1
|
Ragisha CM, Habeeb NM, Grace VL, Varanakkottu SN. Moving Meniscus-Assisted Template-Free Optothermofluidic Nanoparticle Patterning and Its Application in Optothermoconvective Particle Trapping. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12276-12287. [PMID: 38828930 DOI: 10.1021/acs.langmuir.4c01442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Moving meniscus-assisted vertical lifting is a commonly employed particle assembly technique to realize large-area particle patterning for the easy fabrication of colloidal photonic crystals and sensors. Though great success has been achieved for large-area patterning, inscribing desired patterns over the target substrate with precise control over the morphology remains a challenge. The target substrates need to be functionalized (physically or chemically) to realize desired patterns, which increases the complexity and limits their applicability to specific particle-liquid combinations. We demonstrate a new approach for the precise patterning of gold nanoparticles (Au NPs, diameter ∼60 nm) over solid substrates by the synergy of light-induced Marangoni flow and vertical lifting process (moving meniscus), without the requirement of photomasks or templates. The core idea relies on the particle accumulation due to light-induced Marangoni flow near the liquid meniscus in contact with a solid surface (due to plasmonic absorption of the particles) and the controlled lifting of the substrate. We present both the simulation and experimental results of the developed patterning technique. Various patterns such as continuous lines, intermittent lines with varying lengths, patterns with continuously varying widths, cross patterns, etc. are successfully inscribed. Dynamic control over the three-dimensional morphology of the deposited patterns is achieved by varying the lifting velocity, laser irradiation time, and lifting direction during the inscription process. Finally, we show the applicability of the developed plasmonically active surface for the large-area parallel manipulation of nonabsorbing microparticles based on optothermoconvective flow. The major advantage of the developed method compared to the existing light-controlled patterning techniques is its ability to inscribe patterns over large distances (up to several centimeters). We expect that the results presented in this paper will benefit different applications requiring precise particle patterning, such as optical elements, sensors, plasmonic substrates, microfluidic master templates, and electronic circuits.
Collapse
Affiliation(s)
- Chetteente Meethal Ragisha
- Optofluidics and Interface Science Laboratory, Department of Physics, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Nihal Muhammed Habeeb
- Optofluidics and Interface Science Laboratory, Department of Physics, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Vijayan Lija Grace
- Optofluidics and Interface Science Laboratory, Department of Physics, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Subramanyan Namboodiri Varanakkottu
- Optofluidics and Interface Science Laboratory, Department of Physics, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| |
Collapse
|
2
|
Zhang Y, Min C, Dou X, Wang X, Urbach HP, Somekh MG, Yuan X. Plasmonic tweezers: for nanoscale optical trapping and beyond. LIGHT, SCIENCE & APPLICATIONS 2021; 10:59. [PMID: 33731693 PMCID: PMC7969631 DOI: 10.1038/s41377-021-00474-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/24/2020] [Accepted: 01/14/2021] [Indexed: 05/06/2023]
Abstract
Optical tweezers and associated manipulation tools in the far field have had a major impact on scientific and engineering research by offering precise manipulation of small objects. More recently, the possibility of performing manipulation with surface plasmons has opened opportunities not feasible with conventional far-field optical methods. The use of surface plasmon techniques enables excitation of hotspots much smaller than the free-space wavelength; with this confinement, the plasmonic field facilitates trapping of various nanostructures and materials with higher precision. The successful manipulation of small particles has fostered numerous and expanding applications. In this paper, we review the principles of and developments in plasmonic tweezers techniques, including both nanostructure-assisted platforms and structureless systems. Construction methods and evaluation criteria of the techniques are presented, aiming to provide a guide for the design and optimization of the systems. The most common novel applications of plasmonic tweezers, namely, sorting and transport, sensing and imaging, and especially those in a biological context, are critically discussed. Finally, we consider the future of the development and new potential applications of this technique and discuss prospects for its impact on science.
Collapse
Affiliation(s)
- Yuquan Zhang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Changjun Min
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.
