-binding residues of 110 proteases were recharacterized. The probable physiological functions and active site architectures of these peptidases were also investigated. This work provides a more precise overview of the complete degradome of A. niger, which will no doubt constitute a valuable resource and starting point for further experimental studies on the biochemical characterization and physiological roles of these proteases.
Collapse
Affiliation(s)
- Zixing Dong
- Henan Provincial Engineering Laboratory of Insect Bio-Reactor and Henan Key Laboratory of Ecological Security for Water Region of Mid-Line of South-To-North, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China.
| | - Shuangshuang Yang
- College of Physical Education, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Byong H Lee
- Department of Microbiology/Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Komath SS, Singh SL, Pratyusha VA, Sah SK. Generating anchors only to lose them: The unusual story of glycosylphosphatidylinositol anchor biosynthesis and remodeling in yeast and fungi. IUBMB Life 2019; 70:355-383. [PMID: 29679465 DOI: 10.1002/iub.1734] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/16/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are present ubiquitously at the cell surface in all eukaryotes. They play a crucial role in the interaction of the cell with its external environment, allowing the cell to receive signals, respond to challenges, and mediate adhesion. In yeast and fungi, they also participate in the structural integrity of the cell wall and are often essential for survival. Roughly four decades after the discovery of the first GPI-APs, this review provides an overview of the insights gained from studies of the GPI biosynthetic pathway and the future challenges in the field. In particular, we focus on the biosynthetic pathway in Saccharomyces cerevisiae, which has for long been studied as a model organism. Where available, we also provide information about the GPI biosynthetic steps in other yeast/ fungi. Although the core structure of the GPI anchor is conserved across organisms, several variations are built into the biosynthetic pathway. The present Review specifically highlights these variations and their implications. There is growing evidence to suggest that several phenotypes are common to GPI deficiency and should be expected in GPI biosynthetic mutants. However, it appears that several phenotypes are unique to a specific step in the pathway and may even be species-specific. These could suggest the points at which the GPI biosynthetic pathway intersects with other important cellular pathways and could be points of regulation. They could be of particular significance in the study of pathogenic fungi and in identification of new and specific antifungal drugs/ drug targets. © 2018 IUBMB Life, 70(5):355-383, 2018.
Collapse
Affiliation(s)
| | - Sneh Lata Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Sudisht Kumar Sah
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
8
|
The soluble domains of Gpi8 and Gaa1, two subunits of glycosylphosphatidylinositol transamidase (GPI-T), assemble into a complex. Arch Biochem Biophys 2017; 633:58-67. [DOI: 10.1016/j.abb.2017.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 11/23/2022]
|