1
|
Akram MW, Fakhar-E-Alam M, Atif M, Butt AR, Asghar A, Jamil Y, Alimgeer KS, Wang ZM. Retraction Note: In vitro evaluation of the toxic effects of MgO nanostructure in Hela cell line. Sci Rep 2023; 13:12913. [PMID: 37558745 PMCID: PMC10412612 DOI: 10.1038/s41598-023-40237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023] Open
Affiliation(s)
- M Waseem Akram
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Muhammad Fakhar-E-Alam
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Department of Physics, Government College University, Faisalabad, 38000, Pakistan
| | - M Atif
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia.
- National Institute of Laser and Optronics, Nilore, Islamabad, Pakistan.
| | | | - Ali Asghar
- Department of Mathematics and Statistics, University of Lahore, Lahore, Pakistan
| | - Yasir Jamil
- Laser Spectroscopy Lab., Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - K S Alimgeer
- COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
2
|
Synthesis, Characterization, and Application of BaTiO3 Nanoparticles for Anti-Cancer Activity. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02346-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractBarium titanate (BaTiO3) nanoparticles (BTNPs) have been considered as emerging materials in biomedical sector through last decades due to the excellent physicochemical properties such as dielectric and piezoelectric structures, biocompatibility, and nonlinear optical characteristics. In this study, BTNPs were synthesized via the co-precipitation method using barium carbonate and titanium dioxide by stirring for 5 h. Then, it was annealed at 850 °C for 5 h with five different concentrations: 0.2, 0.4, 0.6, 0.8, and 1 g/mL. The structural, morphological, and optical analyses were demonstrated by different characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), thermogravimetric analysis (TGA), Raman, and UV–visible spectroscopy. The perovskite phase of BTNPs, an intense peak at 31.6°, was observed at the lowest concentration (0.2 g/mL), and the average crystalline size was 1.42 nm based on XRD pattern. The results have been justified by SEM and EDX. TGA demonstrated the adequate thermal stability of this material. EDX analysis confirmed the composition of Ti, Ba, and O elements. Raman peaks at 305 cm−1 and 517 cm−1 confirmed the formation of BaTiO3. UV–visible spectra presented that its’ absorbance edge shifted into visible range at 404 nm. Application of BTNPs on breast cancer cell line (MCF-7) presented significant dispersion effect at 0.2, 0.4 and 0.6 g/mL of BaTiO3. A strong toxicity rate of BaTiO3 has been observed against the MCF-7 cell line. Maximum % of cell viability loss, $$\cong$$
≅
57% was recorded at 200 µg/mL of BTNPs, and minimum % of cell viability loss was observed as 19% at 50 µg/mL of BTNPs. The results presented that a higher concentration of BTPNs dosage was more effective in inhibition of breast cancer cells. Therefore, BTNPs can be recommended as a promising nanomaterial for anti-cancer drug discovery.
Collapse
|
3
|
Wang P, Hu G, Zhao W, Du J, You M, Xv M, Yang H, Zhang M, Yan F, Huang M, Wang X, Zhang L, Chen Y. Continuous ZnO nanoparticle exposure induces melanoma-like skin lesions in epidermal barrier dysfunction model mice through anti-apoptotic effects mediated by the oxidative stress–activated NF-κB pathway. J Nanobiotechnology 2022; 20:111. [PMID: 35248056 PMCID: PMC8898538 DOI: 10.1186/s12951-022-01308-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/12/2022] [Indexed: 12/12/2022] Open
Abstract
Background Increasing interest in the hazardous properties of zinc oxide nanoparticles (ZnO NPs), commonly used as ultraviolet filters in sunscreen, has driven efforts to study the percutaneous application of ZnO NPs to diseased skin; however, in-depth studies of toxic effects on melanocytes under conditions of epidermal barrier dysfunction remain lacking. Methods Epidermal barrier dysfunction model mice were continuously exposed to a ZnO NP-containing suspension for 14 and 49 consecutive days in vivo. Melanoma-like change and molecular mechanisms were also verified in human epidermal melanocytes treated with 5.0 µg/ml ZnO NPs for 72 h in vitro. Results ZnO NP application for 14 and 49 consecutive days induced melanoma-like skin lesions, supported by pigmented appearance, markedly increased number of melanocytes in the epidermis and dermis, increased cells with irregular nuclei in the epidermis, recruited dendritic cells in the dermis and dysregulated expression of melanoma-associated gene Fkbp51, Trim63 and Tsp 1. ZnO NPs increased oxidative injury, inhibited apoptosis, and increased nuclear factor kappa B (NF-κB) p65 and Bcl-2 expression in melanocytes of skin with epidermal barrier dysfunction after continuously treated for 14 and 49 days. Exposure to 5.0 µg/ml ZnO NPs for 72 h increased cell viability, decreased apoptosis, and increased Fkbp51 expression in melanocytes, consistent with histological observations in vivo. The oxidative stress–mediated mechanism underlying the induction of anti-apoptotic effects was verified using the reactive oxygen species scavenger N-acetylcysteine. Conclusions The entry of ZnO NPs into the stratum basale of skin with epidermal barrier dysfunction resulted in melanoma-like skin lesions and an anti-apoptotic effect induced by oxidative stress, activating the NF-κB pathway in melanocytes. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01308-w.
