1
|
Jokiniemi A, Turunen T, Kohonen M, Magris M, Ritari J, Kuusipalo L, Partanen J, Kekäläinen J. Female-mediated selective sperm activation may remodel major histocompatibility complex-based mate choice decisions in humans. Heredity (Edinb) 2025:10.1038/s41437-025-00759-9. [PMID: 40346315 DOI: 10.1038/s41437-025-00759-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 05/11/2025] Open
Abstract
Major histocompatibility complex (MHC) genes are known to mediate mate choice both at the individual and gamete level. However, it has remained unclear how different episodes of MHC-associated mate choice interact and contribute to the total selection on MHC genes. Here, we clarified this interaction in humans by performing a full-factorial experiment where 10 females first ranked the attractiveness and intensity of the body odours of 11 males. Then we studied whether female odour preferences in these same 110 male-female combinations predicted sperm performance in the presence of follicular fluid (sperm-stimulating female reproductive fluid). When analyzing the total MHC similarity (including classical and non-classical MHC genes) of the male-female combinations, we found that females preferred the body odours of MHC-similar males, but that sperm motility was positively affected by the MHC dissimilarity of the male-female combinations. No associations were found for classical MHC genes only. Furthermore, odour preferences were negatively associated with sperm motility at the end of the follicular fluid treatment. Together, our results indicate that individual and gamete-level mate choice processes may act in opposing directions and that the most attractive males are not necessarily the most optimal partners at the post-copulatory level. Finally, our findings suggest that gamete-mediated mate choice may have a definitive role in disfavouring genetically incompatible partners from fertilizing oocytes.
Collapse
Affiliation(s)
- Annalaura Jokiniemi
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Tanja Turunen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Mikko Kohonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Martina Magris
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Jarmo Ritari
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | | | - Jukka Partanen
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Jukka Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland.
| |
Collapse
|
2
|
Kim H, Lim H, Han B. MultiCook: A Tool That Improves Accuracy of HLA Imputation by Combining Probabilities From Multiple Reference Panels and Methods. HLA 2025; 105:e70153. [PMID: 40326750 PMCID: PMC12054343 DOI: 10.1111/tan.70153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 02/28/2025] [Accepted: 03/17/2025] [Indexed: 05/07/2025]
Abstract
HLA molecules are produced by genes within the Major Histocompatibility Complex (MHC). Although the identification of HLA genotype is costly, fortunately, recent computational methods have made it possible to impute HLA genotypes using inexpensive single nucleotide polymorphism (SNP) markers. These imputation methods perform well if ethnicity-matched reference panels are provided. However, the availability of large-sized panels specific to each ethnicity remains limited. As a result, to achieve better imputation for each population, we need to utilise available multiple reference panels together. In this study, we introduce MultiCook, which enables users to simultaneously utilise existing multiple HLA imputation methods with multiple reference panels. MultiCook is versatile in that panels typed with different SNP genotyping platforms can seamlessly be merged, outputs from multiple imputation methods can be combined and the output from the Michigan imputation server with a multiethnic reference panel can also be incorporated. We compared MultiCook to the existing single-reference-panel approaches and the Michigan HLA imputation server. In evaluation with a cohort of 413 Koreans, MultiCook reduced the imputation error rate by about one third, from 4.70% to 3.31%, by combining 1KG EAS (N = 504) and HAN Chinese (N = 9773) reference panels compared to the single-panel approach. Moreover, MultiCook achieved better accuracy for imputing low-frequency alleles in evaluation benchmarks.
Collapse
Affiliation(s)
- Hakin Kim
- Interdisciplinary Program for BioengineeringSeoul National UniversitySeoulRepublic of Korea
| | - Hyunjoon Lim
- Interdisciplinary Program for BioengineeringSeoul National UniversitySeoulRepublic of Korea
| | - Buhm Han
- Interdisciplinary Program for BioengineeringSeoul National UniversitySeoulRepublic of Korea
- Convergence Research Center for DementiaSeoul National University Medical Research CenterSeoulRepublic of Korea
- Department of Biomedical SciencesBK21 Plus Biomedical Science Project, Seoul National University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
3
|
Sankareswaran A, Kunte P, Fraser DP, Shaik M, Lavanuru D, Weedon MN, Oram RA, Yajnik CS, Chandak GR. HLA haplotype diversity, islet autoantibody status and discriminative ability of type 1 diabetes genetic risk score in Indians. Diabet Med 2025:e70041. [PMID: 40279505 DOI: 10.1111/dme.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/27/2025]
Abstract
AIMS We have reported that a 9SNPs type 1 diabetes (T1D) Genetic Risk Score (GRS) developed from European data had a lower power in Indians to distinguish T1D from type 2 diabetes (T2D). We explore the performance of an improved (67SNPs) T1DGRS and also the potential reasons for lower discriminative ability to classify types of diabetes in Indians. METHODS We studied the discriminative ability of a 67SNPs European T1DGRS in 611 clinically diagnosed T1D and 1153 T2D patients, and 321 non-diabetic controls, using receiver operating characteristic (ROC) area under the curve (AUC). We also compared the frequency and effect sizes of HLA risk haplotypes between Indians and Europeans. RESULTS The T1DGRS was discriminative of T1D from T2D and controls. However, the ability is lower in Indians than Europeans (AUC, Europeans 0.92, Indians all T1D 0.83, AA-positive 0.86). The T1DGRS was higher in AA-positive than in AA-negative persons [13.01 (12.79-13.23) vs. 12.09 (11.64-12.56)], p < 0.0001. The association of common HLA-DQA1 ~ HLA-DQB1 haplotypes was broadly similar; however, important differences were noted in the frequency, direction and magnitude of effect for some haplotypes between Indians and Europeans. CONCLUSIONS We confirm broad applicability of European 67SNPs T1DGRS to Indian T1D persons. However, differences in HLA allele frequencies, magnitude and directional differences reduced the predictive value. Our results stress the need to generate ancestry-specific GRS, which we plan to do in the near future.
Collapse
Affiliation(s)
- Alagu Sankareswaran
- Genomic Research on Complex Diseases Group (GRC-Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pooja Kunte
- Diabetes Unit, King Edward Memorial Hospital and Research Centre, Pune, India
| | - Diane P Fraser
- University of Exeter College of Medicine and Health, Exeter, UK
- Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Mobeen Shaik
- Genomic Research on Complex Diseases Group (GRC-Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - Dimple Lavanuru
- Genomic Research on Complex Diseases Group (GRC-Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - Michael N Weedon
- University of Exeter College of Medicine and Health, Exeter, UK
- Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Richard A Oram
- University of Exeter College of Medicine and Health, Exeter, UK
- Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | | | - Giriraj R Chandak
- Genomic Research on Complex Diseases Group (GRC-Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Doherty J, Ryan AW, Quinn E, Conroy J, Dolan J, Corcoran R, Hara FO, Cullen G, Sheridan J, Bailey Y, Dunne C, Hartery K, McNamara D, Doherty GA, Kevans D. HLA-DQA1*05 Allele Carriage and Anti-TNF Therapy Persistence in Inflammatory Bowel Disease. Inflamm Bowel Dis 2025; 31:903-911. [PMID: 38937958 DOI: 10.1093/ibd/izae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Carriage of the HLA-DQA1*05 allele is associated with development of antidrug antibodies (ADAs) to antitumor necrosis factor (anti-TNF) therapy in patients with Crohn's disease. However, ADA is not uniformly associated with treatment failure. We aimed to determine the impact of carriage of HLA-DQA1*05 allele on outcome of biologic therapy evaluated by drug persistence. METHODS A multicenter, retrospective study of 877 patients with inflammatory bowel disease (IBD) treated with anti-TNF therapy with HLA-DQA1*05 genotypes were generated by imputation from whole genome sequence using the HIBAG package, in R. Primary end point was anti-TNF therapy persistence, (time to therapy failure), segregated by HLA-DQA1*05 allele genotype and development of a risk score to predict anti-TNF therapy failure, incorporating HLA-DQA1*05 allele genotype status (LORisk score). RESULTS In all, 877 patients receiving anti-TNF therapy were included in our study; 543 (62%) had no copy, 281 (32%) one copy, and 53 (6%) 2 copies of HLA-DQA1*05 allele. Mean time to anti-TNF therapy failure in patients with 2 copies of HLA-DQA1*05 allele was significantly shorter compared with patients with 0 or 1 copy at 700 days' follow-up: 418 vs 541 vs 513 days, respectively (P = .012). Factors independently associated with time to anti-TNF therapy failure included carriage of HLA-DQA1*05 allele (hazard ratio [HR], 1.2, P = .02; female gender HR, 1.6, P < .001; UC phenotype HR, 1.4, P = .009; and anti-TNF therapy type [infliximab], HR, 1.5, P = .002). The LORisk score was significantly associated with shorter time to anti-TNF therapy failure (P < .001). CONCLUSIONS Carriage of 2 HLA-DQA1*05 alleles is associated with less favorable outcomes for patients receiving anti-TNF therapy with shorter time to therapy failure. HLA-DQA1*05 genotype status in conjunction with clinical factors may aid in therapy selection in patients with IBD.
Collapse
Affiliation(s)
- Jayne Doherty
- Gastroenterology Department, St James's Hospital, Dublin, Ireland
- Department of Gastroenterology, Tallaght University Hospital, Dublin, Ireland
- INITIative IBD Research Network, Dublin, Ireland
| | | | - Emma Quinn
- Genuity Science (Ireland) Limited, Dublin, Ireland
| | | | - Jackie Dolan
- Genuity Science (Ireland) Limited, Dublin, Ireland
| | - Roisin Corcoran
- Gastroenterology Department, St James's Hospital, Dublin, Ireland
- Trinity Academic Gastroenterology Group, School of Medicine, Trinity College Dublin, Ireland
| | - Fintan O Hara
- Department of Gastroenterology, Tallaght University Hospital, Dublin, Ireland
| | - Garret Cullen
- Department of Gastroenterology, St Vincent's University Hospital, Dublin, Ireland
- School of Medicine, University College Dublin, Ireland
- INITIative IBD Research Network, Dublin, Ireland
| | - Juliette Sheridan
- Department of Gastroenterology, St Vincent's University Hospital, Dublin, Ireland
- School of Medicine, University College Dublin, Ireland
- INITIative IBD Research Network, Dublin, Ireland
| | - Yvonne Bailey
- Department of Gastroenterology, Tallaght University Hospital, Dublin, Ireland
| | - Cara Dunne
- Gastroenterology Department, St James's Hospital, Dublin, Ireland
| | - Karen Hartery
- Gastroenterology Department, St James's Hospital, Dublin, Ireland
| | - Deirdre McNamara
- Department of Gastroenterology, Tallaght University Hospital, Dublin, Ireland
- Trinity Academic Gastroenterology Group, School of Medicine, Trinity College Dublin, Ireland
- INITIative IBD Research Network, Dublin, Ireland
| | - Glen A Doherty
- Department of Gastroenterology, St Vincent's University Hospital, Dublin, Ireland
- School of Medicine, University College Dublin, Ireland
- INITIative IBD Research Network, Dublin, Ireland
| | - David Kevans
- Gastroenterology Department, St James's Hospital, Dublin, Ireland
- Trinity Academic Gastroenterology Group, School of Medicine, Trinity College Dublin, Ireland
- Wellcome-HRB Clinical Research Facility, St James's Hospital, Dublin, Ireland
- INITIative IBD Research Network, Dublin, Ireland
| |
Collapse
|
5
|
Khor SS, Hirayasu K, Kawai Y, Kim HL, Nagasaki M, Tokunaga K. LILR genotype imputation with attribute bagging (LIBAG): leukocyte immunoglobulin-like receptor copy number imputation system. Front Immunol 2025; 16:1559301. [PMID: 40260241 PMCID: PMC12009894 DOI: 10.3389/fimmu.2025.1559301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/17/2025] [Indexed: 04/23/2025] Open
Abstract
There are ten leukocyte immunoglobulin (Ig)-like receptor (LILR) genes, i.e., five genes encoding activating receptors (LILRA1, LILRA2, LILRA4, LILRA5, and LILRA6) characterized by their truncated cytoplasmic tails, and five genes encoding inhibitory receptors (LILRB1, LILRB2, LILRB3, LILRB4, and LILRB5) characterized by their extended cytoplasmic tails containing immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Among these, LILRB3, LILRA6, and LILRA3 are known for harboring high frequencies of copy number variations (CNVs). However, the presence of CNVs in the leukocyte receptor complex (LRC) region complicates single nucleotide polymorphism (SNP) association analysis within commercially available SNP microarray datasets. This study introduces LILR Genotype Imputation with Attribute Bagging (LIBAG), a novel method for determining CNVs in LILRB3, LILRA6, and LILRA3 from commercially available SNP genotyping array datasets. LILRA6 CNV imputation accuracy peaked at 98.0% for the Infinium Japanese Screening Array, followed by 97.4% for Axiom Japonica V2, 97.3% for Axiom Japonica Array NEO, and 94.3% for Axiom Japonica V1, with the lowest recorded accuracy of 93.6% for the Axiom Genome-wide ASI1 array. For the 1000 Genomes Project (1kGP) dataset, LILRA6 CNV imputation achieved peak accuracies of 94.5% for 1kGP-EAS (East Asian), 86.6% for 1kGP-AMR (Admixed American), 83.8% for 1kGP-EUR European), and 75.0% for 1kGP-AFR (African), particularly after the 20 kb flanking region. Similarly, imputation accuracy for LILRA3 CNV progressively increased, peaking at the 80 kb flanking region. Accuracy reached 1kGP-AMR, reaching 99.2% and 98.9% for 1kGP-AFR, 98.7% for 1kGP-EUR, and 97.5% for 1kGP-EAS. Investigating the LILR copy number (CN) in diseases associated with HLA class I molecules will provide further insights into disease pathogenesis.
Collapse
Affiliation(s)
- Seik-Soon Khor
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kouyuki Hirayasu
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hie Lim Kim
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Masao Nagasaki
- Division of Biomedical Information Analysis, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Mustonen L, Nieminen JK, Koskela S, Kaunisto M, Kalso E, Tienari PJ, Harno H. HLA-Region Genetic Association Analysis of Breast Cancer Patients With and Without Persistent Postsurgical Neuropathic Pain. Eur J Pain 2025; 29:e70009. [PMID: 40084918 DOI: 10.1002/ejp.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/13/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Surgical nerve injuries lead to persistent neuropathic pain (NP) in up to 30% of patients. Among many other factors, polymorphisms in the human leukocyte antigen (HLA) genes have been suggested to contribute to the development of neuropathic pain. METHODS We performed a genetic association analysis of HLA class I and class II alleles in women who had been operated on for breast cancer. Patients had a surgeon-confirmed perioperative nerve injury and were examined 4-9 years after their surgery. Patients with painful (cases, n = 27) and painless (controls, n = 30) intercostobrachial nerve resection were studied. Cases included patients with definite NP with worst pain intensity in the past week ≥ 4/10 on a numerical rating scale (NRS) and controls had the same nerve injury with no NP or other pains. Whole-genome single nucleotide polymorphism data were produced, and HLA class I (HLA-A, -B, -C) and class II (HLA-DRB1, -DQA1, -DQB1 and -DPB1) alleles were determined by imputation. RESULTS HLA-DRB1*03:01, DQA1*05:01 and DQB1*02:01 alleles appeared to be associated with painful nerve injury after breast cancer surgery (nominal p = 0.007 for all, carriership OR = 12.0, 95% CI 1.38-104; FDR corrected p > 0.07). These alleles comprise the DR3-DQ2 haplotype, which is part of the ancestral haplotype AH8.1. CONCLUSIONS Our results provide further support for the role of HLA genetic variation in the development of persistent post-surgical neuropathic pain, which indirectly implies a mechanism involving immunological memory in this process. SIGNIFICANCE STATEMENT We report a novel association between the HLA-DR3-DQ2 haplotype and the development of persistent neuropathic pain after breast cancer surgery. Our results provide further evidence for the role of HLA polymorphism in persistent neuropathic pain.
