1
|
Zhang R, Demiral SB, Tomasi D, Yan W, Manza P, Wang GJ, Volkow ND. Sleep Deprivation Effects on Brain State Dynamics Are Associated With Dopamine D 2 Receptor Availability Via Network Control Theory. Biol Psychiatry 2025; 97:89-96. [PMID: 39127232 DOI: 10.1016/j.biopsych.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Sleep deprivation (SD) negatively affects brain function. Most brain imaging studies have investigated the effects of SD on static brain function. SD effects on functional brain dynamics and their relationship with molecular changes remain relatively unexplored. METHODS We used functional magnetic resonance imaging to examine resting-brain state dynamics after one night of SD compared with rested wakefulness (N = 41) and assessed the association of brain state dynamics with striatal brain dopamine D2 receptor availability measured by positron emission tomography [11C]raclopride using network control theory. RESULTS SD reduced dwell time and persistence probabilities, with the strongest effects in two brain states, one characterized by high default mode network and low dorsal attention network activity and the other by high frontoparietal network and low somatomotor network activity. Using network control theory, we showed that after SD, there was an overall increase in the control energy required for brain state transitions, with effects varying for different brain state transitions. Control energy requirement was negatively associated with transition probabilities under SD and restful wakefulness and accounted for SD-induced changes in transition probabilities. Alteration in the energy landscape was associated with SD-induced changes in striatal D2 receptor distribution. CONCLUSIONS These findings demonstrate altered occurrence of internally and externally oriented brain states following acute SD and suggest an association with energy requirements for brain state transitions modulated by striatal D2 receptors.
Collapse
Affiliation(s)
- Rui Zhang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland.
| | - Sukru Baris Demiral
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Dardo Tomasi
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Weizheng Yan
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
2
|
Oh YS, Kim JS, Lyoo CH, Kim H. Obstructive Sleep Apnea and Striatal Dopamine Availability in Parkinson's Disease. Mov Disord 2023; 38:1068-1076. [PMID: 37046390 DOI: 10.1002/mds.29402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/24/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Sleep disorders are frequently associated with Parkinson's disease. Obstructive sleep apnea syndrome is one of these sleep disorders and is associated with the severity of motor symptoms in Parkinson's disease. Obstructive sleep apnea can lead to dopaminergic neuronal cell degeneration and may impair the clearance of α-synuclein in Parkinson's disease. Striatal dopamine uptake is a surrogate marker of nigral dopaminergic cell damage. OBJECTIVE We aimed to investigate the differences in striatal dopamine availability between Parkinson's disease patients with or without obstructive sleep apnea. METHODS A total of 85 de novo and nonmedicated Parkinson's disease patients were enrolled. Full-night polysomnography was performed for all patients, and obstructive sleep apnea was diagnosed as apnea/hypopnea index ≥5. Positron emission tomography was performed with 18 F-N-(3-fluoropropyl)-2β-carbon ethoxy-3β-(4-iodophenyl) nortropane, and the regional standardized-uptake values were analyzed using a volume-of-interest template and compared between groups with or without obstructive sleep apnea. RESULTS Dopamine availability in the caudate nucleus of the obstructive sleep apnea group was significantly lower than that of the nonobstructive sleep apnea group. On subgroup analysis, such association was found in female but not in male patients. In other structures (putamen, globus pallidus, and thalamus), dopamine availability did not differ between the two groups. CONCLUSION This study supports the proposition that obstructive sleep apnea can contribute to reduced striatal dopamine transporter availability in Parkinson's disease. Additional studies are needed to assess the causal association between obstructive sleep apnea and the neurodegenerative process in Parkinson's disease. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yoon-Sang Oh
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joong-Seok Kim
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hosung Kim
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
3
|
Li C, Kroll T, Matusch A, Aeschbach D, Bauer A, Elmenhorst EM, Elmenhorst D. Associations between resting state brain activity and A1 adenosine receptor availability in the healthy brain: Effects of acute sleep deprivation. Front Neurosci 2023; 17:1077597. [PMID: 37008230 PMCID: PMC10062390 DOI: 10.3389/fnins.2023.1077597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionPrevious resting-state fMRI (Rs-fMRI) and positron emission tomography (PET) studies have shown that sleep deprivation (SD) affects both spontaneous brain activity and A1 adenosine receptor (A1AR) availability. Nevertheless, the hypothesis that the neuromodulatory adenosinergic system acts as regulator of the individual neuronal activity remains unexplored.MethodsTherefore, fourteen young men underwent Rs-fMRI, A1AR PET scans, and neuropsychological tests after 52 h of SD and after 14 h of recovery sleep.ResultsOur findings suggested higher oscillations or regional homogeneity in multiple temporal and visual cortices, whereas decreased oscillations in cerebellum after sleep loss. At the same time, we found that connectivity strengths increased in sensorimotor areas and decreased in subcortical areas and cerebellum.DiscussionMoreover, negative correlations between A1AR availability and rs-fMRI metrics of BOLD activity in the left superior/middle temporal gyrus and left postcentral gyrus of the human brain provide new insights into the molecular basis of neuronal responses induced by high homeostatic sleep pressure.