Collapse
|
4
|
Guo D, Wang Z, Guo L, Yin X, Li Z, Zhou M, Li T, Chen C, Bi H. Zinc oxide nanoparticle-triggered oxidative stress and autophagy activation in human tenon fibroblasts. Eur J Pharmacol 2021; 907:174294. [PMID: 34217712 DOI: 10.1016/j.ejphar.2021.174294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 11/26/2022]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide due to elevated intraocular pressure, and filtering surgery can efficiently control intraocular pressure of glaucoma patients. However, failure of filtering surgery commonly results from scarring formation at the surgical site, in which fibroblast proliferation plays an essential role in the scarring process. Our previous study has demonstrated that zinc oxide (ZnO) nanoparticles could efficiently inhibit human tenon fibroblasts (HTFs) proliferation. The present study aimed to explore the underlying mechanism involved in oxidative stress and autophagy signaling in zinc oxide (ZnO) nanoparticles-induced inhibition of HTFs proliferation. In this study, we investigated the effect of ZnO nanoparticles on HTFs proliferation, mitochondrial function, ATP production and nuclear morphology. Moreover, we also explored the interactions between ZnO nanoparticles and HTFs, investigated the influence of ZnO nanoparticles on the autophagosome formation, the expression of autophagy-related 5 (Atg5), Atg12 and Becn1 (Beclin 1), and the level of light chain 3 (LC3). The results suggested that ZnO nanoparticles can efficiently inhibit HTFs proliferation, disrupt the mitochondrial function, attenuate the adenosine triphosphate (ATP) generation, and damage the nuclear morphology of HTFs. Exposure of HTFs to ZnO nanoparticles can also induce the shifted peak, elevate the expression of Atg5, Atg12 and Becn1, enhance the autophagosome formation, and promote the LC3 expression, and thus activate autophagy signaling. Overall, ZnO nanoparticles can apparently trigger oxidative stress and activate autophagy signaling in HTFs, and thus inhibit HTFs proliferation and mediate HTFs apoptosis.
Collapse
Affiliation(s)
- Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
| | - Zhe Wang
- Department of Ophthalmology, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, 277000, China
| | - Lijie Guo
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Xuewei Yin
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zonghong Li
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Mengxian Zhou
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Tuling Li
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Chen Chen
- Department of Ophthalmology, Linyi People's Hospital, Linyi, 276000, China.
| | - Hongsheng Bi
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
| |
Collapse
|
5
|
Green biosynthesis of ZnO nanomaterials and their anti-bacterial activity by using Moringa Oleifera root aqueous extract. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2945-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
6
|
Iqbal S, Fakhar-e-Alam M, Atif M, Amin N, Ali A, Shafiq M, Ismail M, Hanif A, Farooq WA. Photodynamic therapy, facile synthesis, and effect of sintering temperature on the structure, morphology, optical properties, and anticancer activity of Co3O4 nanocrystalline materials in the HepG2 cell line. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Akram MW, Raziq F, Fakhar-e-Alam M, Aziz MH, Alimgeer K, Atif M, Amir M, Hanif A, Aslam Farooq W. Tailoring of Au-TiO2 nanoparticles conjugated with doxorubicin for their synergistic response and photodynamic therapy applications. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.112040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Iqbal S, Fakhar-E-Alam M, Atif M, Ahmed N, -Ul-Ahmad A, Amin N, Alghamdi RA, Hanif A, Farooq WA. Empirical Modeling of Zn/ZnO Nanoparticles Decorated/Conjugated with Fotolon (Chlorine e6) Based Photodynamic Therapy towards Liver Cancer Treatment. MICROMACHINES 2019; 10:mi10010060. [PMID: 30658388 PMCID: PMC6357181 DOI: 10.3390/mi10010060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 01/12/2023]
Abstract
The current study is based on Zn/ZnO nanoparticles photodynamic therapy (PDT) mediated effects on healthy liver cells and cancerous cells. The synthesis of Zn/ZnO nanoparticles was accomplished using chemical and hydrothermal methods. The characterization of the synthesized nanoparticles was carried out using manifold techniques (e.g., transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDS)). In order to study the biotoxicity of the grown nanoparticles, they were applied individually and in conjunction with the third generation photosensitiser Fotolon (Chlorine e6) in the in vivo model of the normal liver of the Wister rat, and in the in vitro cancerous liver (HepG2) model both in the dark and under a variety of laser exposures (630 nm, Ultraviolet (UV) light). The localization of ZnO nanoparticles was observed by applying fluorescence spectroscopy on a 1 cm2 selected area of normal liver, whereas the in vitro cytotoxicity and reactive oxygen species (ROS) detection were carried out by calculating the loss in the cell viability of the hepatocellular model by applying a neutral red assay (NRA). Furthermore, a statistical analysis is carried out and it is ensured that the p value is less than 0.05. Thus, the current study has highlighted the potential for applying Zn/ZnO nanoparticles in photodynamic therapy that would lead to wider medical applications to improve the efficiency of cancer treatment and its biological aspect study.