Collapse
Affiliation(s)
- L Mustonen
- Clinical Neurosciences, Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - J K Nieminen
- Clinical Neurosciences, Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - S Koskela
- Department of Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - M Kaunisto
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - E Kalso
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- SleepWell Research Program, University of Helsinki, Helsinki, Finland
| | - P J Tienari
- Clinical Neurosciences, Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - H Harno
- Clinical Neurosciences, Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- SleepWell Research Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Arnal Segura M, Bini G, Krithara A, Paliouras G, Tartaglia GG. Machine Learning Methods for Classifying Multiple Sclerosis and Alzheimer's Disease Using Genomic Data. Int J Mol Sci 2025; 26:2085. [PMID: 40076709 PMCID: PMC11900513 DOI: 10.3390/ijms26052085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Complex diseases pose challenges in prediction due to their multifactorial and polygenic nature. This study employed machine learning (ML) to analyze genomic data from the UK Biobank, aiming to predict the genomic predisposition to complex diseases like multiple sclerosis (MS) and Alzheimer's disease (AD). We tested logistic regression (LR), ensemble tree methods, and deep learning models for this purpose. LR displayed remarkable stability across various subsets of data, outshining deep learning approaches, which showed greater variability in performance. Additionally, ML methods demonstrated an ability to maintain optimal performance despite correlated genomic features due to linkage disequilibrium. When comparing the performance of polygenic risk score (PRS) with ML methods, PRS consistently performed at an average level. By employing explainability tools in the ML models of MS, we found that the results confirmed the polygenicity of this disease. The highest-prioritized genomic variants in MS were identified as expression or splicing quantitative trait loci located in non-coding regions within or near genes associated with the immune response, with a prevalence of human leukocyte antigen (HLA) gene annotations. Our findings shed light on both the potential and the challenges of employing ML to capture complex genomic patterns, paving the way for improved predictive models.
Collapse
Affiliation(s)
- Magdalena Arnal Segura
- Centre for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy (G.B.)
- Department of Biology ‘Charles Darwin’, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Giorgio Bini
- Centre for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy (G.B.)
- Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Anastasia Krithara
- Institute of Informatics and Telecommunications, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (A.K.); (G.P.)
| | - Georgios Paliouras
- Institute of Informatics and Telecommunications, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (A.K.); (G.P.)
| | - Gian Gaetano Tartaglia
- Centre for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy (G.B.)
- Department of Biology ‘Charles Darwin’, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
8
|
Reppell M, Zheng X, Dreher I, Blaes J, Regan E, Haslberger T, Guay H, Pivorunas V, Smaoui N. HLA-DQA1*05 Associates With Anti-Tumor Necrosis Factor Immunogenicity and Low Adalimumab Trough Concentrations in Inflammatory Bowel Disease Patients From the SERENE Ulcerative Colitis and Crohn's Disease Studies. J Crohns Colitis 2025; 19:jjae129. [PMID: 39162746 PMCID: PMC11725519 DOI: 10.1093/ecco-jcc/jjae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/17/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND AND AIMS Anti-tumor necrosis factor (anti-TNF) therapies are commonly prescribed treatments for Crohn's disease (CD) and ulcerative colitis (UC). Many patients treated with anti-TNF therapy eventually develop anti-drug antibodies (ADAs). Understanding the factors associated with immunogenicity in anti-TNF-treated patients can help guide treatment. The Humira SERENE studies were Phase 3 trials investigating adalimumab induction regimens in CD and UC patients. METHODS We imputed alleles for 7 HLA genes in 1100 patients from the SERENE CD and SERENE UC trials. We then tested these alleles for association with time to immunogenicity. Subsequently, we tested loci significantly associated with immunogenicity for their association with patients who had consistently low drug serum concentrations. RESULTS This study replicated the association of HLA-DQA1*05 with time to immunogenicity (hazard ratio [HR] 1.42, p = 2.22E-06). Specifically, HLA-DQA1*05:05 was strongly associated (HR 1.76, p = 2.02E-10) and we detected a novel association represented by HLA-DRB1*01:02 (HR 3.16, p = 2.92E-07). Carriage of HLA-DQA1*05:05 and HLA-DRB1*01:02 was associated with patients who experienced consistently low adalimumab trough concentrations (HLA-DQA1*05:05: odds ratio [OR] 1.98, p = 0.0049; HLA DRB1*01:02: OR 7.06, p = 7.44E-05). CONCLUSIONS We found a significant association between alleles at genes in the human HLA locus and the formation of adalimumab immunogenicity and low adalimumab drug serum concentrations in large clinical studies of CD and UC patients. This work extends previous findings in CD to UC and directly shows a genetic association in patients with low drug concentrations. This work builds on existing literature to suggest that genetic screening could be a useful tool for clinicians concerned with patient anti-TNF immunogenicity. CLINICAL TRIAL REGISTRATION NUMBERS SERENE CD (NCT02065570), SERENE UC (NCT02065622).
Collapse
Affiliation(s)
| | | | | | - Jonas Blaes
- AbbVie Deutschland GmbH & Co, KG, Ludwigshafen, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Rodriguez S, Couloume L, Ferrant J, Vince N, Mandon M, Jean R, Monvoisin C, Leonard S, Le Gallou S, Silva NSB, Bourguiba-Hachemi S, Laplaud D, Garcia A, Casey R, Zephir H, Kerbrat A, Edan G, Lepage E, Thouvenot E, Ruet A, Mathey G, Gourraud PA, Tarte K, Delaloy C, Amé P, Roussel M, Michel L. Blood immunophenotyping of multiple sclerosis patients at diagnosis identifies a classical monocyte subset associated to disease evolution. Front Immunol 2025; 15:1494842. [PMID: 39845960 PMCID: PMC11751469 DOI: 10.3389/fimmu.2024.1494842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/03/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Myeloid cells trafficking from the periphery to the central nervous system are key players in multiple sclerosis (MS) through antigen presentation, cytokine secretion and repair processes. Methods Combination of mass cytometry on blood cells from 60 MS patients at diagnosis and 29 healthy controls, along with single cell RNA sequencing on paired blood and cerebrospinal fluid (CSF) samples from 5 MS patients were used for myeloid cells detailing. Results Myeloid compartment study demonstrated an enrichment of a peculiar classical monocyte population in 22% of MS patients at the time of diagnosis. Notably, this patients' subgroup exhibited a more aggressive disease phenotype two years post-diagnosis. This monocytic population, detected in both the CSF and blood, was characterized by CD206, CD209, CCR5 and CCR2 expression, and was found to be more frequent in MS patients carrying the HLA-DRB1*15:01 allele. Furthermore, pathways analysis predicted that these cells had antigen presentation capabilities coupled with pro-inflammatory phenotype. Discussion Altogether, these results point toward the amplification of a specific and pathogenic myeloid cell subset in MS patients with genetic susceptibilities.
Collapse
Affiliation(s)
- Stéphane Rodriguez
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
- Pole Biologie-Centre Hospitalier Universitaire (CHU) Rennes, Rennes, France
| | - Laura Couloume
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
| | - Juliette Ferrant
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
- Pole Biologie-Centre Hospitalier Universitaire (CHU) Rennes, Rennes, France
| | - Nicolas Vince
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, Nantes University, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Marion Mandon
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
- Pole Biologie-Centre Hospitalier Universitaire (CHU) Rennes, Rennes, France
| | - Rachel Jean
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
- Pole Biologie-Centre Hospitalier Universitaire (CHU) Rennes, Rennes, France
| | - Celine Monvoisin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
| | - Simon Leonard
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
| | - Simon Le Gallou
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
- Pole Biologie-Centre Hospitalier Universitaire (CHU) Rennes, Rennes, France
| | - Nayane S. B. Silva
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, Nantes University, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- São Paulo State University, Molecular Genetics and Bioinformatics Laboratory, School of Medicine, Botucatu, Brazil
| | - Sonia Bourguiba-Hachemi
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, Nantes University, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - David Laplaud
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, Nantes University, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- Service de Neurologie, Centre Hospitalier Universitaire (CHU) Nantes, CRC-SEP Pays de la Loire, CIC 1413, Nantes, France
| | - Alexandra Garcia
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, Nantes University, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Romain Casey
- Lyon University, University Claude Bernard Lyon 1, Lyon, France
- Hospices Civils de Lyon, Neurology Department, Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, Bron, France
- Observatoire Français de la Sclérose en Plaques, Centre de Recherche en Neurosciences de Lyon, INSERM 1028 and CNRS UMR 5292, Lyon, France
- EUGENE DEVIC EDMUS Foundation against Multiple Sclerosis, State-Approved Foundation, Bron, France
| | - Helene Zephir
- Lille University, Inserm U1172, Lille University Hospital, Lille, France
| | - Anne Kerbrat
- Neurology Department, Rennes Clinical Investigation Centre, Rennes University Hospital-Rennes University-Institut National de la Santé et de la Recherche Médicale (INSERM), Rennes, France
| | - Gilles Edan
- Neurology Department, Rennes Clinical Investigation Centre, Rennes University Hospital-Rennes University-Institut National de la Santé et de la Recherche Médicale (INSERM), Rennes, France
| | - Emmanuelle Lepage
- Neurology Department, Rennes Clinical Investigation Centre, Rennes University Hospital-Rennes University-Institut National de la Santé et de la Recherche Médicale (INSERM), Rennes, France
| | - Eric Thouvenot
- Department of Neurology, Nimes University Hospital, Nimes, France
- Institut de Génomique Fonctionnelle, UMR5203, Inserm 1191, Université de Montpellier, Montpellier, France
| | - Aurelie Ruet
- Neurocentre Magendie, Institut National de la Santé et de la Recherche Médicale (INSERM) U1215, Bordeaux, France
- CHU de Bordeaux, Department of Neurology, Bordeaux, France
| | - Guillaume Mathey
- Department of Neurology, Nancy University Hospital, Nancy, France
- Université de Lorraine, Inserm, INSPIIRE, Nancy, France
| | - Pierre-Antoine Gourraud
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, Nantes University, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- Service de Neurologie, Centre Hospitalier Universitaire (CHU) Nantes, CRC-SEP Pays de la Loire, CIC 1413, Nantes, France
| | - Karin Tarte
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
- Pole Biologie-Centre Hospitalier Universitaire (CHU) Rennes, Rennes, France
| | - Celine Delaloy
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
| | - Patricia Amé
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
- Pole Biologie-Centre Hospitalier Universitaire (CHU) Rennes, Rennes, France
| | - Mikael Roussel
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
- Pole Biologie-Centre Hospitalier Universitaire (CHU) Rennes, Rennes, France
| | - Laure Michel
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
- Pole Biologie-Centre Hospitalier Universitaire (CHU) Rennes, Rennes, France
- Observatoire Français de la Sclérose en Plaques, Centre de Recherche en Neurosciences de Lyon, INSERM 1028 and CNRS UMR 5292, Lyon, France
| |
Collapse
|
10
|
Perelygin V, Kamelin A, Syzrantsev N, Shaheen L, Kim A, Plotnikov N, Ilinskaya A, Ilinsky V, Rakitko A, Poptsova M. Deep learning captures the effect of epistasis in multifactorial diseases. Front Med (Lausanne) 2025; 11:1479717. [PMID: 39839630 PMCID: PMC11746092 DOI: 10.3389/fmed.2024.1479717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Background Polygenic risk score (PRS) prediction is widely used to assess the risk of diagnosis and progression of many diseases. Routinely, the weights of individual SNPs are estimated by the linear regression model that assumes independent and linear contribution of each SNP to the phenotype. However, for complex multifactorial diseases such as Alzheimer's disease, diabetes, cardiovascular disease, cancer, and others, association between individual SNPs and disease could be non-linear due to epistatic interactions. The aim of the presented study is to explore the power of non-linear machine learning algorithms and deep learning models to predict the risk of multifactorial diseases with epistasis. Methods Simulated data with 2- and 3-loci interactions and tested three different models of epistasis: additive, multiplicative and threshold, were generated using the GAMETES. Penetrance tables were generated using PyTOXO package. For machine learning methods we used multilayer perceptron (MLP), convolutional neural network (CNN) and recurrent neural network (RNN), Lasso regression, random forest and gradient boosting models. Performance of machine learning models were assessed using accuracy, AUC-ROC, AUC-PR, recall, precision, and F1 score. Results First, we tested ensemble tree methods and deep learning neural networks against LASSO linear regression model on simulated data with different types and strength of epistasis. The results showed that with the increase of strength of epistasis effect, non-linear models significantly outperform linear. Then the higher performance of non-linear models over linear was confirmed on real genetic data for multifactorial phenotypes such as obesity, type 1 diabetes, and psoriasis. From non-linear models, gradient boosting appeared to be the best model in obesity and psoriasis while deep learning methods significantly outperform linear approaches in type 1 diabetes. Conclusion Overall, our study underscores the efficacy of non-linear models and deep learning approaches in more accurately accounting for the effects of epistasis in simulations with specific configurations and in the context of certain diseases.
Collapse
Affiliation(s)
- Vladislav Perelygin
- International Laboratory of Bioinformatics, AI and Digital Sciences Institute, Faculty of Computer Science, HSE University, Moscow, Russia
| | - Alexey Kamelin
- International Laboratory of Bioinformatics, AI and Digital Sciences Institute, Faculty of Computer Science, HSE University, Moscow, Russia
- Genotek Ltd., Moscow, Russia
| | | | - Layal Shaheen
- Genotek Ltd., Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia
| | | | | | | | | | - Alexander Rakitko
- International Laboratory of Bioinformatics, AI and Digital Sciences Institute, Faculty of Computer Science, HSE University, Moscow, Russia
- Genotek Ltd., Moscow, Russia
| | - Maria Poptsova
- International Laboratory of Bioinformatics, AI and Digital Sciences Institute, Faculty of Computer Science, HSE University, Moscow, Russia
| |
Collapse
|
11
|
Sun Y, Vonk JM, Kersten ETG, Qi C, Sprikkelman AB, Koppelman GH. Genome-Wide Association Study Reveals a Causal Relationship Between Allergic Rhinitis and Hazelnut Allergy. Allergy 2025; 80:309-318. [PMID: 39673378 PMCID: PMC11724235 DOI: 10.1111/all.16411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Little is known about the genetics of food allergy (FA) to various allergens and the heterogeneity of FA in adults. OBJECTIVE We aimed to investigate genetic susceptibility to FA in an adult population and to assess the association between secondary FA and allergic rhinitis (AR). METHODS FA and allergen-specific FA were defined based on in-depth questionnaires and a previously published FA algorithm in the Lifelines. We performed a series of genome-wide association studies (GWAS) on FA and nine allergen-specific (e.g., hazelnut) FA in 21,353 adults in Lifelines. Single nucleotide polymorphisms (SNPs) (p < 1E-5) were replicated in a second independent set of 15,518 adults participating in the Lifelines followed by meta-analysis of the results of the two datasets. We subsequently investigated the causal relationship of AR to FA using Mendelian randomization (MR) analysis. RESULTS We observed co-occurrence of tree nuts and apple FA, with over 80% of this group also reporting AR. After meta-analysis, we identified one genome-wide significant locus near HLA-DPA1 associated with self-reported hazelnut allergy (hazelnutFA), of which the top SNP is rs5025825 (p = 2.51E-9, OR = 1.43). Two-sample MR indicated that AR is a significant causal risk factor for hazelnutFA (p-IVW = 5.27E-10, β = 5.90, p-pleiotropy = 0.46). CONCLUSION Our questionnaire enabled a large GWAS on self-reported FA in Dutch adults. We report one novel locus in the human leukocyte antigens (HLA) region associated with hazelnutFA, implying an association with antigen recognition. Our findings genetically link secondary FA to AR in adults.
Collapse
Affiliation(s)
- Yidan Sun
- Department of Pediatric Pulmonology and Pediatric Allergy, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- University Medical Center Groningen, GRIAC Research InstituteUniversity of GroningenGroningenThe Netherlands
| | - Judith M. Vonk
- University Medical Center Groningen, GRIAC Research InstituteUniversity of GroningenGroningenThe Netherlands
- Department of Epidemiology, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Elin T. G. Kersten
- Department of Pediatric Pulmonology and Pediatric Allergy, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- University Medical Center Groningen, GRIAC Research InstituteUniversity of GroningenGroningenThe Netherlands
| | - Cancan Qi
- Division of Laboratory Medicine, Microbiome Medicine Center, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Aline B. Sprikkelman
- Department of Pediatric Pulmonology and Pediatric Allergy, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- University Medical Center Groningen, GRIAC Research InstituteUniversity of GroningenGroningenThe Netherlands
| | - Gerard H. Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergy, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- University Medical Center Groningen, GRIAC Research InstituteUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
12
|
Tummoszeit IZ, Olofsson IA, Chalmer MA, Henriksen AP, Aagaard B, Brunak S, Bruun MT, Didriksen M, Erikstrup C, Hjalgrim H, Mikkelsen C, Mikkelsen S, Ostrowski SR, Pedersen OBV, Quinn L, Sørensen E, Ullum H, Olesen J, Banasik K, Hansen TF, Kogelman LJA. No association between migraine and HLA alleles in a cohort of 13,210 individuals with migraine from the Danish Blood Donor Study. Headache 2025; 65:124-131. [PMID: 39352055 PMCID: PMC11726007 DOI: 10.1111/head.14784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 10/03/2024]
Abstract
OBJECTIVE To determine the association between human leukocyte antigen (HLA) alleles and migraine, migraine subtypes, and sex-specific factors. BACKGROUND It has long been hypothesized that inflammation contributes to migraine pathophysiology. This study examined the association between migraine and alleles in the HLA system, a key player in immune response and genetic diversity. METHODS We performed a case-control study and included 13,210 individuals with migraine and 86,738 controls. All participants were part of the Danish Blood Donor Study Genomic Cohort. Participants were genotyped and 111 HLA alleles on 15 HLA genes were imputed. We examined the association between HLA alleles and migraine subtypes, considering sex-specific differences. RESULTS We found no association between HLA alleles and migraine, neither overall, nor in the sex-specific analysis. In the migraine subtype analysis, three HLA alleles were associated with migraine without aura; however, these associations could not be replicated in an independent Icelandic cohort (2191 individuals with migraine without aura and 278,858 controls). Furthermore, we found no association between HLA alleles and migraine with aura or chronic migraine. CONCLUSION We found no evidence of an association between the HLA system and migraine, suggesting that genetic factors related to the HLA system do not play a significant role in migraine susceptibility.