Collapse
Affiliation(s)
- Changhong Li
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Jülich, Germany
- Department of Neurophysiology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Tina Kroll
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Jülich, Germany
| | - Andreas Matusch
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Jülich, Germany
| | - Daniel Aeschbach
- Department of Sleep and Human Factors Research, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
- Institute of Experimental Epileptology and Cognition Research, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Andreas Bauer
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Jülich, Germany
| | - Eva-Maria Elmenhorst
- Department of Sleep and Human Factors Research, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - David Elmenhorst
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Jülich, Germany
- Division of Medical Psychology, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
- *Correspondence: David Elmenhorst,
| |
Collapse
|
4
|
Mazzetti C, Gonzales Damatac C, Sprooten E, ter Huurne N, Buitelaar JK, Jensen O. Dorsal-to-ventral imbalance in the superior longitudinal fasciculus mediates methylphenidate's effect on beta oscillations in ADHD. Psychophysiology 2022; 59:e14008. [PMID: 35165906 PMCID: PMC9287074 DOI: 10.1111/psyp.14008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022]
Abstract
While pharmacological treatment with methylphenidate (MPH) is a first line intervention for ADHD, its mechanisms of action have yet to be elucidated. We here seek to identify the white matter tracts that mediate MPH's effect on beta oscillations. We implemented a double-blind placebo-controlled crossover design, where boys diagnosed with ADHD underwent behavioral and MEG measurements during a spatial attention task while on and off MPH. The results were compared with an age/IQ-matched control group. Estimates of white matter tracts were obtained using diffusion tensor imaging (DTI). Via a stepwise model selection strategy, we identified the fiber tracts (regressors) significantly predicting values of the dependent variables of interest (i.e., oscillatory power, behavioral performance, and clinical symptoms): the anterior thalamic radiation (ATR), the superior longitudinal fasciculus ("parietal endings") (SLFp), and superior longitudinal fasciculus ("temporal endings") (SLFt). ADHD symptoms severity was associated with lower fractional anisotropy (FA) within the ATR. In addition, individuals with relatively higher FA in SLFp compared to SLFt, led to stronger behavioral effects of MPH in the form of faster and more accurate responses. Furthermore, the same parietotemporal FA gradient explained the effects of MPH on beta modulation: subjects with ADHD exhibiting higher FA in SLFp compared to SLFt also displayed greater effects of MPH on beta power during response preparation. Our data suggest that the behavioral deficits and aberrant oscillatory modulations observed in ADHD depend on a possibly detrimental structural connectivity imbalance within the SLF, caused by a diffusivity gradient in favor of parietal rather than temporal, fiber tracts.