| | - Xiujie Dou
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- Optics Research Group, Delft University of Technology, Lorentzweg 1, 2628CJ, Delft, The Netherlands
| | - Xianyou Wang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Hendrik Paul Urbach
- Optics Research Group, Delft University of Technology, Lorentzweg 1, 2628CJ, Delft, The Netherlands
| | - Michael G Somekh
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Xiaocong Yuan
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
3
|
Chen Z, Kollipara PS, Ding H, Pughazhendi A, Zheng Y. Liquid Optothermoelectrics: Fundamentals and Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1315-1336. [PMID: 33410698 PMCID: PMC7856676 DOI: 10.1021/acs.langmuir.0c03182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Liquid thermoelectricity describes the redistribution of ions in an electrolytic solution under the influence of temperature gradients, which leads to the formation of electric fields. The thermoelectric field is effective in driving the thermophoretic migration of charged colloidal particles for versatile manipulation. However, traditional macroscopic thermoelectric fields are not suitable for particle manipulations at high spatial resolution. Inspired by optical tweezers and relevant optical manipulation techniques, we employ laser interaction with light-absorbing nanostructures to achieve subtle heat management on the micro- and nanoscales. The resulting thermoelectric fields are exploited to develop new optical technologies, leading to a research field known as liquid optothermoelectrics. This Invited Feature Article highlights our recent works on advancing fundamentals, technologies, and applications of optothermoelectrics in colloidal solutions. The effects of light irradiation, substrates, electrolytes, and particles on the optothermoelectric manipulations of colloidal particles along with their theoretical limitations are discussed in detail. Our optothermoelectric technologies with the versatile capabilities of trapping, manipulating, and pulling colloidal particles at low optical power are finding applications in microswimmers and nanoscience. With its intricate interfacial processes and tremendous technological promise, optothermoelectrics in colloidal solutions will remain relevant for the foreseeable future.
Collapse
|
4
|
Zhao C, Shah PJ, Bissell LJ. Laser additive nano-manufacturing under ambient conditions. NANOSCALE 2019; 11:16187-16199. [PMID: 31461093 DOI: 10.1039/c9nr05350f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Additive manufacturing at the macroscale has become a hot topic of research in recent years. It has been used by engineers for rapid prototyping and low-volume production. The development of such technologies at the nanoscale, or additive nanomanufacturing, will provide a future path for new nanotechnology applications. In this review article, we introduce several available toolboxes that can be potentially used for additive nanomanufacturing. We especially focus on laser-based additive nanomanufacturing under ambient conditions.
Collapse
Affiliation(s)
- Chenglong Zhao
- Department of Physics, University of Dayton, 300 College Park, Dayton, Ohio 45469-2314, USA. and Department of Electro-Optics and Photonics, University of Dayton, 300 College Park, Dayton, Ohio 45469-2314, USA
| | - Piyush J Shah
- Department of Electro-Optics and Photonics, University of Dayton, 300 College Park, Dayton, Ohio 45469-2314, USA and Materials and Manufacturing Directorate, Air Force Research Laboratory, 2179 12th St, Wright-Patterson AFB, Ohio 45433-7718, USA.
| | - Luke J Bissell
- Materials and Manufacturing Directorate, Air Force Research Laboratory, 2179 12th St, Wright-Patterson AFB, Ohio 45433-7718, USA.
| |
Collapse
|
5
|
Li J, Hill EH, Lin L, Zheng Y. Optical Nanoprinting of Colloidal Particles and Functional Structures. ACS NANO 2019; 13:3783-3795. [PMID: 30875190 PMCID: PMC6482071 DOI: 10.1021/acsnano.9b01034] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Recent advances in chemical sciences have enabled the tailorable synthesis of colloidal particles with variable composition, size, shape, and properties. Building superstructures with colloidal particles as building blocks is appealing for the fabrication of functional metamaterials and nanodevices. Optical nanoprinting provides a versatile platform to print various particles into arbitrary configurations with nanometric precision. In this review, we summarize recent progress in optical nanoprinting of colloidal particles and its related applications. Diverse techniques based on different physical mechanisms, including optical forces, light-controlled electric fields, optothermal effects, laser-directed thermocapillary flows, and photochemical reactions, are discussed in detail. With its flexible and versatile capabilities, optical nanoprinting will find promising applications in numerous fields such as nanophotonics, energy, microelectronics, and nanomedicine.
Collapse
Affiliation(s)
- Jingang Li
- Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Eric H. Hill
- Institute of Advanced Ceramics, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Linhan Lin
- Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuebing Zheng
- Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Abstract
A scalar polymorphic beam is designed with independent control of its intensity and phase along a strongly focused laser curve of arbitrary shape. This kind of beam has been found crucial in the creation of freestyle laser traps able to confine and drive the motion of micro/nano-particles along reconfigurable 3D trajectories in real time. Here, we present and experimentally prove the concept of vector polymorphic beam adding the benefit of independent design of the light polarization along arbitrary curves. In particular, we consider polarization shaped tangential and orthogonal to the curve that are of high interest in optical manipulation and laser micromachining. The vector polymorphic beam is described by a surprisingly simple closed-form expression and can be easily generated by using a computer generated hologram.
Collapse
Affiliation(s)
- José A Rodrigo
- Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Ciudad Universitaria s/n, Madrid, 28040, Spain.
| | - Tatiana Alieva
- Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Ciudad Universitaria s/n, Madrid, 28040, Spain
| |
Collapse
|