Collapse
Affiliation(s)
- Inga Zalia Tummoszeit
- Danish Headache Center, Department of NeurologyCopenhagen University HospitalGlostrupDenmark
| | - Isa Amalie Olofsson
- Danish Headache Center, Department of NeurologyCopenhagen University HospitalGlostrupDenmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Mona Ameri Chalmer
- Danish Headache Center, Department of NeurologyCopenhagen University HospitalGlostrupDenmark
| | - Alexander Pil Henriksen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Bitten Aagaard
- Department of Clinical ImmunologyAalborg University HospitalAalborgDenmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Mie Topholm Bruun
- Department of Clinical ImmunologyOdense University HospitalOdenseDenmark
| | - Maria Didriksen
- Department of Clinical ImmunologyCopenhagen University HospitalCopenhagenDenmark
- Department of Neuroscience, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | | | - Henrik Hjalgrim
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Statens Serum InstitutCopenhagenDenmark
- Danish Cancer InstituteCopenhagenDenmark
- Department of HaematologyCopenhagen University HospitalCopenhagenDenmark
| | - Christina Mikkelsen
- Department of Clinical ImmunologyCopenhagen University HospitalCopenhagenDenmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Susan Mikkelsen
- Department of Clinical ImmunologyAarhus University HospitalAarhusDenmark
| | - Sisse Rye Ostrowski
- Department of Clinical ImmunologyCopenhagen University HospitalCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Ole Birger Vesterager Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Clinical ImmunologyZealand University HospitalKøgeDenmark
| | - Liam Quinn
- Department of Clinical ImmunologyZealand University HospitalKøgeDenmark
| | - Erik Sørensen
- Department of Clinical ImmunologyCopenhagen University HospitalCopenhagenDenmark
| | | | - Jes Olesen
- Danish Headache Center, Department of NeurologyCopenhagen University HospitalGlostrupDenmark
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Gynecology and ObstetricsHvidovre University HospitalCopenhagenDenmark
| | - Thomas Folkmann Hansen
- Danish Headache Center, Department of NeurologyCopenhagen University HospitalGlostrupDenmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Lisette J. A. Kogelman
- Danish Headache Center, Department of NeurologyCopenhagen University HospitalGlostrupDenmark
- Department of Health Science and TechnologyAalborg UniversityAalborgDenmark
| |
Collapse
|
13
|
Gorman BR, Voloudakis G, Igo RP, Kinzy T, Halladay CW, Bigdeli TB, Zeng B, Venkatesh S, Cooke Bailey JN, Crawford DC, Markianos K, Dong F, Schreiner PA, Zhang W, Hadi T, Anger MD, Stockwell A, Melles RB, Yin J, Choquet H, Kaye R, Patasova K, Patel PJ, Yaspan BL, Jorgenson E, Hysi PG, Lotery AJ, Gaziano JM, Tsao PS, Fliesler SJ, Sullivan JM, Greenberg PB, Wu WC, Assimes TL, Pyarajan S, Roussos P, Peachey NS, Iyengar SK. Genome-wide association analyses identify distinct genetic architectures for age-related macular degeneration across ancestries. Nat Genet 2024; 56:2659-2671. [PMID: 39623103 DOI: 10.1038/s41588-024-01764-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/22/2024] [Indexed: 12/12/2024]
Abstract
To effectively reduce vision loss due to age-related macular generation (AMD) on a global scale, knowledge of its genetic architecture in diverse populations is necessary. A critical element, AMD risk profiles in African and Hispanic/Latino ancestries, remains largely unknown. We combined data in the Million Veteran Program with five other cohorts to conduct the first multi-ancestry genome-wide association study of AMD and discovered 63 loci (30 novel). We observe marked cross-ancestry heterogeneity at major risk loci, especially in African-ancestry populations which demonstrate a primary signal in a major histocompatibility complex class II haplotype and reduced risk at the established CFH and ARMS2/HTRA1 loci. Dissecting local ancestry in admixed individuals, we find significantly smaller marginal effect sizes for CFH risk alleles in African ancestry haplotypes. Broadening efforts to include ancestrally distinct populations helped uncover genes and pathways that boost risk in an ancestry-dependent manner and are potential targets for corrective therapies.
Collapse
Affiliation(s)
- Bryan R Gorman
- Center for Data and Computational Sciences (C-DACS), VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Georgios Voloudakis
- Center for Disease Neurogenomics, Department of Psychiatry; Friedman Brain Institute; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Precision Medicine and Translational Therapeutics, VISN 2 Mental Illness Research, Education, and Clinical Center (MIRECC), James J. Peters Veterans Affairs Medical Center, New York/New Jersey VA Health Care Network, Bronx, NY, USA
| | - Robert P Igo
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Tyler Kinzy
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Christopher W Halladay
- Center of Innovation in Long Term Services and Supports, VA Providence Healthcare System, Providence, RI, USA
| | - Tim B Bigdeli
- Research Service, VA New York Harbor Healthcare System, Brooklyn, NY, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Biao Zeng
- Center for Disease Neurogenomics, Department of Psychiatry; Friedman Brain Institute; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sanan Venkatesh
- Center for Disease Neurogenomics, Department of Psychiatry; Friedman Brain Institute; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Precision Medicine and Translational Therapeutics, VISN 2 Mental Illness Research, Education, and Clinical Center (MIRECC), James J. Peters Veterans Affairs Medical Center, New York/New Jersey VA Health Care Network, Bronx, NY, USA
| | - Jessica N Cooke Bailey
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics & Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Dana C Crawford
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics & Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Kyriacos Markianos
- Center for Data and Computational Sciences (C-DACS), VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA, USA
| | - Frederick Dong
- Center for Data and Computational Sciences (C-DACS), VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Patrick A Schreiner
- Center for Data and Computational Sciences (C-DACS), VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Wen Zhang
- Center for Disease Neurogenomics, Department of Psychiatry; Friedman Brain Institute; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tamer Hadi
- Eye Clinic, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Department of Ophthalmology and Visual Sciences, University Hospitals Eye Institute, Cleveland, OH, USA
| | - Matthew D Anger
- Eye Clinic, VA Western NY Healthcare System, Buffalo, NY, USA
- Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, SUNY-University at Buffalo, Buffalo, NY, USA
| | - Amy Stockwell
- Department of Human Genetics, Genentech, South San Francisco, CA, USA
| | - Ronald B Melles
- Department of Ophthalmology, Kaiser Permanente Northern California, Redwood City, CA, USA
| | - Jie Yin
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Rebecca Kaye
- Southampton Eye Unit, University Hospital Southampton National Health Service Foundation Trust, Southampton, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Karina Patasova
- Section of Ophthalmology, School of Life Course Sciences, King's College London, London, UK
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Praveen J Patel
- National Institute for Health and Care Research Biomedical Research Centre, Moorfields Eye Hospital National Health Service Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Brian L Yaspan
- Department of Human Genetics, Genentech, South San Francisco, CA, USA
| | | | - Pirro G Hysi
- Section of Ophthalmology, School of Life Course Sciences, King's College London, London, UK
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- UCL Great Ormond Street Institute of Child Health, King's College London, London, UK
- Sørlandet Sykehus Arendal, Arendal Hospital, Arendal, Norway
| | - Andrew J Lotery
- Southampton Eye Unit, University Hospital Southampton National Health Service Foundation Trust, Southampton, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - J Michael Gaziano
- Million Veteran Program Coordinating Center, VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Philip S Tsao
- VA Palo Alto Epidemiology Research and Information Center for Genomics, VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven J Fliesler
- Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, SUNY-University at Buffalo, Buffalo, NY, USA
- Research Service, VA Western NY Healthcare System, Buffalo, NY, USA
- Biochemistry, Jacobs School of Medicine and Biomedical Sciences, SUNY-University at Buffalo, Buffalo, NY, USA
- Graduate Program in Neurosciences, Jacobs School of Medicine and Biomedical Sciences, SUNY-University at Buffalo, Buffalo, NY, USA
| | - Jack M Sullivan
- Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, SUNY-University at Buffalo, Buffalo, NY, USA
- Research Service, VA Western NY Healthcare System, Buffalo, NY, USA
- Graduate Program in Neurosciences, Jacobs School of Medicine and Biomedical Sciences, SUNY-University at Buffalo, Buffalo, NY, USA
| | - Paul B Greenberg
- Section of Ophthalmology, VA Providence Healthcare System, Providence, RI, USA
- Division of Ophthalmology, Alpert Medical School, Brown University, Providence, RI, USA
| | - Wen-Chih Wu
- Section of Cardiology, Medical Service, VA Providence Healthcare System, Providence, RI, USA
- Division of Cardiology, Department of Medicine, Alpert Medical School, Brown University, Providence, RI, USA
| | - Themistocles L Assimes
- VA Palo Alto Epidemiology Research and Information Center for Genomics, VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Saiju Pyarajan
- Center for Data and Computational Sciences (C-DACS), VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Department of Psychiatry; Friedman Brain Institute; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Precision Medicine and Translational Therapeutics, VISN 2 Mental Illness Research, Education, and Clinical Center (MIRECC), James J. Peters Veterans Affairs Medical Center, New York/New Jersey VA Health Care Network, Bronx, NY, USA.
| | - Neal S Peachey
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA.
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
| | - Sudha K Iyengar
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA.
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA.
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA.
- Department of Genetics & Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
- Department of Ophthalmology and Visual Sciences, University Hospitals Eye Institute, Cleveland, OH, USA.
| |
Collapse
|
14
|
Santiago-Lamelas L, Dos Santos-Sobrín R, Carracedo Á, Castro-Santos P, Díaz-Peña R. Utility of polygenic risk scores to aid in the diagnosis of rheumatic diseases. Best Pract Res Clin Rheumatol 2024; 38:101973. [PMID: 38997822 DOI: 10.1016/j.berh.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Rheumatic diseases (RDs) are characterized by autoimmunity and autoinflammation and are recognized as complex due to the interplay of multiple genetic, environmental, and lifestyle factors in their pathogenesis. The rapid advancement of genome-wide association studies (GWASs) has enabled the identification of numerous single nucleotide polymorphisms (SNPs) associated with RD susceptibility. Based on these SNPs, polygenic risk scores (PRSs) have emerged as promising tools for quantifying genetic risk in this disease group. This chapter reviews the current status of PRSs in assessing the risk of RDs and discusses their potential to improve the accuracy of the diagnosis of these complex diseases through their ability to discriminate among different RDs. PRSs demonstrate a high discriminatory capacity for various RDs and show potential clinical utility. As GWASs continue to evolve, PRSs are expected to enable more precise risk stratification by integrating genetic, environmental, and lifestyle factors, thereby refining individual risk predictions and advancing disease management strategies.
Collapse
Affiliation(s)
- Lucía Santiago-Lamelas
- Fundación Pública Galega de Medicina Xenómica (SERGAS), Centro Nacional de Genotipado, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Raquel Dos Santos-Sobrín
- Reumatología, Hospital Clínico Universitario, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ángel Carracedo
- Fundación Pública Galega de Medicina Xenómica (SERGAS), Centro Nacional de Genotipado, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Castro-Santos
- Fundación Pública Galega de Medicina Xenómica (SERGAS), Centro Nacional de Genotipado, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Faculty of Health Sciences, Universidad Autónoma de Chile, Talca, Chile.
| | - Roberto Díaz-Peña
- Fundación Pública Galega de Medicina Xenómica (SERGAS), Centro Nacional de Genotipado, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Faculty of Health Sciences, Universidad Autónoma de Chile, Talca, Chile.
| |
Collapse
|
15
|
Loh L, Saunders PM, Faoro C, Font-Porterias N, Nemat-Gorgani N, Harrison GF, Sadeeq S, Hensen L, Wong SC, Widjaja J, Clemens EB, Zhu S, Kichula KM, Tao S, Zhu F, Montero-Martin G, Fernandez-Vina M, Guethlein LA, Vivian JP, Davies J, Mentzer AJ, Oppenheimer SJ, Pomat W, Ioannidis AG, Barberena-Jonas C, Moreno-Estrada A, Miller A, Parham P, Rossjohn J, Tong SYC, Kedzierska K, Brooks AG, Norman PJ. An archaic HLA class I receptor allele diversifies natural killer cell-driven immunity in First Nations peoples of Oceania. Cell 2024; 187:7008-7024.e19. [PMID: 39476840 PMCID: PMC11606752 DOI: 10.1016/j.cell.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 05/24/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024]
Abstract
Genetic variation in host immunity impacts the disproportionate burden of infectious diseases that can be experienced by First Nations peoples. Polymorphic human leukocyte antigen (HLA) class I and killer cell immunoglobulin-like receptors (KIRs) are key regulators of natural killer (NK) cells, which mediate early infection control. How this variation impacts their responses across populations is unclear. We show that HLA-A∗24:02 became the dominant ligand for inhibitory KIR3DL1 in First Nations peoples across Oceania, through positive natural selection. We identify KIR3DL1∗114, widespread across and unique to Oceania, as an allele lineage derived from archaic humans. KIR3DL1∗114+NK cells from First Nations Australian donors are inhibited through binding HLA-A∗24:02. The KIR3DL1∗114 lineage is defined by phenylalanine at residue 166. Structural and binding studies show phenylalanine 166 forms multiple unique contacts with HLA-peptide complexes, increasing both affinity and specificity. Accordingly, assessing immunogenetic variation and the functional implications for immunity are fundamental toward understanding population-based disease associations.
Collapse
Affiliation(s)
- Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Philippa M Saunders
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Camilla Faoro
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Neus Font-Porterias
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Neda Nemat-Gorgani
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Genelle F Harrison
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Suraju Sadeeq
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Shu Cheng Wong
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jacqueline Widjaja
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Shiying Zhu
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Katherine M Kichula
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sudan Tao
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Blood Center of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Faming Zhu
- Blood Center of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Gonzalo Montero-Martin
- Stanford Blood Centre, Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Marcelo Fernandez-Vina
- Stanford Blood Centre, Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Lisbeth A Guethlein
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Julian P Vivian
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jane Davies
- Menzies School of Health Research, Charles Darwin University, Darwin, NT 0810, Australia; Department of Infectious Diseases, Royal Darwin Hospital, Casuarina, NT 0810, Australia
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK
| | - Stephen J Oppenheimer
- Institute of Social and Cultural Anthropology, School of Anthropology and Museum Ethnography, University of Oxford, Oxford OX3 7LF, UK
| | - William Pomat
- Papua New Guinea Institute of Medical Research, Post Office Box 60, Goroka, Papua New Guinea
| | | | - Carmina Barberena-Jonas
- Advanced Genomics Unit, Center for Research and Advanced Studies (CINVESTAV), Irapuato 36821, Mexico
| | - Andrés Moreno-Estrada
- Advanced Genomics Unit, Center for Research and Advanced Studies (CINVESTAV), Irapuato 36821, Mexico
| | - Adrian Miller
- Jawun Research Centre, Central Queensland University, Cairns, QLD 4870, Australia
| | - Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - Steven Y C Tong
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3000, Australia; Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3000, Australia.