Collapse
Affiliation(s)
- Cecilia Mazzetti
- Department of Basic NeurosciencesUniversity of GenevaGenèveSwitzerland
| | - Christienne Gonzales Damatac
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
- Department of Cognitive NeuroscienceRadboudumcNijmegenThe Netherlands
| | - Emma Sprooten
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
- Department of Cognitive NeuroscienceRadboudumcNijmegenThe Netherlands
| | - Niels ter Huurne
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
- Karakter Child and Adolescent Psychiatry University CentreNijmegenThe Netherlands
| | - Jan K. Buitelaar
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
- Department of Cognitive NeuroscienceRadboudumcNijmegenThe Netherlands
- Karakter Child and Adolescent Psychiatry University CentreNijmegenThe Netherlands
| | - Ole Jensen
- Centre for Human Brain Health, School of PsychologyUniversity of BirminghamBirminghamUK
| |
Collapse
|
5
|
Syvertsen Mykland M, Uglem M, Petter Neverdahl J, Rystad Øie L, Wergeland Meisingset T, Dodick DW, Tronvik E, Engstrøm M, Sand T, Moe Omland P. Sleep restriction alters cortical inhibition in migraine: A transcranial magnetic stimulation study. Clin Neurophysiol 2022; 139:28-42. [DOI: 10.1016/j.clinph.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 11/28/2022]
|
6
|
Zhang R, Tomasi D, Shokri-Kojori E, Wiers CE, Wang GJ, Volkow ND. Sleep inconsistency between weekends and weekdays is associated with changes in brain function during task and rest. Sleep 2021; 43:5825065. [PMID: 32333599 DOI: 10.1093/sleep/zsaa076] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/02/2020] [Indexed: 01/21/2023] Open
Abstract
STUDY OBJECTIVES Sleep deprivation and circadian disruptions impair brain function and cognitive performance, but few studies have examined the effect of sleep inconsistency. Here, we investigated how inconsistent sleep duration and sleep timing between weekends (WE) and weekdays (WD) correlated with changes in behavior and brain function during task and at rest in 56 (30 female) healthy human participants. METHODS WE-WD differences in sleep duration and sleep midpoint were calculated using 1-week actigraphy data. All participants underwent 3 Tesla blood-oxygen-level-dependent functional Magnetic Resonance Imaging (fMRI) to measure brain activity during a visual attention task (VAT) and in resting-state condition. RESULTS We found that WE-WD inconsistency of sleep duration and sleep midpoint were uncorrelated with each other (r = .08, p = .58) and influenced behavior and brain function differently. Our healthy participants showed relatively small WE-WD differences (WE-WD: 0.59 hours). Longer WE sleep duration (relative to WD sleep duration) was associated with better attentional performance (3-ball: β = .30, t = 2.35, p = .023; 4-ball: β = .30, t = 2.21, p = .032) and greater deactivation of the default mode network (DMN) during VAT (p < .05, cluster-corrected) and greater resting-state functional connectivity (RSFC) between anterior DMN and occipital cortex (p < .01, cluster-corrected). In contrast, later WE sleep timing (relative to WD sleep timing) (WE-WD: 1.11 hours) was associated with worse performance (4-ball: β = -.33, t = -2.42, p = .020) and with lower occipital activation during VAT and with lower RSFC within the DMN. CONCLUSIONS Our results document the importance of consistent sleep timing for brain function in particular of the DMN and provide evidence of the benefits of WE catch-up sleep in healthy adults.
Collapse
Affiliation(s)
- Rui Zhang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Dardo Tomasi
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Ehsan Shokri-Kojori
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Corinde E Wiers
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD.,National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD
| |
Collapse
|
7
|
Zhang R, Volkow ND. Brain default-mode network dysfunction in addiction. Neuroimage 2019; 200:313-331. [DOI: 10.1016/j.neuroimage.2019.06.036] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
|
8
|
Neural correlates of visual attention in alcohol use disorder. Drug Alcohol Depend 2019; 194:430-437. [PMID: 30502544 DOI: 10.1016/j.drugalcdep.2018.10.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022]
Abstract
Numerous studies have documented cognitive impairments in multiple domains in patients with an alcohol use disorder (AUD), including perceptuomotor, executive, and visuospatial functions. Although the neural underpinnings of cognitive deficits in AUD have been studied extensively, the neural basis of attention deficits in AUD remains relatively unexplored. Here, we investigated neural responses to a visual attention task (VAT) in 19 recently abstinent patients with AUD and 23 healthy control participants (HC) using functional MRI (fMRI). AUD had a mean number of 62 ± 34SD drinks per week and 29 ± 13 years' history of alcohol use. Results show that there were no behavioral differences (accuracy or reaction time) between groups during the VAT. For both groups, the VAT activated brain areas associated with visual attention load (i.e., parietal and prefrontal cortices) and visual processing (i.e., occipital cortex), which is in line with previous reports on the same task in healthy volunteers. Despite similar behavioral performances, AUD participants showed decreased VAT activation in regions of the dorsal and ventral attention networks, including parietal and prefrontal cortices, and in the insula as compared to controls. These findings corroborate differences in attention networks in AUD compared to HC that might underlie attention deficits in AUD, whereas impairments in the insula could reflect a disruption of interoception processing as found in other addictions.