Collapse
Affiliation(s)
- Seemab Iqbal
- Department of Physics, Government College University, Faisalabad 38000, Pakistan.
| | - Muhammad Fakhar-E-Alam
- Department of Physics, Government College University, Faisalabad 38000, Pakistan.
- Key Laboratory of Magnetic Materials and Devices & Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - M Atif
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11543, Saudi Arabia.
| | - Nasar Ahmed
- Department of Physics, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan.
| | - Aqrab -Ul-Ahmad
- School of Physics, Dalian University of Technology, Dalian 116024, China.
- School of Microelectronics, Dalian University of Technology, Dalian 116024, China.
| | - N Amin
- Department of Physics, Government College University, Faisalabad 38000, Pakistan.
| | - Raed Ahmed Alghamdi
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11543, Saudi Arabia.
| | - Atif Hanif
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11543, Saudi Arabia.
| | - W Aslam Farooq
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11543, Saudi Arabia.
| |
Collapse
|
9
|
Akram MW, Fakhar-E-Alam M, Atif M, Butt AR, Asghar A, Jamil Y, Alimgeer KS, Wang ZM. In vitro evaluation of the toxic effects of MgO nanostructure in Hela cell line. Sci Rep 2018; 8:4576. [PMID: 29545644 PMCID: PMC5854676 DOI: 10.1038/s41598-018-23105-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 03/06/2018] [Indexed: 01/28/2023] Open
Abstract
MgO is an attractive choice for carcinogenic cell destruction in photodynamic therapy, as confirmed by manifold analysis. The prime focus of the presented research is to investigate the toxicity caused by morphologically different MgO nanostructures obtained by annealing at various annealing temperatures. Smart (stimuli-responsive) MgO nanomaterials are a very promising class of nanomaterials, and their properties can be controlled by altering their size, morphology, or other relevant characteristics. The samples investigated here were grown by the co-precipitation technique. Toxicity-dependent parameters were assessed in a HeLa cell model after annealing the grown samples at 350 °C, 450 °C, and 550 °C. After the overall characterization, an analysis of toxicity caused by changes in the MgO nanostructure morphology was tested in a HeLa cell model using a neutral red assay and microscopy. The feasibility of using MgO for PDT was assessed. Empirical modelling was applied to corroborate the experimental results obtained from assessing cell viability losses and reactive oxygen species. The results indicate that MgO is an excellent candidate material for medical applications and could be utilized for its potential ability to upgrade conventionally used techniques.
Collapse
Affiliation(s)
- M Waseem Akram
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, 610054, Chengdu, China.
| | - Muhammad Fakhar-E-Alam
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, 610054, Chengdu, China
- Department of Physics, Government College University, 38000, Faisalabad, Pakistan
| | - M Atif
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia.
- National Institute of Laser and Optronics, Nilore, Islamabad, Pakistan.
| | | | - Ali Asghar
- Department of Mathematics and Statistics, University of Lahore, Lahore, Pakistan
| | - Yasir Jamil
- Laser Spectroscopy Lab., Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - K S Alimgeer
- COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, 610054, Chengdu, China.
| |
Collapse
|
10
|
Huang X, Zheng X, Xu Z, Yi C. ZnO-based nanocarriers for drug delivery application: From passive to smart strategies. Int J Pharm 2017; 534:190-194. [DOI: 10.1016/j.ijpharm.2017.10.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/30/2017] [Accepted: 10/03/2017] [Indexed: 01/19/2023]
|