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Andrew G Brooks
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Paul J Norman
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Structural Biology and Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
16
|
Loonstra FC, Álvarez Sirvent D, Tesi N, Holstege H, Strijbis EMM, Salazar AN, Hulsman M, Van Der Lee SJ, Uitdehaag B. Association of Polygenic Risk Score With Lifetime Risk of Developing Multiple Sclerosis in a Population-Based Birth-Year Cohort. Neurology 2024; 103:e209663. [PMID: 39270152 PMCID: PMC11399064 DOI: 10.1212/wnl.0000000000209663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND AND OBJECTIVES More than 200 genetic variants have been associated with multiple sclerosis (MS) susceptibility. However, it is unclear to what extent genetic factors influence lifetime risk of MS. Using a population-based birth-year cohort, we investigate the effect of genetics on lifetime risk of MS. METHODS In the Project Y study, we tracked down almost all persons with MS (pwMS) from birth year 1966 in the Netherlands. As control participants, we included non-MS participants from the Project Y cohort (born 1965-1967 in the Netherlands) and non-MS participants from the Amsterdam Dementia Cohort born between 1963 and 1969. Genetic variants associated with MS were determined in pwMS and control participants using genotyping or imputation methods. Polygenic risk scores (PRSs) based on variants and weights from the largest genetic study in MS were calculated for each participant and assigned into deciles based on the PRS distribution in the control participants. We examined the lifetime risk for each decile and the association between PRS and MS disease variables, including age at onset and time to secondary progression. RESULTS MS-PRS was calculated for 285 pwMS (mean age 53.0 ± 0.9 years, 72.3% female) and 267 control participants (mean age 51.8 ± 3.2 years, 58.1% female). Based on the lifetime risk estimation, we observed that 1:2,739 of the women with the lowest 30% genetic risk developed MS, whereas 1:92 of the women with the top 10% highest risk developed MS. For men, only 1:7,900 developed MS in the lowest 30% genetic risk group, compared with 1:293 men with the top 10% genetic risk. The PRS was not significantly associated with age at onset and time to secondary progression in both sexes. DISCUSSION Our results show that the lifetime risk of MS is strongly influenced by genetic factors. Our findings have the potential to support diagnostic certainty in individuals with suspected MS: a high PRS could strengthen a diagnosis, but especially a PRS from the lowest tail of the PRS distribution should be considered a red flag and could prevent misdiagnosing conditions that mimic MS.
Collapse
Affiliation(s)
- Floor C Loonstra
- From the MS Center Amsterdam (F.C.L., E.M.M.S., B.U.), Neurology, Amsterdam Neuroscience, Genomics of Neurodegenerative Diseases and Aging (D.Á.S., N.T., H.H., A.N.S., M.H., S.J.V.D.L.), Human Genetics, and Alzheimer Center Amsterdam (H.H., S.J.V.D.L.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Delft Bioinformatics Lab (N.T., H.H.), Delft University of Technology; and Amsterdam Neuroscience (H.H., S.J.V.D.L.), Neurodegeneration, the Netherlands
| | - Daniel Álvarez Sirvent
- From the MS Center Amsterdam (F.C.L., E.M.M.S., B.U.), Neurology, Amsterdam Neuroscience, Genomics of Neurodegenerative Diseases and Aging (D.Á.S., N.T., H.H., A.N.S., M.H., S.J.V.D.L.), Human Genetics, and Alzheimer Center Amsterdam (H.H., S.J.V.D.L.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Delft Bioinformatics Lab (N.T., H.H.), Delft University of Technology; and Amsterdam Neuroscience (H.H., S.J.V.D.L.), Neurodegeneration, the Netherlands
| | - Niccoló Tesi
- From the MS Center Amsterdam (F.C.L., E.M.M.S., B.U.), Neurology, Amsterdam Neuroscience, Genomics of Neurodegenerative Diseases and Aging (D.Á.S., N.T., H.H., A.N.S., M.H., S.J.V.D.L.), Human Genetics, and Alzheimer Center Amsterdam (H.H., S.J.V.D.L.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Delft Bioinformatics Lab (N.T., H.H.), Delft University of Technology; and Amsterdam Neuroscience (H.H., S.J.V.D.L.), Neurodegeneration, the Netherlands
| | - Henne Holstege
- From the MS Center Amsterdam (F.C.L., E.M.M.S., B.U.), Neurology, Amsterdam Neuroscience, Genomics of Neurodegenerative Diseases and Aging (D.Á.S., N.T., H.H., A.N.S., M.H., S.J.V.D.L.), Human Genetics, and Alzheimer Center Amsterdam (H.H., S.J.V.D.L.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Delft Bioinformatics Lab (N.T., H.H.), Delft University of Technology; and Amsterdam Neuroscience (H.H., S.J.V.D.L.), Neurodegeneration, the Netherlands
| | - Eva M M Strijbis
- From the MS Center Amsterdam (F.C.L., E.M.M.S., B.U.), Neurology, Amsterdam Neuroscience, Genomics of Neurodegenerative Diseases and Aging (D.Á.S., N.T., H.H., A.N.S., M.H., S.J.V.D.L.), Human Genetics, and Alzheimer Center Amsterdam (H.H., S.J.V.D.L.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Delft Bioinformatics Lab (N.T., H.H.), Delft University of Technology; and Amsterdam Neuroscience (H.H., S.J.V.D.L.), Neurodegeneration, the Netherlands
| | - Alex N Salazar
- From the MS Center Amsterdam (F.C.L., E.M.M.S., B.U.), Neurology, Amsterdam Neuroscience, Genomics of Neurodegenerative Diseases and Aging (D.Á.S., N.T., H.H., A.N.S., M.H., S.J.V.D.L.), Human Genetics, and Alzheimer Center Amsterdam (H.H., S.J.V.D.L.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Delft Bioinformatics Lab (N.T., H.H.), Delft University of Technology; and Amsterdam Neuroscience (H.H., S.J.V.D.L.), Neurodegeneration, the Netherlands
| | - Marc Hulsman
- From the MS Center Amsterdam (F.C.L., E.M.M.S., B.U.), Neurology, Amsterdam Neuroscience, Genomics of Neurodegenerative Diseases and Aging (D.Á.S., N.T., H.H., A.N.S., M.H., S.J.V.D.L.), Human Genetics, and Alzheimer Center Amsterdam (H.H., S.J.V.D.L.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Delft Bioinformatics Lab (N.T., H.H.), Delft University of Technology; and Amsterdam Neuroscience (H.H., S.J.V.D.L.), Neurodegeneration, the Netherlands
| | - Sven J Van Der Lee
- From the MS Center Amsterdam (F.C.L., E.M.M.S., B.U.), Neurology, Amsterdam Neuroscience, Genomics of Neurodegenerative Diseases and Aging (D.Á.S., N.T., H.H., A.N.S., M.H., S.J.V.D.L.), Human Genetics, and Alzheimer Center Amsterdam (H.H., S.J.V.D.L.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Delft Bioinformatics Lab (N.T., H.H.), Delft University of Technology; and Amsterdam Neuroscience (H.H., S.J.V.D.L.), Neurodegeneration, the Netherlands
| | - Bernard Uitdehaag
- From the MS Center Amsterdam (F.C.L., E.M.M.S., B.U.), Neurology, Amsterdam Neuroscience, Genomics of Neurodegenerative Diseases and Aging (D.Á.S., N.T., H.H., A.N.S., M.H., S.J.V.D.L.), Human Genetics, and Alzheimer Center Amsterdam (H.H., S.J.V.D.L.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Delft Bioinformatics Lab (N.T., H.H.), Delft University of Technology; and Amsterdam Neuroscience (H.H., S.J.V.D.L.), Neurodegeneration, the Netherlands
| |
Collapse
|
17
|
Wang CC, Chen IC, Lin GC, Chen YM, Shen CH. Polymorphisms of HLA genes and hypersensitivity to penicillin among patients in a Taiwanese population. Int J Immunogenet 2024; 51:291-299. [PMID: 38741273 DOI: 10.1111/iji.12678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/08/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Penicillin allergy is a potentially life-threatening condition that is common among patients. However, the genetic associations with penicillin allergy are not yet recognized for prevention or diagnosis, particularly in East Asian populations. We conducted a retrospective case-control study using data from the Taiwan Precision Medicine Initiative and analysing DNA samples to identify eight major MHC Class I and Class II loci. We employed imputation methods for accurate HLA typing and enrolled 17,827 individuals who received penicillin. Logistic regression analyses were utilized to explore associations between HLA genotypes, comorbidities and allergy risk, while simultaneously conducting a subgroup analysis to explore the association between HLA genotypes, comorbidities and the severity of allergic reactions. Our study assigned 496 cases to the penicillin allergy group and 4960 controls to a matched group. The risk of penicillin allergy was significantly higher with HLA-DPB1*05:01 (OR = 1.36, p = .004) and HLA-DQB1*05:01 (OR = 1.54, p = .03), with adjusted p-values of .032 and .24, respectively. Urticaria was identified as a separate risk factor (OR = 1.73, p < .001). However, neither the HLA alleles nor the comorbidities had a significant relationship with the risk of severe penicillin-induced allergy. HLA-DPB1*05:01 was found to be significantly associated with penicillin allergy reactions among the Taiwanese population.
Collapse
Affiliation(s)
- Chih-Chun Wang
- Department of Medical Education, Taichung Veterans General Hospital, Taichung, Taiwan
| | - I-Chieh Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Guan-Cheng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Ming Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Hui Shen
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
18
|
Naito T, Okada Y. Genotype imputation methods for whole and complex genomic regions utilizing deep learning technology. J Hum Genet 2024; 69:481-486. [PMID: 38225263 PMCID: PMC11422162 DOI: 10.1038/s10038-023-01213-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024]
Abstract
The imputation of unmeasured genotypes is essential in human genetic research, particularly in enhancing the power of genome-wide association studies and conducting subsequent fine-mapping. Recently, several deep learning-based genotype imputation methods for genome-wide variants with the capability of learning complex linkage disequilibrium patterns have been developed. Additionally, deep learning-based imputation has been applied to a distinct genomic region known as the major histocompatibility complex, referred to as HLA imputation. Despite their various advantages, the current deep learning-based genotype imputation methods do have certain limitations and have not yet become standard. These limitations include the modest accuracy improvement over statistical and conventional machine learning-based methods. However, their benefits include other aspects, such as their "reference-free" nature, which ensures complete privacy protection, and their higher computational efficiency. Furthermore, the continuing evolution of deep learning technologies is expected to contribute to further improvements in prediction accuracy and usability in the future.
Collapse
Affiliation(s)
- Tatsuhiko Naito
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-shi, Osaka, 565-0871, Japan.
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan.
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-2, Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, 2-2, Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| |
Collapse
|
19
|
Kojima K, Tadaka S, Okamura Y, Kinoshita K. Two-stage strategy using denoising autoencoders for robust reference-free genotype imputation with missing input genotypes. J Hum Genet 2024; 69:511-518. [PMID: 38918526 PMCID: PMC11422160 DOI: 10.1038/s10038-024-01261-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/16/2024] [Accepted: 05/13/2024] [Indexed: 06/27/2024]
Abstract
Widely used genotype imputation methods are based on the Li and Stephens model, which assumes that new haplotypes can be represented by modifying existing haplotypes in a reference panel through mutations and recombinations. These methods use genotypes from SNP arrays as inputs to estimate haplotypes that align with the input genotypes by analyzing recombination patterns within a reference panel, and then infer unobserved variants. While these methods require reference panels in an identifiable form, their public use is limited due to privacy and consent concerns. One strategy to overcome these limitations is to use de-identified haplotype information, such as summary statistics or model parameters. Advances in deep learning (DL) offer the potential to develop imputation methods that use haplotype information in a reference-free manner by handling it as model parameters, while maintaining comparable imputation accuracy to methods based on the Li and Stephens model. Here, we provide a brief introduction to DL-based reference-free genotype imputation methods, including RNN-IMP, developed by our research group. We then evaluate the performance of RNN-IMP against widely-used Li and Stephens model-based imputation methods in terms of accuracy (R2), using the 1000 Genomes Project Phase 3 dataset and corresponding simulated Omni2.5 SNP genotype data. Although RNN-IMP is sensitive to missing values in input genotypes, we propose a two-stage imputation strategy: missing genotypes are first imputed using denoising autoencoders; RNN-IMP then processes these imputed genotypes. This approach restores the imputation accuracy that is degraded by missing values, enhancing the practical use of RNN-IMP.
Collapse
Affiliation(s)
- Kaname Kojima
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan.
| | - Shu Tadaka
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Yasunobu Okamura
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-0873, Japan
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan.
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-0873, Japan.
- Graduate School of Information Sciences, Tohoku University, 6-3-09 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan.
- Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
20
|
Tanaka K, Kato K, Nonaka N, Seita J. Efficient HLA imputation from sequential SNPs data by transformer. J Hum Genet 2024; 69:533-540. [PMID: 39095607 PMCID: PMC11422163 DOI: 10.1038/s10038-024-01278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
Human leukocyte antigen (HLA) genes are associated with a variety of diseases, yet the direct typing of HLA alleles is both time-consuming and costly. Consequently, various imputation methods leveraging sequential single nucleotide polymorphisms (SNPs) data have been proposed, employing either statistical or deep learning models, such as the convolutional neural network (CNN)-based model, DEEP*HLA. However, these methods exhibit limited imputation efficiency for infrequent alleles and necessitate a large size of reference dataset. In this context, we have developed a Transformer-based model to HLA allele imputation, named "HLA Reliable IMpuatioN by Transformer (HLARIMNT)" designed to exploit the sequential nature of SNPs data. We evaluated HLARIMNT's performance using two distinct reference panels; Pan-Asian reference panel (n = 530) and Type 1 Diabetes genetics Consortium (T1DGC) reference panel (n = 5225), alongside a combined panel (n = 1060). HLARIMNT demonstrated superior accuracy to DEEP*HLA across several indices, particularly for infrequent alleles. Furthermore, we explored the impact of varying training data sizes on imputation accuracy, finding that HLARIMNT consistently outperformed across all data size. These findings suggest that Transformer-based models can efficiently impute not only HLA types but potentially other gene types from sequential SNPs data.
Collapse
Affiliation(s)
- Kaho Tanaka
- Faculty of Engineering, Kyoto University, Kyoto, Japan
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, RIKEN, Tokyo, Japan
| | - Kosuke Kato
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, RIKEN, Tokyo, Japan
| | - Naoki Nonaka
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, RIKEN, Tokyo, Japan
| | - Jun Seita
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, RIKEN, Tokyo, Japan.
| |
Collapse
|
21
|
Muñiz-Castrillo S, Villagrán-García M, Peris Sempere V, Farina A, Pinto AL, Picard G, Rogemond V, Honnorat J, Mignot E. HLA-DR3 ~ DQ2 associates with sensory neuropathy in paraneoplastic neurological syndromes with Hu antibodies. J Neurol 2024; 271:6336-6342. [PMID: 38990347 PMCID: PMC11377461 DOI: 10.1007/s00415-024-12534-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVES To investigate the association between human leukocyte antigen (HLA) and paraneoplastic neurological syndromes (PNS) with Hu antibodies, and potential specificities according to clinical presentation and cancer status. METHODS HLA genotypes at four-digit resolution were imputed from available genome-wide association data. Allele carrier frequencies were compared between patients (whole cohort, n = 100, and according to clinical presentation and cancer status) and matched healthy controls (n = 508) using logistic regression controlled by the three main principal components. RESULTS The clinical presentation of 100 anti-Hu patients involved the central nervous system (28, 28%), the peripheral nervous system (36, 36%) or both combined (36, 36%). Cancer diagnosis was certain in 75 (75%). HLA association analyses revealed that anti-Hu PNS patients were more frequently carriers of DQA1*05:01 (39% vs. 19%, OR = 2.8 [1.74-4.49]), DQB1*02:01 (39% vs. 18%, OR = 2.88 [1.79-4.64]) and DRB1*03:01 (41% vs. 19%, OR = 2.92 [1.80-4.73]) than healthy controls. Remarkably, such DR3 ~ DQ2 association was absent in patients with pure central involvement, but more specific to those manifesting with peripheral involvement: DQA1*05:01 (OR = 3.12 [1.48-6.60]), DQB1*02:01 (OR = 3.35 [1.57-7.15]) and DRB1*03:01 (OR = 3.62 [1.64-7.97]); being even stronger in cases with sensory neuropathy, DQA1*05:01 (OR = 4.41 [1.89-10.33]), DQB1*02:01 (OR = 4.85 [2.04-11.53]) and DRB1*03:01 (OR = 5.79 [2.28-14.74]). Similarly, DR3 ~ DQ2 association was only observed in patients with cancer. DISCUSSION Patients with anti-Hu PNS show different HLA profiles according to clinical presentation and, probably, cancer status, suggesting pathophysiological differences.