Collapse
|
9
|
Landolt HP, Holst SC, Valomon A. Clinical and Experimental Human Sleep-Wake Pharmacogenetics. Handb Exp Pharmacol 2019; 253:207-241. [PMID: 30443785 DOI: 10.1007/164_2018_175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sleep and wakefulness are highly complex processes that are elegantly orchestrated by fine-tuned neurochemical changes among neuronal and non-neuronal ensembles, nuclei, and networks of the brain. Important neurotransmitters and neuromodulators regulating the circadian and homeostatic facets of sleep-wake physiology include melatonin, γ-aminobutyric acid, hypocretin, histamine, norepinephrine, serotonin, dopamine, and adenosine. Dysregulation of these neurochemical systems may cause sleep-wake disorders, which are commonly classified into insomnia disorder, parasomnias, circadian rhythm sleep-wake disorders, central disorders of hypersomnolence, sleep-related movement disorders, and sleep-related breathing disorders. Sleep-wake disorders can have far-reaching consequences on physical, mental, and social well-being and health and, thus, need be treated with effective and rational therapies. Apart from behavioral (e.g., cognitive behavioral therapy for insomnia), physiological (e.g., chronotherapy with bright light), and mechanical (e.g., continuous positive airway pressure treatment of obstructive sleep apnea) interventions, pharmacological treatments often are the first-line clinical option to improve disturbed sleep and wake states. Nevertheless, not all patients respond to pharmacotherapy in uniform and beneficial fashion, partly due to genetic differences. The improved understanding of the neurochemical mechanisms regulating sleep and wakefulness and the mode of action of sleep-wake therapeutics has provided a conceptual framework, to search for functional genetic variants modifying individual drug response phenotypes. This article will summarize the currently known genetic polymorphisms that modulate drug sensitivity and exposure, to partly determine individual responses to sleep-wake pharmacotherapy. In addition, a pharmacogenetic strategy will be outlined how based upon classical and opto-/chemogenetic strategies in animals, as well as human genetic associations, circuit mechanisms regulating sleep-wake functions in humans can be identified. As such, experimental human sleep-wake pharmacogenetics forms a bridge spanning basic research and clinical medicine and constitutes an essential step for the search and development of novel sleep-wake targets and therapeutics.
Collapse
Affiliation(s)
- Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.
- Zürich Center for Interdisciplinary Sleep Research (ZiS), University of Zürich, Zürich, Switzerland.