Collapse
Affiliation(s)
- Sergio Muñiz-Castrillo
- Stanford Center for Sleep Sciences and Medicine, Stanford University, 3165 Porter Drive, Palo Alto, CA, 94304, USA
| | - Macarena Villagrán-García
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- MeLiS, UCBL-CNRS UMR 5284, INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| | - Vicente Peris Sempere
- Stanford Center for Sleep Sciences and Medicine, Stanford University, 3165 Porter Drive, Palo Alto, CA, 94304, USA
| | - Antonio Farina
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- MeLiS, UCBL-CNRS UMR 5284, INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| | - Anne-Laurie Pinto
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- MeLiS, UCBL-CNRS UMR 5284, INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| | - Géraldine Picard
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- MeLiS, UCBL-CNRS UMR 5284, INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| | - Véronique Rogemond
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- MeLiS, UCBL-CNRS UMR 5284, INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| | - Jérôme Honnorat
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- MeLiS, UCBL-CNRS UMR 5284, INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| | - Emmanuel Mignot
- Stanford Center for Sleep Sciences and Medicine, Stanford University, 3165 Porter Drive, Palo Alto, CA, 94304, USA.
| |
Collapse
|
22
|
Tammi S, Koskela S, Blood Service Biobank, Hyvärinen K, Partanen J, Ritari J. Accurate multi-population imputation of MICA, MICB, HLA-E, HLA-F and HLA-G alleles from genome SNP data. PLoS Comput Biol 2024; 20:e1011718. [PMID: 39283896 PMCID: PMC11426482 DOI: 10.1371/journal.pcbi.1011718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/26/2024] [Accepted: 08/31/2024] [Indexed: 09/27/2024] Open
Abstract
In addition to the classical HLA genes, the major histocompatibility complex (MHC) harbors a high number of other polymorphic genes with less established roles in disease associations and transplantation matching. To facilitate studies of the non-classical and non-HLA genes in large patient and biobank cohorts, we trained imputation models for MICA, MICB, HLA-E, HLA-F and HLA-G alleles on genome SNP array data. We show, using both population-specific and multi-population 1000 Genomes references, that the alleles of these genes can be accurately imputed for screening and research purposes. The best imputation model for MICA, MICB, HLA-E, -F and -G achieved a mean accuracy of 99.3% (min, max: 98.6, 99.9). Furthermore, validation of the 1000 Genomes exome short-read sequencing-based allele calling against a clinical-grade reference data showed an average accuracy of 99.8%, testifying for the quality of the 1000 Genomes data as an imputation reference. We also fitted the models for Infinium Global Screening Array (GSA, Illumina, Inc.) and Axiom Precision Medicine Research Array (PMRA, Thermo Fisher Scientific Inc.) SNP content, with mean accuracies of 99.1% (97.2, 100) and 98.9% (97.4, 100), respectively.
Collapse
Affiliation(s)
- Silja Tammi
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Satu Koskela
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
- Finnish Red Cross Blood Service, Blood Service Biobank, Vantaa, Finland
| | | | - Kati Hyvärinen
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Jukka Partanen
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
- Finnish Red Cross Blood Service, Blood Service Biobank, Vantaa, Finland
| | - Jarmo Ritari
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| |
Collapse
|
23
|
Wang CC, Shen CH, Lin GC, Chen YM, Chen IC. Association of HLA alleles with cephalosporin allergy in the Taiwanese population. Sci Rep 2024; 14:17167. [PMID: 39060355 PMCID: PMC11282083 DOI: 10.1038/s41598-024-68185-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Cephalosporin antibiotics are widely used in clinical settings, but they can cause hypersensitivity reactions, which may be influenced by genetic factors such as the expression of Human leukocyte antigen (HLA) molecules. This study aimed to investigate whether specific HLA alleles were associated with an increased risk of adverse reactions to cephalosporins among individuals in the Taiwanese population. This retrospective case-control study analyzed data from the Taiwan Precision Medicine Initiative (TPMI) on 27,933 individuals who received cephalosporin exposure and had HLA allele genotyping information available. Using logistic regression analyses, we examined the associations between HLA genotypes, comorbidities, allergy risk, and severity. Among the study population, 278 individuals had cephalosporin allergy and 2780 were in the control group. Our results indicated that certain HLA alleles, including HLA-B*55:02 (OR = 1.76, 95% CI 1.18-2.61, p = 0.005), HLA-C*01:02 (OR = 1.36, 95% CI 1.05-1.77, p = 0.018), and HLA-DQB1*06:09 (OR = 2.58, 95% CI 1.62-4.12, p < 0.001), were significantly associated with an increased risk of cephalosporin allergy reactions. Additionally, the HLA-C*01:02 allele genotype was significantly associated with a higher risk of severe allergy (OR = 2.33, 95% CI 1.05-5.15, p = 0.04). This study identified significant associations between HLA alleles and an increased risk of cephalosporin allergy, which can aid in early detection and prediction of adverse drug reactions to cephalosporins. Furthermore, our study highlights the importance of HLA typing in drug safety and expanding our knowledge of drug hypersensitivity syndromes.
Collapse
Affiliation(s)
- Chih-Chun Wang
- Department of Medical Education, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ching-Hui Shen
- Department of Postbaccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Guan-Cheng Lin
- Department of Medical Research, Taichung Veterans General Hospital, 1650, Section 4, Taiwan Boulevard, Xitun Dist., Taichung, 40705, Taiwan
| | - Yi-Ming Chen
- Department of Postbaccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, 1650, Section 4, Taiwan Boulevard, Xitun Dist., Taichung, 40705, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - I-Chieh Chen
- Department of Medical Research, Taichung Veterans General Hospital, 1650, Section 4, Taiwan Boulevard, Xitun Dist., Taichung, 40705, Taiwan.
| |
Collapse
|
24
|
Marchal A, Cirulli ET, Neveux I, Bellos E, Thwaites RS, Schiabor Barrett KM, Zhang Y, Nemes-Bokun I, Kalinova M, Catchpole A, Tangye SG, Spaan AN, Lack JB, Ghosn J, Burdet C, Gorochov G, Tubach F, Hausfater P, Dalgard CL, Zhang SY, Zhang Q, Chiu C, Fellay J, Grzymski JJ, Sancho-Shimizu V, Abel L, Casanova JL, Cobat A, Bolze A. Lack of association between classical HLA genes and asymptomatic SARS-CoV-2 infection. HGG ADVANCES 2024; 5:100300. [PMID: 38678364 PMCID: PMC11215417 DOI: 10.1016/j.xhgg.2024.100300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024] Open
Abstract
Human genetic studies of critical COVID-19 pneumonia have revealed the essential role of type I interferon-dependent innate immunity to SARS-CoV-2 infection. Conversely, an association between the HLA-B∗15:01 allele and asymptomatic SARS-CoV-2 infection in unvaccinated individuals was recently reported, suggesting a contribution of pre-existing T cell-dependent adaptive immunity. We report a lack of association of classical HLA alleles, including HLA-B∗15:01, with pre-omicron asymptomatic SARS-CoV-2 infection in unvaccinated participants in a prospective population-based study in the United States (191 asymptomatic vs. 945 symptomatic COVID-19 cases). Moreover, we found no such association in the international COVID Human Genetic Effort cohort (206 asymptomatic vs. 574 mild or moderate COVID-19 cases and 1,625 severe or critical COVID-19 cases). Finally, in the Human Challenge Characterisation study, the three HLA-B∗15:01 individuals infected with SARS-CoV-2 developed symptoms. As with other acute primary infections studied, no classical HLA alleles favoring an asymptomatic course of SARS-CoV-2 infection were identified.
Collapse
Affiliation(s)
- Astrid Marchal
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France
| | | | - Iva Neveux
- Department of Internal Medicine, University of Nevada School of Medicine, Reno, NV, USA
| | - Evangelos Bellos
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, Bethesda, MD, USA
| | - Ivana Nemes-Bokun
- Department of Infectious Disease, Imperial College London, London, UK
| | | | | | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, New South Wales, Australia
| | - András N Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Justin B Lack
- NIAID Collaborative Bioinformatics Resource, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD, USA
| | - Jade Ghosn
- Infection, Antimicrobials, Modelling, Evolution (IAME), INSERM, UMR1137, University Paris Cité, Paris, France; AP-HP, Bichat-Claude Bernard Hospital, Infectious and Tropical Diseases Department, Paris, France
| | - Charles Burdet
- Infection, Antimicrobials, Modelling, Evolution (IAME), INSERM, UMR1137, University Paris Cité, Paris, France; AP-HP, Hôpital Bichat, Centre d'Investigation Clinique, INSERM CIC 1425, Paris, France; Département Epidémiologie, Biostatistiques et Recherche Clinique, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, 75018 Paris, France
| | - Guy Gorochov
- Sorbonne Université, INSERM Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Département d'immunologie Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Florence Tubach
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, Département de Santé Publique, Unitéde Recherche Clinique PSL-CFX, CIC-1901, Paris, France
| | - Pierre Hausfater
- Emergency Department, Hôpital Pitié-Salpêtrière, APHP-Sorbonne Université, Paris, France; GRC-14 BIOSFAST Sorbonne Université, UMR INSERM 1135, CIMI, Sorbonne Université, Paris, France
| | - Clifton L Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Joseph J Grzymski
- Department of Internal Medicine, University of Nevada School of Medicine, Reno, NV, USA; Renown Health, Reno, NV, USA
| | - Vanessa Sancho-Shimizu
- Department of Infectious Disease, Imperial College London, London, UK; Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France; Howard Hughes Medical Institute, New York, NY, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| | | |
Collapse
|
25
|
Burnham KL, Milind N, Lee W, Kwok AJ, Cano-Gamez K, Mi Y, Geoghegan CG, Zhang P, McKechnie S, Soranzo N, Hinds CJ, Knight JC, Davenport EE. eQTLs identify regulatory networks and drivers of variation in the individual response to sepsis. CELL GENOMICS 2024; 4:100587. [PMID: 38897207 PMCID: PMC11293594 DOI: 10.1016/j.xgen.2024.100587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
Sepsis is a clinical syndrome of life-threatening organ dysfunction caused by a dysregulated response to infection, for which disease heterogeneity is a major obstacle to developing targeted treatments. We have previously identified gene-expression-based patient subgroups (sepsis response signatures [SRS]) informative for outcome and underlying pathophysiology. Here, we aimed to investigate the role of genetic variation in determining the host transcriptomic response and to delineate regulatory networks underlying SRS. Using genotyping and RNA-sequencing data on 638 adult sepsis patients, we report 16,049 independent expression (eQTLs) and 32 co-expression module (modQTLs) quantitative trait loci in this disease context. We identified significant interactions between SRS and genotype for 1,578 SNP-gene pairs and combined transcription factor (TF) binding site information (SNP2TFBS) and predicted regulon activity (DoRothEA) to identify candidate upstream regulators. Overall, these approaches identified putative mechanistic links between host genetic variation, cell subtypes, and the individual transcriptomic response to infection.
Collapse
Affiliation(s)
- Katie L Burnham
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Nikhil Milind
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK; University of Cambridge, Cambridge, UK
| | - Wanseon Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Andrew J Kwok
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kiki Cano-Gamez
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK; Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Yuxin Mi
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Ping Zhang
- Centre for Human Genetics, University of Oxford, Oxford, UK; Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | | | - Nicole Soranzo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Charles J Hinds
- Centre for Translational Medicine & Therapeutics, William Harvey Research Institute, Faculty of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Julian C Knight
- Centre for Human Genetics, University of Oxford, Oxford, UK; Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK.
| | | |
Collapse
|
26
|
Peris Sempere V, Luo G, Muñiz-Castrillo S, Pinto AL, Picard G, Rogemond V, Titulaer MJ, Finke C, Leypoldt F, Kuhlenbäumer G, GENERATE study group, Jones HF, Dale RC, Binks S, Irani SR, Bastiaansen AE, de Vries JM, de Bruijn MAAM, Roelen DL, Kim TJ, Chu K, Lee ST, Kanbayashi T, Pollock NR, Kichula KM, Mumme-Monheit A, Honnorat J, Norman PJ, Mignot E. HLA and KIR genetic association and NK cells in anti-NMDAR encephalitis. Front Immunol 2024; 15:1423149. [PMID: 39050850 PMCID: PMC11266021 DOI: 10.3389/fimmu.2024.1423149] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/06/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Genetic predisposition to autoimmune encephalitis with antibodies against N-methyl-D-aspartate receptor (NMDAR) is poorly understood. Given the diversity of associated environmental factors (tumors, infections), we hypothesized that human leukocyte antigen (HLA) and killer-cell immunoglobulin-like receptors (KIR), two extremely polymorphic gene complexes key to the immune system, might be relevant for the genetic predisposition to anti-NMDAR encephalitis. Notably, KIR are chiefly expressed by Natural Killer (NK) cells, recognize distinct HLA class I allotypes and play a major role in anti-tumor and anti-infection responses. Methods We conducted a Genome Wide Association Study (GWAS) with subsequent control-matching using Principal Component Analysis (PCA) and HLA imputation, in a multi-ethnic cohort of anti-NMDAR encephalitis (n=479); KIR and HLA were further sequenced in a large subsample (n=323). PCA-controlled logistic regression was then conducted for carrier frequencies (HLA and KIR) and copy number variation (KIR). HLA-KIR interaction associations were also modeled. Additionally, single cell sequencing was conducted in peripheral blood mononuclear cells from 16 cases and 16 controls, NK cells were sorted and phenotyped. Results Anti-NMDAR encephalitis showed a weak HLA association with DRB1*01:01~DQA1*01:01~DQB1*05:01 (OR=1.57, 1.51, 1.45; respectively), and DRB1*11:01 (OR=1.60); these effects were stronger in European descendants and in patients without an underlying ovarian teratoma. More interestingly, we found increased copy number variation of KIR2DL5B (OR=1.72), principally due to an overrepresentation of KIR2DL5B*00201. Further, we identified two allele associations in framework genes, KIR2DL4*00103 (25.4% vs. 12.5% in controls, OR=1.98) and KIR3DL3*00302 (5.3% vs. 1.3%, OR=4.44). Notably, the ligands of these KIR2DL4 and KIR3DL3, respectively, HLA-G and HHLA2, are known to act as immune checkpoint with immunosuppressive functions. However, we did not find differences in specific KIR-HLA ligand interactions or HLA-G polymorphisms between cases and controls. Similarly, gene expression of CD56dim or CD56bright NK cells did not differ between cases and controls. Discussion Our observations for the first time suggest that the HLA-KIR axis might be involved in anti-NMDAR encephalitis. While the genetic risk conferred by the identified polymorphisms appears small, a role of this axis in the pathophysiology of this disease appears highly plausible and should be analyzed in future studies.
Collapse
Affiliation(s)
- Vicente Peris Sempere
- Stanford Center for Sleep Science and Medicine, Stanford University, Palo Alto, CA, United States
| | - Guo Luo
- Stanford Center for Sleep Science and Medicine, Stanford University, Palo Alto, CA, United States
| | - Sergio Muñiz-Castrillo
- Stanford Center for Sleep Science and Medicine, Stanford University, Palo Alto, CA, United States
| | - Anne-Laurie Pinto
- French Reference Center on Paraneoplastic Neurological Syndrome and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- Institut MeLiS INSERM U1314/CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
| | - Géraldine Picard
- French Reference Center on Paraneoplastic Neurological Syndrome and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- Institut MeLiS INSERM U1314/CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
| | - Véronique Rogemond
- French Reference Center on Paraneoplastic Neurological Syndrome and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- Institut MeLiS INSERM U1314/CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Carsten Finke
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frank Leypoldt
- Department of Neurology, Christian-Albrechts-University/University Hospital Schleswig-Holstein, Kiel, Germany
- Neuroimmunology, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein Kiel/Lübeck, Kiel, Germany
| | - Gregor Kuhlenbäumer
- Department of Neurology, Christian-Albrechts-University/University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Hannah F. Jones
- Starship Hospital, Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Russell C. Dale
- Kids Neuroscience Centre, Children’s Hospital at Westmead clinical school, University of Sydney, Sydney, NSW, Australia
| | - Sophie Binks
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Department of Neurology, John Radcliffe Hospital, Oxford, United Kingdom
| | - Sarosh R. Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Departments of Neurology and Neurosciences, Mayo Clinic, Jacksonville, FL, United States
| | | | - Juna M. de Vries
- Department of Neurology, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Dave L. Roelen
- Department of Immunogenetics and Transplantation Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Tae-Joon Kim
- Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kon Chu
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soon-Tae Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | - Nicholas R. Pollock
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Katherine M. Kichula
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Abigail Mumme-Monheit
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jérôme Honnorat
- French Reference Center on Paraneoplastic Neurological Syndrome and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- Institut MeLiS INSERM U1314/CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
| | - Paul J. Norman
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Emmanuel Mignot
- Stanford Center for Sleep Science and Medicine, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
27
|
Yogeshwar SM, Muñiz-Castrillo S, Sabater L, Peris-Sempere V, Mallajosyula V, Luo G, Yan H, Yu E, Zhang J, Lin L, Fagundes Bueno F, Ji X, Picard G, Rogemond V, Pinto AL, Heidbreder A, Höftberger R, Graus F, Dalmau J, Santamaria J, Iranzo A, Schreiner B, Giannoccaro MP, Liguori R, Shimohata T, Kimura A, Ono Y, Binks S, Mariotto S, Dinoto A, Bonello M, Hartmann CJ, Tambasco N, Nigro P, Prüss H, McKeon A, Davis MM, Irani SR, Honnorat J, Gaig C, Finke C, Mignot E. HLA-DQB1*05 subtypes and not DRB1*10:01 mediates risk in anti-IgLON5 disease. Brain 2024; 147:2579-2592. [PMID: 38425314 PMCID: PMC11224611 DOI: 10.1093/brain/awae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/09/2023] [Accepted: 01/21/2024] [Indexed: 03/02/2024] Open
Abstract
Anti-IgLON5 disease is a rare and likely underdiagnosed subtype of autoimmune encephalitis. The disease displays a heterogeneous phenotype that includes sleep, movement and bulbar-associated dysfunction. The presence of IgLON5-antibodies in CSF/serum, together with a strong association with HLA-DRB1*10:01∼DQB1*05:01, supports an autoimmune basis. In this study, a multicentric human leukocyte antigen (HLA) study of 87 anti-IgLON5 patients revealed a stronger association with HLA-DQ than HLA-DR. Specifically, we identified a predisposing rank-wise association with HLA-DQA1*01:05∼DQB1*05:01, HLA-DQA1*01:01∼DQB1*05:01 and HLA-DQA1*01:04∼DQB1*05:03 in 85% of patients. HLA sequences and binding cores for these three DQ heterodimers were similar, unlike those of linked DRB1 alleles, supporting a causal link to HLA-DQ. This association was further reflected in an increasingly later age of onset across each genotype group, with a delay of up to 11 years, while HLA-DQ-dosage dependent effects were also suggested by reduced risk in the presence of non-predisposing DQ1 alleles. The functional relevance of the observed HLA-DQ molecules was studied with competition binding assays. These proof-of-concept experiments revealed preferential binding of IgLON5 in a post-translationally modified, but not native, state to all three risk-associated HLA-DQ receptors. Further, a deamidated peptide from the Ig2-domain of IgLON5 activated T cells in two patients, compared with one control carrying HLA-DQA1*01:05∼DQB1*05:01. Taken together, these data support a HLA-DQ-mediated T-cell response to IgLON5 as a potentially key step in the initiation of autoimmunity in this disease.
Collapse
Affiliation(s)
- Selina M Yogeshwar
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Sergio Muñiz-Castrillo
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lidia Sabater
- Neuroimmunology Program, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Caixa Research Institute, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Vicente Peris-Sempere
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vamsee Mallajosyula
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Guo Luo
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Han Yan
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eric Yu
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jing Zhang
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ling Lin
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Flavia Fagundes Bueno
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xuhuai Ji
- Human Immune Monitoring Center, Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Géraldine Picard
- French Reference Center on Paraneoplastic Neurological Syndrome and Autoimmune Encephalitis, Hospices Civils de Lyon, 69677, Lyon, France
- Institut MeLiS INSERM U1314/CNRS UMR 5284, Université Claude Bernard Lyon 1, 69372 Lyon, France
| | - Véronique Rogemond
- French Reference Center on Paraneoplastic Neurological Syndrome and Autoimmune Encephalitis, Hospices Civils de Lyon, 69677, Lyon, France
- Institut MeLiS INSERM U1314/CNRS UMR 5284, Université Claude Bernard Lyon 1, 69372 Lyon, France
| | - Anne Laurie Pinto
- French Reference Center on Paraneoplastic Neurological Syndrome and Autoimmune Encephalitis, Hospices Civils de Lyon, 69677, Lyon, France
- Institut MeLiS INSERM U1314/CNRS UMR 5284, Université Claude Bernard Lyon 1, 69372 Lyon, France
| | - Anna Heidbreder
- Kepler University Hospital, Department of Neurology, Johannes Kepler University, 4020 Linz, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Francesc Graus
- Neurology Service, Hospital Clínic of Barcelona, Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Josep Dalmau
- Neurology Service, Hospital Clínic of Barcelona, Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Spanish National Network for Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Joan Santamaria
- Neurology Service, Hospital Clínic of Barcelona, Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Alex Iranzo
- Neurology Service, Hospital Clínic of Barcelona, Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Bettina Schreiner
- Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Maria Pia Giannoccaro
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, 40139 Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40100 Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, 40139 Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40100 Bologna, Italy
| | - Takayoshi Shimohata
- Department of Neurology, Gifu University Graduate School of Medicine, 501-1194 Gifu, Japan
| | - Akio Kimura
- Department of Neurology, Gifu University Graduate School of Medicine, 501-1194 Gifu, Japan
| | - Yoya Ono
- Department of Neurology, Gifu University Graduate School of Medicine, 501-1194 Gifu, Japan
| | - Sophie Binks
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Department of Neurology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Sara Mariotto
- Neurology Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, 37124 Verona, Italy
| | - Alessandro Dinoto
- Neurology Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, 37124 Verona, Italy
| | - Michael Bonello
- Department of Neurology, The Walton Centre NHS Foundation Trust, L9 7LJ, Liverpool, UK
| | - Christian J Hartmann
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Nicola Tambasco
- Movement Disorders Center, Neurology Department, Perugia General Hospital and University of Perugia, 06156 Perugia, Italy
| | - Pasquale Nigro
- Movement Disorders Center, Neurology Department, Perugia General Hospital and University of Perugia, 06156 Perugia, Italy
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
| | - Andrew McKeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarosh R Irani
- Department of Neurology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Jérôme Honnorat
- French Reference Center on Paraneoplastic Neurological Syndrome and Autoimmune Encephalitis, Hospices Civils de Lyon, 69677, Lyon, France
- Institut MeLiS INSERM U1314/CNRS UMR 5284, Université Claude Bernard Lyon 1, 69372 Lyon, France
| | - Carles Gaig
- Neurology Service, Hospital Clínic of Barcelona, Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Carsten Finke
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117, Berlin, Germany
- Berlin Center for Advanced Neuroimaging, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Emmanuel Mignot
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
28
|
Al-kaabi M, Deshpande P, Firth M, Pavlos R, Chopra A, Basiri H, Currenti J, Alves E, Kalams S, Fellay J, Phillips E, Mallal S, John M, Gaudieri S. Epistatic interaction between ERAP2 and HLA modulates HIV-1 adaptation and disease outcome in an Australian population. PLoS Pathog 2024; 20:e1012359. [PMID: 38980912 PMCID: PMC11259285 DOI: 10.1371/journal.ppat.1012359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/19/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
A strong genetic predictor of outcome following untreated HIV-1 infection is the carriage of specific alleles of human leukocyte antigens (HLAs) that present viral epitopes to T cells. Residual variation in outcome measures may be attributed, in part, to viral adaptation to HLA-restricted T cell responses. Variants of the endoplasmic reticulum aminopeptidases (ERAPs) influence the repertoire of T cell epitopes presented by HLA alleles as they trim pathogen-derived peptide precursors to optimal lengths for antigen presentation, along with other functions unrelated to antigen presentation. We investigated whether ERAP variants influence HLA-associated HIV-1 adaptation with demonstrable effects on overall HIV-1 disease outcome. Utilizing host and viral data of 249 West Australian individuals with HIV-1 subtype B infection, we identified a novel association between two linked ERAP2 single nucleotide polymorphisms (SNPs; rs2248374 and rs2549782) with plasma HIV RNA concentration (viral load) (P adjusted = 0.0024 for both SNPs). Greater HLA-associated HIV-1 adaptation in the HIV-1 Gag gene correlated significantly with higher viral load, lower CD4+ T cell count and proportion; P = 0.0103, P = 0.0061, P = 0.0061, respectively). When considered together, there was a significant interaction between the two ERAP2 SNPs and HLA-associated HIV-1 adaptation on viral load (P = 0.0111). In a comprehensive multivariate model, addition of ERAP2 haplotypes and HLA associated adaptation as an interaction term to known HLA and CCR5 determinants and demographic factors, increased the explanatory variance of population viral load from 17.67% to 45.1% in this dataset. These effects were not replicated in publicly available datasets with comparably sized cohorts, suggesting that any true global epistasis may be dependent on specific HLA-ERAP allelic combinations. Our data raises the possibility that ERAP2 variants may shape peptide repertoires presented to HLA class I-restricted T cells to modulate the degree of viral adaptation within individuals, in turn contributing to disease variability at the population level. Analyses of other populations and experimental studies, ideally with locally derived ERAP genotyping and HLA-specific viral adaptations are needed to elucidate this further.
Collapse
Affiliation(s)
- Marwah Al-kaabi
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Pooja Deshpande
- School of Human Sciences, University of Western Australia, Crawley, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Martin Firth
- School of Physics, Mathematics and Computing, Department of Mathematics and Statistics, University of Western Australia, Crawley, Australia
| | - Rebecca Pavlos
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Hamed Basiri
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Jennifer Currenti
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Eric Alves
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Spyros Kalams
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss HIV Cohort Study, Zurich, Switzerland
| | - Elizabeth Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Mina John
- School of Human Sciences, University of Western Australia, Crawley, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Australia
| | - Silvana Gaudieri
- School of Human Sciences, University of Western Australia, Crawley, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
29
|
Kozlowska J, Humphryes-Kirilov N, Pavlovets A, Connolly M, Kuncheva Z, Horner J, Manso AS, Murray C, Fox JC, McCarthy A. Unveiling new genetic insights in rheumatoid arthritis for drug discovery through Taxonomy3 analysis. Sci Rep 2024; 14:14153. [PMID: 38898196 PMCID: PMC11186831 DOI: 10.1038/s41598-024-64970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
Genetic support for a drug target has been shown to increase the probability of success in drug development, with the potential to reduce attrition in the pharmaceutical industry alongside discovering novel therapeutic targets. It is therefore important to maximise the detection of genetic associations that affect disease susceptibility. Conventional statistical methods such as genome-wide association studies (GWAS) only identify some of the genetic contribution to disease, so novel analytical approaches are required to extract additional insights. C4X Discovery has developed Taxonomy3, a unique method for analysing genetic datasets based on mathematics that is novel in drug discovery. When applied to a previously published rheumatoid arthritis GWAS dataset, Taxonomy3 identified many additional novel genetic signals associated with this autoimmune disease. Follow-up studies using tool compounds support the utility of the method in identifying novel biology and tractable drug targets with genetic support for further investigation.
Collapse
Affiliation(s)
- Justyna Kozlowska
- C4X Discovery Ltd, Manchester One, 53 Portland Street, Manchester, M1 3LD, UK.
| | | | - Anastasia Pavlovets
- C4X Discovery Ltd, Manchester One, 53 Portland Street, Manchester, M1 3LD, UK
| | - Martin Connolly
- C4X Discovery Ltd, Manchester One, 53 Portland Street, Manchester, M1 3LD, UK
| | - Zhana Kuncheva
- C4X Discovery Ltd, Manchester One, 53 Portland Street, Manchester, M1 3LD, UK
| | - Jonathan Horner
- C4X Discovery Ltd, Manchester One, 53 Portland Street, Manchester, M1 3LD, UK
| | - Ana Sousa Manso
- C4X Discovery Ltd, Manchester One, 53 Portland Street, Manchester, M1 3LD, UK
| | - Clare Murray
- C4X Discovery Ltd, Manchester One, 53 Portland Street, Manchester, M1 3LD, UK
| | - J Craig Fox
- C4X Discovery Ltd, Manchester One, 53 Portland Street, Manchester, M1 3LD, UK
| | - Alun McCarthy
- C4X Discovery Ltd, Manchester One, 53 Portland Street, Manchester, M1 3LD, UK
| |
Collapse
|
30
|
Reeve MP, Vehviläinen M, Luo S, Ritari J, Karjalainen J, Gracia-Tabuenca J, Mehtonen J, Padmanabhuni SS, Kolosov N, Artomov M, Siirtola H, Olilla HM, Graham D, Partanen J, Xavier RJ, Daly MJ, Ripatti S, Salo T, Siponen M. Oral and non-oral lichen planus show genetic heterogeneity and differential risk for autoimmune disease and oral cancer. Am J Hum Genet 2024; 111:1047-1060. [PMID: 38776927 PMCID: PMC11179409 DOI: 10.1016/j.ajhg.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Lichen planus (LP) is a T-cell-mediated inflammatory disease affecting squamous epithelia in many parts of the body, most often the skin and oral mucosa. Cutaneous LP is usually transient and oral LP (OLP) is most often chronic, so we performed a large-scale genetic and epidemiological study of LP to address whether the oral and non-oral subgroups have shared or distinct underlying pathologies and their overlap with autoimmune disease. Using lifelong records covering diagnoses, procedures, and clinic identity from 473,580 individuals in the FinnGen study, genome-wide association analyses were conducted on carefully constructed subcategories of OLP (n = 3,323) and non-oral LP (n = 4,356) and on the combined group. We identified 15 genome-wide significant associations in FinnGen and an additional 12 when meta-analyzed with UKBB (27 independent associations at 25 distinct genomic locations), most of which are shared between oral and non-oral LP. Many associations coincide with known autoimmune disease loci, consistent with the epidemiologic enrichment of LP with hypothyroidism and other autoimmune diseases. Notably, a third of the FinnGen associations demonstrate significant differences between OLP and non-OLP. We also observed a 13.6-fold risk for tongue cancer and an elevated risk for other oral cancers in OLP, in agreement with earlier reports that connect LP with higher cancer incidence. In addition to a large-scale dissection of LP genetics and comorbidities, our study demonstrates the use of comprehensive, multidimensional health registry data to address outstanding clinical questions and reveal underlying biological mechanisms in common but understudied diseases.
Collapse
Affiliation(s)
- Mary Pat Reeve
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Mari Vehviläinen
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Shuang Luo
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jarmo Ritari
- Finnish Red Cross Blood Service, Helsinki, Finland
| | - Juha Karjalainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Javier Gracia-Tabuenca
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Juha Mehtonen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Shanmukha Sampath Padmanabhuni
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Nikita Kolosov
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Ohio State University College of Medicine, Columbus, OH, USA
| | - Mykyta Artomov
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Ohio State University College of Medicine, Columbus, OH, USA
| | - Harri Siirtola
- TAUCHI Research Center, Tampere University, Tampere, Finland
| | - Hanna M Olilla
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniel Graham
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mark J Daly
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytical and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Tuula Salo
- Research Unit of Population Health, Department of Oral Pathology, University of Oulu and Oulu University Hospital, Oulu, Finland; Medical Research Center, Oulu University Hospital, Oulu, Finland; Department of Oral and Maxillofacial Diseases, and Translational Immunology Program (TRIMM), University of Helsinki, Helsinki, Finland
| | - Maria Siponen
- Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland; Odontology Education Unit, and Oral and Maxillofacial Diseases Clinic, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
31
|
Silva NSB, Bourguiba-Hachemi S, Ciriaco VAO, Knorst SHY, Carmo RT, Masotti C, Meyer D, Naslavsky MS, Duarte YAO, Zatz M, Gourraud PA, Limou S, Castelli EC, Vince N. A multi-ethnic reference panel to impute HLA classical and non-classical class I alleles in admixed samples: Testing imputation accuracy in an admixed sample from Brazil. HLA 2024; 103:e15543. [PMID: 38837862 DOI: 10.1111/tan.15543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
The MHC class I region contains crucial genes for the innate and adaptive immune response, playing a key role in susceptibility to many autoimmune and infectious diseases. Genome-wide association studies have identified numerous disease-associated SNPs within this region. However, these associations do not fully capture the immune-biological relevance of specific HLA alleles. HLA imputation techniques may leverage available SNP arrays by predicting allele genotypes based on the linkage disequilibrium between SNPs and specific HLA alleles. Successful imputation requires diverse and large reference panels, especially for admixed populations. This study employed a bioinformatics approach to call SNPs and HLA alleles in multi-ethnic samples from the 1000 genomes (1KG) dataset and admixed individuals from Brazil (SABE), utilising 30X whole-genome sequencing data. Using HIBAG, we created three reference panels: 1KG (n = 2504), SABE (n = 1171), and the full model (n = 3675) encompassing all samples. In extensive cross-validation of these reference panels, the multi-ethnic 1KG reference exhibited overall superior performance than the reference with only Brazilian samples. However, the best results were achieved with the full model. Additionally, we expanded the scope of imputation by developing reference panels for non-classical, MICA, MICB and HLA-H genes, previously unavailable for multi-ethnic populations. Validation in an independent Brazilian dataset showcased the superiority of our reference panels over the Michigan Imputation Server, particularly in predicting HLA-B alleles among Brazilians. Our investigations underscored the need to enhance or adapt reference panels to encompass the target population's genetic diversity, emphasising the significance of multiethnic references for accurate imputation across different populations.