| | - Sebastian C Holst
- Neurobiology Research Unit and Neuropharm, Department of Neurology, Rigshospitalet, Copenhagen, Denmark
| | - Amandine Valomon
- Wisconsin Institute for Sleep and Consciousness, University of Wisconsin Madison, Madison, WI, USA
| |
Collapse
|
10
|
Satterfield BC, Wisor JP, Schmidt MA, Van Dongen HPA. Time-on-Task Effect During Sleep Deprivation in Healthy Young Adults Is Modulated by Dopamine Transporter Genotype. Sleep 2018; 40:4344479. [PMID: 29029252 DOI: 10.1093/sleep/zsx167] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Study Objectives The time-on-task (TOT) effect and total sleep deprivation (TSD) have similar effects on neurobehavioral functioning, including increased performance instability during tasks requiring sustained attention. The TOT effect is exacerbated by TSD, suggesting potentially overlapping mechanisms. We probed these mechanisms by investigating genotype-phenotype relationships on psychomotor vigilance test (PVT) performance for 3 a-priori selected genes previously linked to the TOT effect and/or TSD: dopamine active transporter 1 (DAT1), catechol-O-methyltransferase (COMT), and tumor necrosis factor alpha (TNFα). Methods N = 82 healthy adults participated in 1 of 3 laboratory studies. A 10-min PVT was administered repeatedly during 38 h of TSD. We assessed changes in response time (RT) across each minute of the PVT as a function of time awake and genotype. Additionally, cumulative relative RT frequency distributions were constructed to examine changes in performance from the first to the second 5 min of the PVT as a function of genotype. Results DAT1, COMT, and TNFα were associated with differences in the build-up of the TOT effect across the 10-min PVT. DAT1 additionally modulated the interaction between TSD and the TOT effect. Subjects homozygous for the DAT1 10-repeat allele were relatively protected against TOT deficits on the PVT during TSD compared to carriers of the 9-repeat allele. Conclusions DAT1 is known to regulate dopamine reuptake and is highly expressed in the striatum. Our results implicate striatal dopamine in mechanisms involved in performance instability that appear to be common to TSD and the TOT effect. Furthermore, DAT1 may be a candidate biomarker of resilience to the build-up of performance impairment across TOT due to TSD.
Collapse
Affiliation(s)
- Brieann C Satterfield
- Sleep and Performance Research Center and Elson S. Floyd College of Medicine, Washington State University, Spokane, WA
| | - Jonathan P Wisor
- Sleep and Performance Research Center and Elson S. Floyd College of Medicine, Washington State University, Spokane, WA
| | - Michelle A Schmidt
- Sleep and Performance Research Center and Elson S. Floyd College of Medicine, Washington State University, Spokane, WA
| | - Hans P A Van Dongen
- Sleep and Performance Research Center and Elson S. Floyd College of Medicine, Washington State University, Spokane, WA
| |
Collapse
|
11
|
Donlea JM. Roles for sleep in memory: insights from the fly. Curr Opin Neurobiol 2018; 54:120-126. [PMID: 30366270 DOI: 10.1016/j.conb.2018.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/04/2018] [Indexed: 01/10/2023]
Abstract
Sleep has been universally conserved across animal species. The basic functions of sleep remain unclear, but insufficient sleep impairs memory acquisition and retention in both vertebrates and invertebrates. Sleep is also a homeostatic process that is influenced not only by the amount of time awake, but also by neural activity and plasticity. Because of the breadth and precision of available genetic tools, the fruit fly has become a powerful model system to understand sleep regulation and function. Importantly, these tools enable the dissection of memory-encoding circuits at the level of individual neurons, and have allowed the development of genetic tools to induce sleep on-demand. This review describes recent investigations of the role for sleep in memory using Drosophila and current hypotheses of sleep's functions for supporting plasticity, learning, and memory.
Collapse
Affiliation(s)
- Jeffrey M Donlea
- Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095-1763, USA.
| |
Collapse
|
12
|
Fifel K, Meijer JH, Deboer T. Circadian and Homeostatic Modulation of Multi-Unit Activity in Midbrain Dopaminergic Structures. Sci Rep 2018; 8:7765. [PMID: 29773830 PMCID: PMC5958140 DOI: 10.1038/s41598-018-25770-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/24/2018] [Indexed: 01/08/2023] Open
Abstract
Although the link between sleep disturbances and dopamine (DA)-related neurological and neuropsychiatric disorders is well established, the impact of sleep alterations on neuronal activity of midbrain DA-ergic structures is currently unknown. Here, using wildtype C57Bl mice, we investigated the circadian- and sleep-related modulation of electrical neuronal activity in midbrain ventral-tegmental-area (VTA) and substantia nigra (SN). We found no significant circadian modulation of activity in SN while VTA displayed a low amplitude but significant circadian modulation with increased firing rates during the active phase. Combining neural activity recordings with electroencephalogram (EEG) recordings revealed a strong vigilance state dependent modulation of neuronal activity with increased activity during wakefulness and rapid eye movement sleep relative to non-rapid eye movement sleep in both SN and VTA. Six-hours of sleep deprivation induced a significant depression of neuronal activity in both areas. Surprisingly, these alterations lasted for up to 48 hours and persisted even after the normalization of cortical EEG waves. Our results show that sleep and sleep disturbances significantly affect neuronal activity in midbrain DA structures. We propose that these changes in neuronal activity underlie the well-known relationship between sleep alterations and several disorders involving dysfunction of the DA circuitry such as addiction and depression.