Collapse
Affiliation(s)
- Nayane S B Silva
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine, São Paulo State University, Botucatu, State of São Paulo, Brazil
- Genetics Program, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, State of São Paulo, Brazil
| | - Sonia Bourguiba-Hachemi
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
| | - Viviane A O Ciriaco
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine, São Paulo State University, Botucatu, State of São Paulo, Brazil
| | - Stefan H Y Knorst
- Department of Molecular Oncology, Hospital Sírio-Libanes, São Paulo, Brazil
| | - Ramon T Carmo
- Department of Molecular Oncology, Hospital Sírio-Libanes, São Paulo, Brazil
| | - Cibele Masotti
- Department of Molecular Oncology, Hospital Sírio-Libanes, São Paulo, Brazil
| | - Diogo Meyer
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, State of São Paulo, Brazil
| | - Michel S Naslavsky
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, State of São Paulo, Brazil
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, State of São Paulo, Brazil
| | - Yeda A O Duarte
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, State of São Paulo, Brazil
- Medical-Surgical Nursing Department, School of Nursing, University of São Paulo, São Paulo, State of São Paulo, Brazil
| | - Mayana Zatz
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, State of São Paulo, Brazil
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, State of São Paulo, Brazil
| | - Pierre-Antoine Gourraud
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
| | - Sophie Limou
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
| | - Erick C Castelli
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine, São Paulo State University, Botucatu, State of São Paulo, Brazil
- Genetics Program, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, State of São Paulo, Brazil
| | - Nicolas Vince
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
| |
Collapse
|
32
|
Jung ES, Ellinghaus D, Degenhardt F, Meguro A, Khor SS, Mucha S, Wendorff M, Juzenas S, Mizuki N, Tokunaga K, Kim SW, Lee MG, Schreiber S, Kim WH, Franke A, Cheon JH. Genome-wide association analysis reveals the associations of NPHP4, TYW1-AUTS2 and SEMA6D for Behçet's disease and HLA-B*46:01 for its intestinal involvement. Dig Liver Dis 2024; 56:994-1001. [PMID: 37977914 DOI: 10.1016/j.dld.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Intestinal involvement in Behçet's disease (BD) is associated with poor prognosis and is more prevalent in East Asian than in Mediterranean populations. Identifying the genetic causes of intestinal BD is important for understanding the pathogenesis and for appropriate treatment of BD patients. METHODS We performed genome-wide association studies (GWAS) and imputation/replication genotyping of human leukocyte antigen (HLA) alleles for 1,689 Korean and Turkish patients with BD (including 379 patients with intestinal BD) and 2,327 healthy controls, followed by replication using 593 Japanese patients with BD (101 patients with intestinal BD) and 737 healthy controls. Stratified cross-phenotype analyses were performed for 1) overall BD, 2) intestinal BD, and 3) intestinal BD without association of overall BD. RESULTS We identified three novel genome-wide significant susceptibility loci including NPHP4 (rs74566205; P=1.36 × 10-8), TYW1-AUTS2 (rs60021986; P=1.14 × 10-9), and SEMA6D (rs4143322; P=5.54 × 10-9) for overall BD, and a new association with HLA-B*46:01 for intestinal BD (P=1.67 × 10-8) but not for BD without intestinal involvement. HLA peptide binding analysis revealed that Mycobacterial peptides, have a stronger binding affinity to HLA-B*46:01 compared to the known risk allele HLA-B*51:01. CONCLUSIONS HLA-B*46:01 is associated with the development of intestinal BD; NPHP4, TYW1-AUTS2, and SEMA6D are susceptibility loci for overall BD.
Collapse
Affiliation(s)
- Eun Suk Jung
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea; Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany.
| | - Frauke Degenhardt
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Akira Meguro
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Seik-Soon Khor
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Sören Mucha
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Mareike Wendorff
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Simonas Juzenas
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany; Institute of Biotechnology, Life Science Centre, Vilnius University, Vilnius, Lithuania
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Seung Won Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Min Goo Lee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Won Ho Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
33
|
Bonkovsky HL, Ghabril M, Nicoletti P, Dellinger A, Fontana RJ, Barnhart H, Gu J, Daly AK, Aithal GP, Phillips EJ, Kleiner DE. Drug-induced liver injury (DILI) ascribed to non-steroidal anti-inflammatory drugs (NSAIDs) in the USA-Update with genetic correlations. Liver Int 2024; 44:1409-1421. [PMID: 38451034 PMCID: PMC12009671 DOI: 10.1111/liv.15892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE To describe patients with NSAID-DILI, including genetic factors associated with idiosyncratic DILI. METHODS In DILIN, subjects with presumed DILI are enrolled and followed for at least 6 months. Causality is adjudicated by a Delphic approach. HLA sequencing of multiethnic NSAID-DILI patients and HLA allele imputation of matching population controls were performed following overall, class and drug-based association analysis. Significant results were tested in a non-Hispanic White (NHW) case-control replication cohort. RESULTS Between September 2004 and March 2022, causality was adjudicated in 2498, and 55 (41 [75%] women) were assessed as likely due to NSAIDs. Median age at onset was 55 y (range 22-83 y). Diclofenac was the causative drug in 29, celecoxib in 7, ibuprofen in 5, etodolac and meloxicam each in 4. Except for meloxicam and oxaprozin (n = 2), the liver injury was hepatocellular with median R 15-25. HLA-DRB1*04:03 and HLA-B*35:03 were significantly more frequent in NSAID-DILI patients than in non-NSAID DILI controls. Interestingly, 85% of the HLA-DRB1*04:03 carriers developed DILI due to the use of acetic acid derivative NSAIDs, supporting the hypothesis that HLA-DRB1*04:03 could be a drug and/or class risk factor. HLA-B*35:03 but not HLA-DRB1*04:03 association was confirmed in the independent NHW replication cohort, which was largely driven by diclofenac. CONCLUSIONS Despite prevalent use, NSAID-DILI is infrequent in the United States. Diclofenac is the most commonly implicated, and adherence to warnings of risk and close observation are recommended. The increased frequency of HLA-B*35:03 and DRB1*04:03, driven by diclofenac, suggests the importance of immune-mediated responses.
Collapse
Affiliation(s)
- Herbert L. Bonkovsky
- Department of Internal Medicine, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist, Winston-Salem, NC
| | - Marwan Ghabril
- Department of Internal Medicine, Indiana University School of Medicine and IU Hospital, Indianapolis, IN
| | - Paola Nicoletti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Robert J. Fontana
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI
| | | | - Jiezhun Gu
- Duke Clinical Research Institute, Durham, NC
| | - Ann K. Daly
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Guruprasad P. Aithal
- Nottingham Digestive Diseases Centre and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre at the Nottingham University Hospital NHS Trust and University of Nottingham, Nottingham, UK
| | | | - David E. Kleiner
- Department of Pathology, National Cancer Institute, Bethesda, MD
| |
Collapse
|
34
|
Cao R, Schladt DP, Dorr C, Matas AJ, Oetting WS, Jacobson PA, Israni A, Chen J, Guan W. Polygenic risk score for acute rejection based on donor-recipient non-HLA genotype mismatch. PLoS One 2024; 19:e0303446. [PMID: 38820342 PMCID: PMC11142483 DOI: 10.1371/journal.pone.0303446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 04/24/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Acute rejection (AR) after kidney transplantation is an important allograft complication. To reduce the risk of post-transplant AR, determination of kidney transplant donor-recipient mismatching focuses on blood type and human leukocyte antigens (HLA), while it remains unclear whether non-HLA genetic mismatching is related to post-transplant complications. METHODS We carried out a genome-wide scan (HLA and non-HLA regions) on AR with a large kidney transplant cohort of 784 living donor-recipient pairs of European ancestry. An AR polygenic risk score (PRS) was constructed with the non-HLA single nucleotide polymorphisms (SNPs) filtered by independence (r2 < 0.2) and P-value (< 1×10-3) criteria. The PRS was validated in an independent cohort of 352 living donor-recipient pairs. RESULTS By the genome-wide scan, we identified one significant SNP rs6749137 with HR = 2.49 and P-value = 2.15×10-8. 1,307 non-HLA PRS SNPs passed the clumping plus thresholding and the PRS exhibited significant association with the AR in the validation cohort (HR = 1.54, 95% CI = (1.07, 2.22), p = 0.019). Further pathway analysis attributed the PRS genes into 13 categories, and the over-representation test identified 42 significant biological processes, the most significant of which is the cell morphogenesis (GO:0000902), with 4.08 fold of the percentage from homo species reference and FDR-adjusted P-value = 8.6×10-4. CONCLUSIONS Our results show the importance of donor-recipient mismatching in non-HLA regions. Additional work will be needed to understand the role of SNPs included in the PRS and to further improve donor-recipient genetic matching algorithms. Trial registry: Deterioration of Kidney Allograft Function Genomics (NCT00270712) and Genomics of Kidney Transplantation (NCT01714440) are registered on ClinicalTrials.gov.
Collapse
Affiliation(s)
- Rui Cao
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - David P. Schladt
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota, United States of America
| | - Casey Dorr
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota, United States of America
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Arthur J. Matas
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - William S. Oetting
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Pamala A. Jacobson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ajay Israni
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota, United States of America
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Jinbo Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Weihua Guan
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
35
|
Chen YC, Liu TY, Lu HF, Huang CM, Liao CC, Tsai FJ. Multiple polygenic risk scores can improve the prediction of systemic lupus erythematosus in Taiwan. Lupus Sci Med 2024; 11:e001035. [PMID: 38724181 PMCID: PMC11086529 DOI: 10.1136/lupus-2023-001035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/13/2024] [Indexed: 05/12/2024]
Abstract
OBJECTIVE To identify new genetic variants associated with SLE in Taiwan and establish polygenic risk score (PRS) models to improve the early diagnostic accuracy of SLE. METHODS The study enrolled 2429 patients with SLE and 48 580 controls from China Medical University Hospital in Taiwan. A genome-wide association study (GWAS) and PRS analyses of SLE and other three SLE markers, namely ANA, anti-double-stranded DNA antibody (dsDNA) and anti-Smith antibody (Sm), were conducted. RESULTS Genetic variants associated with SLE were identified through GWAS. Some novel genes, which have been previously reported, such as RCC1L and EGLN3, were revealed to be associated with SLE in Taiwan. Multiple PRS models were established, and optimal cut-off points for each PRS were determined using the Youden Index. Combining the PRSs for SLE, ANA, dsDNA and Sm yielded an area under the curve of 0.64 for the optimal cut-off points. An analysis of human leucocyte antigen (HLA) haplotypes in SLE indicated that individuals with HLA-DQA1*01:01 and HLA-DQB1*05:01 were at a higher risk of being classified into the SLE group. CONCLUSIONS The use of PRSs to predict SLE enables the identification of high-risk patients before abnormal laboratory data were obtained or symptoms were manifested. Our findings underscore the potential of using PRSs and GWAS in identifying SLE markers, offering promise for early diagnosis and prediction of SLE.
Collapse
Affiliation(s)
- Yu-Chia Chen
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Ting-Yuan Liu
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Hsing-Fang Lu
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chung-Ming Huang
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chi-Chou Liao
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Departments of Medical Genetics and Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
36
|
Chou WH, Chen LC, Wong HSC, Chao CH, Chu HW, Chang WC. Phenomic landscape and pharmacogenomic implications for HLA region in a Taiwan Han Chinese population. Biomark Res 2024; 12:46. [PMID: 38702819 PMCID: PMC11067262 DOI: 10.1186/s40364-024-00591-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND The human leukocyte antigen (HLA) genes, exhibiting significant genetic diversity, are associated with susceptibility to various clinical diseases and diverse in drug responses. High costs of HLA sequencing and the population-specific architecture of this genetic region necessitate the establishment of a population-specific HLA imputation reference panel. Moreover, there is a lack of understanding about the genetic and phenotypic landscape of HLA variations within the Taiwanese population. METHODS We created models for a Taiwanese-specific HLA imputation reference panel. These models were trained with the array genotype data and HLA sequencing data from 845 Taiwanese subjects. HLA imputation was applied for 59,448 Taiwanese subjects to characterize the HLA allele and haplotype frequencies. Additionally, a phenome-wide association study (PheWAS) was conducted to identify the phenotypes associated with HLA variations. The association of the biallelic HLA variants with the binary and quantitative traits were evaluated with additive logistic and linear regression models, respectively. Furthermore, an omnibus test with likelihood-ratio test was applied for each HLA amino acid position in the multiallelic HLA amino acid polymorphisms to compare the difference between a fitted model and a null model following a χ2 distribution of n-1 degree of freedom at a position with n residues. Finally, we estimated the prevalence of adverse drug reactions (ADR)-related HLA alleles in the Taiwanese population. RESULTS In this study, the reference panel models displayed remarkable accuracy, with averages of 99.3%, 98.9%, and 99.1% for 2-, 4-, 6-digit alleles of the eight classical HLA genes, respectively. For PheWAS, a total of 18,136 significant associations with HLA variants across 26 phenotypes are identified (p < 5×10-8), highlighting the pleiotropy feature of the HLA region. Among the independent signals, 15 are novel, including the association of HLA-B pos 138 variation with ankylosing spondylitis (AS), and rs9266290 and rs9266292 with allergy. Through an analysis spanning the entire HLA region, we identified clusters of phenotype correlations. Finally, the carriers of pharmacogenomic related HLA alleles, including HLA-C*01:02 (35.86%), HLA-B*58:01 (20.9%), and HLA-B*15:02 (8.38%), were characterized in the Taiwanese general population. CONCLUSIONS We successfully delivered the HLA imputation for 59,448 Taiwanese subjects and characterized the genetic and phenotypic landscapes of the HLA variations. In addition, we quantified the estimated prevalence of the ADR-related HLA alleles in the Taiwanese population. The developed HLA imputation reference panel could be used for estimation of population HLA allele frequencies, which can facilitate further studies in the role of HLA variants in a wider range of phenotypes in the population.
Collapse
Affiliation(s)
- Wan-Hsuan Chou
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Lu-Chun Chen
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Henry Sung-Ching Wong
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ching-Hsuan Chao
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Hou-Wei Chu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan.
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan.
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
37
|
Mentzer AJ, Dilthey AT, Pollard M, Gurdasani D, Karakoc E, Carstensen T, Muhwezi A, Cutland C, Diarra A, da Silva Antunes R, Paul S, Smits G, Wareing S, Kim H, Pomilla C, Chong AY, Brandt DYC, Nielsen R, Neaves S, Timpson N, Crinklaw A, Lindestam Arlehamn CS, Rautanen A, Kizito D, Parks T, Auckland K, Elliott KE, Mills T, Ewer K, Edwards N, Fatumo S, Webb E, Peacock S, Jeffery K, van der Klis FRM, Kaleebu P, Vijayanand P, Peters B, Sette A, Cereb N, Sirima S, Madhi SA, Elliott AM, McVean G, Hill AVS, Sandhu MS. High-resolution African HLA resource uncovers HLA-DRB1 expression effects underlying vaccine response. Nat Med 2024; 30:1384-1394. [PMID: 38740997 PMCID: PMC11108778 DOI: 10.1038/s41591-024-02944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/25/2024] [Indexed: 05/16/2024]
Abstract
How human genetic variation contributes to vaccine effectiveness in infants is unclear, and data are limited on these relationships in populations with African ancestries. We undertook genetic analyses of vaccine antibody responses in infants from Uganda (n = 1391), Burkina Faso (n = 353) and South Africa (n = 755), identifying associations between human leukocyte antigen (HLA) and antibody response for five of eight tested antigens spanning pertussis, diphtheria and hepatitis B vaccines. In addition, through HLA typing 1,702 individuals from 11 populations of African ancestry derived predominantly from the 1000 Genomes Project, we constructed an imputation resource, fine-mapping class II HLA-DR and DQ associations explaining up to 10% of antibody response variance in our infant cohorts. We observed differences in the genetic architecture of pertussis antibody response between the cohorts with African ancestries and an independent cohort with European ancestry, but found no in silico evidence of differences in HLA peptide binding affinity or breadth. Using immune cell expression quantitative trait loci datasets derived from African-ancestry samples from the 1000 Genomes Project, we found evidence of differential HLA-DRB1 expression correlating with inferred protection from pertussis following vaccination. This work suggests that HLA-DRB1 expression may play a role in vaccine response and should be considered alongside peptide selection to improve vaccine design.
Collapse
Affiliation(s)
- Alexander J Mentzer
- Centre for Human Genetics, University of Oxford, Oxford, UK.