Collapse
Affiliation(s)
- Karim Fifel
- Department of Molecular Cell Biology, Neurophysiology unit, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands. .,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Johanna H Meijer
- Department of Molecular Cell Biology, Neurophysiology unit, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Tom Deboer
- Department of Molecular Cell Biology, Neurophysiology unit, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
13
|
Correlation between Traits of Emotion-Based Impulsivity and Intrinsic Default-Mode Network Activity. Neural Plast 2017; 2017:9297621. [PMID: 29225975 PMCID: PMC5684566 DOI: 10.1155/2017/9297621] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/24/2017] [Accepted: 10/15/2017] [Indexed: 01/08/2023] Open
Abstract
Negative urgency (NU) and positive urgency (PU) are implicated in several high-risk behaviors, such as eating disorders, substance use disorders, and nonsuicidal self-injury behavior. The current study aimed to explore the possible link between trait of urgency and brain activity at rest. We assessed the amplitude of low-frequency fluctuations (ALFF) of the resting-state functional magnetic resonance imaging (fMRI) signal in 85 healthy volunteers. Trait urgency measures were related to ALFF in the lateral orbitofrontal cortex, dorsolateral prefrontal cortex, ventral and dorsal medial frontal cortex, anterior cingulate, and posterior cingulate cortex/precuneus. In addition, trait urgency measures showed significant correlations with the functional connectivity of the posterior cingulate cortex/precuneus seed with the thalamus and midbrain region. These findings suggest an association between intrinsic brain activity and impulsive behaviors in healthy humans.
Collapse
|
14
|
Functional Polymorphisms in Dopaminergic Genes Modulate Neurobehavioral and Neurophysiological Consequences of Sleep Deprivation. Sci Rep 2017; 7:45982. [PMID: 28393838 PMCID: PMC5385564 DOI: 10.1038/srep45982] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/07/2017] [Indexed: 02/04/2023] Open
Abstract
Sleep deprivation impairs cognitive performance and reliably alters brain activation in wakefulness and sleep. Nevertheless, the molecular regulators of prolonged wakefulness remain poorly understood. Evidence from genetic, behavioral, pharmacologic and imaging studies suggest that dopaminergic signaling contributes to the behavioral and electroencephalographic (EEG) consequences of sleep loss, although direct human evidence thereof is missing. We tested whether dopamine neurotransmission regulate sustained attention and evolution of EEG power during prolonged wakefulness. Here, we studied the effects of functional genetic variation in the dopamine transporter (DAT1) and the dopamine D2 receptor (DRD2) genes, on psychomotor performance and standardized waking EEG oscillations during 40 hours of wakefulness in 64 to 82 healthy volunteers. Sleep deprivation consistently enhanced sleepiness, lapses of attention and the theta-to-alpha power ratio (TAR) in the waking EEG. Importantly, DAT1 and DRD2 genotypes distinctly modulated sleep loss-induced changes in subjective sleepiness, PVT lapses and TAR, according to inverted U-shaped relationships. Together, the data suggest that genetically determined differences in DAT1 and DRD2 expression modulate functional consequences of sleep deprivation, supporting the hypothesis that striato-thalamo-cortical dopaminergic pathways modulate the neurobehavioral and neurophysiological consequences of sleep loss in humans.
Collapse
|
15
|
A single-scan protocol for absolute D2/3 receptor quantification with [123I]IBZM SPECT. Neuroimage 2017; 147:461-472. [DOI: 10.1016/j.neuroimage.2016.12.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/24/2016] [Accepted: 12/18/2016] [Indexed: 11/19/2022] Open
|