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.
| | - Alexander T Dilthey
- Centre for Human Genetics, University of Oxford, Oxford, UK
- Institute of Medical Microbiology and Hospital Hygiene, University Hospital of Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | | | | | | | | | - Allan Muhwezi
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Clare Cutland
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Amidou Diarra
- Groupe de Recherche Action en Santé (GRAS) 06 BP 10248, Ouagadougou, Burkina Faso
| | | | - Sinu Paul
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Gaby Smits
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Susan Wareing
- Microbiology Department, John Radcliffe Hospital, Oxford University NHS Foundation Trust, Oxford, UK
| | | | | | - Amanda Y Chong
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Debora Y C Brandt
- Department of Integrative Biology, University of California at Berkeley, California, CA, USA
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California at Berkeley, California, CA, USA
| | - Samuel Neaves
- Avon Longitudinal Study of Parents and Children at University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Nicolas Timpson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Austin Crinklaw
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Anna Rautanen
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Dennison Kizito
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Tom Parks
- Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - Kate E Elliott
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Tara Mills
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Katie Ewer
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Nick Edwards
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Segun Fatumo
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- The Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine London, London, UK
| | - Emily Webb
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine London, London, UK
| | - Sarah Peacock
- Tissue Typing Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Katie Jeffery
- Microbiology Department, John Radcliffe Hospital, Oxford University NHS Foundation Trust, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | | | - Bjorn Peters
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Sodiomon Sirima
- Groupe de Recherche Action en Santé (GRAS) 06 BP 10248, Ouagadougou, Burkina Faso
| | - Shabir A Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Alison M Elliott
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine London, London, UK
| | - Gil McVean
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Adrian V S Hill
- Centre for Human Genetics, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Manjinder S Sandhu
- Department of Epidemiology & Biostatistics, School of Public Health, Imperial College London, London, UK.
| |
Collapse
|
38
|
Naidoo L, Arumugam T, Ramsuran V. Narrative Review Explaining the Role of HLA-A, -B, and -C Molecules in COVID-19 Disease in and around Africa. Infect Dis Rep 2024; 16:380-406. [PMID: 38667755 PMCID: PMC11049896 DOI: 10.3390/idr16020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) has left a devasting effect on various regions globally. Africa has exceptionally high rates of other infectious diseases, such as tuberculosis (TB), human immunodeficiency virus (HIV), and malaria, and was not impacted by COVID-19 to the extent of other continents Globally, COVID-19 has caused approximately 7 million deaths and 700 million infections thus far. COVID-19 disease severity and susceptibility vary among individuals and populations, which could be attributed to various factors, including the viral strain, host genetics, environment, lifespan, and co-existing conditions. Host genetics play a substantial part in COVID-19 disease severity among individuals. Human leukocyte antigen (HLA) was previously been shown to be very important across host immune responses against viruses. HLA has been a widely studied gene region for various disease associations that have been identified. HLA proteins present peptides to the cytotoxic lymphocytes, which causes an immune response to kill infected cells. The HLA molecule serves as the central region for infectious disease association; therefore, we expect HLA disease association with COVID-19. Therefore, in this narrative review, we look at the HLA gene region, particularly, HLA class I, to understand its role in COVID-19 disease.
Collapse
Affiliation(s)
- Lisa Naidoo
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (L.N.); (T.A.)
| | - Thilona Arumugam
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (L.N.); (T.A.)
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (L.N.); (T.A.)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
39
|
Solomon O, Lanata CM, Adams C, Nititham J, Taylor KE, Chung SA, Yazdany J, Dall’Era M, Pons-Estel BA, Tusié-Luna T, Tsao B, Morand E, Alarcón-Riquelme ME, Barcellos LF, Criswell LA. Local Ancestry at the Major Histocompatibility Complex Region is Not a Major Contributor to Disease Heterogeneity in a Multiethnic Lupus Cohort. Arthritis Rheumatol 2024; 76:614-619. [PMID: 38073021 PMCID: PMC10965360 DOI: 10.1002/art.42766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 01/31/2024]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is an autoimmune disease resulting in debilitating clinical manifestations that vary in severity by race and ethnicity with a disproportionate burden in African American, Mestizo, and Asian populations compared with populations of European descent. Differences in global and local genetic ancestry may shed light on the underlying mechanisms contributing to these disparities, including increased prevalence of lupus nephritis, younger age of symptom onset, and presence of autoantibodies. METHODS A total of 1,139 European, African American, and Mestizos patients with SLE were genotyped using the Affymetrix LAT1 World array. Global ancestry proportions were estimated using ADMIXTURE, and local ancestry was estimated using RFMIXv2.0. We investigated associations between lupus nephritis, age at onset, and autoantibody status with both global and local ancestry proportions within the Major Histocompatibility Complex region. RESULTS Our results showed small effect sizes that did not meet the threshold for statistical significance for global or local ancestry proportions in either African American or Mestizo patients with SLE who presented with the clinical manifestations of interest compared with those who did not. CONCLUSION These findings suggest that local genetic ancestry within the Major Histocompatibility Complex region is not a major contributor to these SLE manifestations among patients with SLE from admixed populations.
Collapse
Affiliation(s)
- Olivia Solomon
- University of California, Berkeley, Genetic Epidemiology and Genomic Laboratory
| | | | - Cameron Adams
- University of California, Berkeley, Genetic Epidemiology and Genomic Laboratory
| | - Joanne Nititham
- National Human Genome Research Institute, NIH, Bethesda, Maryland
| | - Kimberly E. Taylor
- Russell/Engleman Rheumatology Research Center, University of California, San Francisco
| | - Sharon A. Chung
- Russell/Engleman Rheumatology Research Center, University of California, San Francisco
| | - Jinoos Yazdany
- Russell/Engleman Rheumatology Research Center, University of California, San Francisco
| | - Maria Dall’Era
- Russell/Engleman Rheumatology Research Center, University of California, San Francisco
| | - Bernado A. Pons-Estel
- Centro Regional de Enfermedades Autoinmunes y Reumaticas (GO-CREAR), Rosario, Argentina
| | - Teresa Tusié-Luna
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Instituto de Investigaciones Biomédicas de la Universidad Nacional Autonoma de México, Mexico City, Mexico
| | - Betty Tsao
- Medical University of South Carolina, Charleston, South Carolina
| | - Eric Morand
- Monash University Faculty of Medicine, Nursing & Health Sciences, Melbourne, Australia
| | - Marta E. Alarcón-Riquelme
- Center for Genomics and Oncological Research (GENYO). Pfizer—University of Granada—Andalusian Government, Parque Tecnologico de la Salud, Granada, Spain
| | - Lisa F. Barcellos
- University of California, Berkeley, Genetic Epidemiology and Genomic Laboratory
| | | |
Collapse
|
40
|
Hyvärinen K, Haimila K, Moslemi C, Biobank BS, Olsson ML, Ostrowski SR, Pedersen OB, Erikstrup C, Partanen J, Ritari J. A machine-learning method for biobank-scale genetic prediction of blood group antigens. PLoS Comput Biol 2024; 20:e1011977. [PMID: 38512997 PMCID: PMC10986993 DOI: 10.1371/journal.pcbi.1011977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/02/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
A key element for successful blood transfusion is compatibility of the patient and donor red blood cell (RBC) antigens. Precise antigen matching reduces the risk for immunization and other adverse transfusion outcomes. RBC antigens are encoded by specific genes, which allows developing computational methods for determining antigens from genomic data. We describe here a classification method for determining RBC antigens from genotyping array data. Random forest models for 39 RBC antigens in 14 blood group systems and for human platelet antigen (HPA)-1 were trained and tested using genotype and RBC antigen and HPA-1 typing data available for 1,192 blood donors in the Finnish Blood Service Biobank. The algorithm and models were further evaluated using a validation cohort of 111,667 Danish blood donors. In the Finnish test data set, the median (interquartile range [IQR]) balanced accuracy for 39 models was 99.9 (98.9-100)%. We were able to replicate 34 out of 39 Finnish models in the Danish cohort and the median (IQR) balanced accuracy for classifications was 97.1 (90.1-99.4)%. When applying models trained with the Danish cohort, the median (IQR) balanced accuracy for the 40 Danish models in the Danish test data set was 99.3 (95.1-99.8)%. The RBC antigen and HPA-1 prediction models demonstrated high overall accuracies suitable for probabilistic determination of blood groups and HPA-1 at biobank-scale. Furthermore, population-specific training cohort increased the accuracies of the models. This stand-alone and freely available method is applicable for research and screening for antigen-negative blood donors.
Collapse
Affiliation(s)
- Kati Hyvärinen
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Katri Haimila
- Blood Group Unit, Finnish Red Cross Blood Service, Vantaa, Finland
| | - Camous Moslemi
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Martin L. Olsson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Office for Medical Services, Region Skåne, Sweden
| | - Sisse R. Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ole B. Pedersen
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Skejby, Denmark
| | - Jukka Partanen
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Jarmo Ritari
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| |
Collapse
|
41
|
Kotliar D, Raju S, Tabrizi S, Odia I, Goba A, Momoh M, Sandi JD, Nair P, Phelan E, Tariyal R, Eromon PE, Mehta S, Robles-Sikisaka R, Siddle KJ, Stremlau M, Jalloh S, Gire SK, Winnicki S, Chak B, Schaffner SF, Pauthner M, Karlsson EK, Chapin SR, Kennedy SG, Branco LM, Kanneh L, Vitti JJ, Broodie N, Gladden-Young A, Omoniwa O, Jiang PP, Yozwiak N, Heuklom S, Moses LM, Akpede GO, Asogun DA, Rubins K, Kales S, Happi AN, Iruolagbe CO, Dic-Ijiewere M, Iraoyah K, Osazuwa OO, Okonkwo AK, Kunz S, McCormick JB, Khan SH, Honko AN, Lander ES, Oldstone MBA, Hensley L, Folarin OA, Okogbenin SA, Günther S, Ollila HM, Tewhey R, Okokhere PO, Schieffelin JS, Andersen KG, Reilly SK, Grant DS, Garry RF, Barnes KG, Happi CT, Sabeti PC. Genome-wide association study identifies human genetic variants associated with fatal outcome from Lassa fever. Nat Microbiol 2024; 9:751-762. [PMID: 38326571 PMCID: PMC10914620 DOI: 10.1038/s41564-023-01589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/14/2023] [Indexed: 02/09/2024]
Abstract
Infection with Lassa virus (LASV) can cause Lassa fever, a haemorrhagic illness with an estimated fatality rate of 29.7%, but causes no or mild symptoms in many individuals. Here, to investigate whether human genetic variation underlies the heterogeneity of LASV infection, we carried out genome-wide association studies (GWAS) as well as seroprevalence surveys, human leukocyte antigen typing and high-throughput variant functional characterization assays. We analysed Lassa fever susceptibility and fatal outcomes in 533 cases of Lassa fever and 1,986 population controls recruited over a 7 year period in Nigeria and Sierra Leone. We detected genome-wide significant variant associations with Lassa fever fatal outcomes near GRM7 and LIF in the Nigerian cohort. We also show that a haplotype bearing signatures of positive selection and overlapping LARGE1, a required LASV entry factor, is associated with decreased risk of Lassa fever in the Nigerian cohort but not in the Sierra Leone cohort. Overall, we identified variants and genes that may impact the risk of severe Lassa fever, demonstrating how GWAS can provide insight into viral pathogenesis.
Collapse
Affiliation(s)
- Dylan Kotliar
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Siddharth Raju
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Shervin Tabrizi
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ikponmwosa Odia
- Institute of Lassa Fever, Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Augustine Goba
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Mambu Momoh
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
- Eastern Polytechnic College, Kenema, Sierra Leone
| | - John Demby Sandi
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Parvathy Nair
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | | | - Philomena E Eromon
- Institute of Lassa Fever, Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Nigeria
| | - Samar Mehta
- Department of Critical Care Medicine, University of Maryland Medical Center, Baltimore, MA, USA
| | - Refugio Robles-Sikisaka
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Katherine J Siddle
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | | | - Simbirie Jalloh
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | | | - Sarah Winnicki
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Bridget Chak
- Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Stephen F Schaffner
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | | | - Elinor K Karlsson
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, USA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Sarah R Chapin
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Sharon G Kennedy
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Lansana Kanneh
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Joseph J Vitti
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Nisha Broodie
- New York-Presbyterian Hospital-Columbia and Cornell, New York, NY, USA
| | - Adrianne Gladden-Young
- Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | | | | | - Nathan Yozwiak
- Gene and Cell Therapy Institute, Mass General Brigham, Cambridge, MA, USA
| | - Shannon Heuklom
- San Francisco Community Health Center, San Francisco, CA, USA
| | - Lina M Moses
- Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - George O Akpede
- Institute of Lassa Fever, Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
- Department of Medicine, Ambrose Alli University, Ekpoma, Nigeria
| | - Danny A Asogun
- Department of Community Medicine, Ambrose Alli University, Ekpoma, Nigeria
| | - Kathleen Rubins
- National Aeronautics and Space Administration, Houston, TX, USA
| | | | - Anise N Happi
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Nigeria
| | | | - Mercy Dic-Ijiewere
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Kelly Iraoyah
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Omoregie O Osazuwa
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | | | - Stefan Kunz
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Joseph B McCormick
- UTHealth Houston School of Public Health, Brownsville Campus, Brownsville, TX, USA
| | - S Humarr Khan
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Anna N Honko
- Boston University School of Medicine, Boston, MA, USA
| | - Eric S Lander
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Michael B A Oldstone
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lisa Hensley
- National Institutes of Health Integrated Research Facility, Frederick, MA, USA
| | - Onikepe A Folarin
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Nigeria
- Department of Biological Sciences, Redeemer's University, Ede, Nigeria
| | - Sylvanus A Okogbenin
- Institute of Lassa Fever, Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hanna M Ollila
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Peter O Okokhere
- Institute of Lassa Fever, Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
- Department of Medicine, Ambrose Alli University, Ekpoma, Nigeria
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - John S Schieffelin
- Section of Infectious Disease, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, USA
| | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Steven K Reilly
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Donald S Grant
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Robert F Garry
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Kayla G Barnes
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Christian T Happi
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Nigeria.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
- Department of Biological Sciences, Redeemer's University, Ede, Nigeria.
| | - Pardis C Sabeti
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA.
| |
Collapse
|
42
|
Zheng T, Roda G, Zabana Y, Escudero-Hernández C, Liu X, Chen Y, Camargo Tavares L, Bonfiglio F, Mellander MR, Janczewska I, Vigren L, Sjöberg K, Ohlsson B, Almer S, Halfvarson J, Miehlke S, Madisch A, Lieb W, Kupčinskas J, Weersma RK, Bujanda L, Julià A, Marsal S, Esteve M, Guagnozzi D, Fernández-Bañares F, Ferrer C, Peter I, Ludvigsson JF, Pardi D, Verhaegh B, Jonkers D, Pierik M, Münch A, Franke A, Bresso F, Khalili H, Colombel JF, D'Amato M. Human Leukocyte Antigen Signatures as Pathophysiological Discriminants of Microscopic Colitis Subtypes. J Crohns Colitis 2024; 18:349-359. [PMID: 37768647 DOI: 10.1093/ecco-jcc/jjad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/29/2023] [Accepted: 09/26/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND AND AIMS Microscopic colitis [MC] is currently regarded as an inflammatory bowel disease that manifests as two subtypes: collagenous colitis [CC] and lymphocytic colitis [LC]. Whether these represent a clinical continuum or distinct entities is, however, an open question. Genetic investigations may contribute important insight into their respective pathophysiologies. METHODS We conducted a genome-wide association study [GWAS] meta-analysis in 1498 CC, 373 LC patients, and 13 487 controls from Europe and the USA, combined with publicly available MC GWAS data from UK Biobank and FinnGen [2599 MC cases and 552 343 controls in total]. Human leukocyte antigen [HLA] alleles and polymorphic residues were imputed and tested for association, including conditional analyses for the identification of key causative variants and residues. Genetic correlations with other traits and diagnoses were also studied. RESULTS We detected strong HLA association with CC, and conditional analyses highlighted the DRB1*03:01 allele and its residues Y26, N77, and R74 as key to this association (best p = 1.4 × 10-23, odds ratio [OR] = 1.96). Nominally significant genetic correlations were detected between CC and pneumonia [rg = 0.77; p = 0.048] and oesophageal diseases [rg = 0.45, p = 0.023]. An additional locus was identified in MC GWAS analyses near the CLEC16A and RMI2 genes on chromosome 16 [rs35099084, p = 2.0 × 10-8, OR = 1.31]. No significant association was detected for LC. CONCLUSION Our results suggest CC and LC have distinct pathophysiological underpinnings, characterised by an HLA predisposing role only in CC. This challenges existing classifications, eventually calling for a re-evaluation of the utility of MC umbrella definitions.
Collapse
Affiliation(s)
- Tenghao Zheng
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Giulia Roda
- Biostructures and Biosystems National Institute, Rome, Italy
| | - Yamile Zabana
- Gastroenterology Department, Hospital Universitari Mútua de Terrassa, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - Celia Escudero-Hernández
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Xingrong Liu
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ye Chen
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Ferdinando Bonfiglio
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Lina Vigren
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Klas Sjöberg
- Department of Clinical Sciences, Lund University, Skane University Hospital, Malmo, Sweden
| | - Bodil Ohlsson
- Department of Clinical Sciences, Lund University, Skane University Hospital, Malmo, Sweden
| | - Sven Almer
- Division of Gastroenterology, Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Orebro University Hospital, Örebro, Sweden
| | - Stephan Miehlke
- Centre for Digestive Diseases, Internal Medicine Centre Eppendorf, and Centre for Oesophageal Disorders, University Hospital Eppendorf, Hamburg, Germany
| | - Ahmed Madisch
- Department of Gastroenterology, CRH Clinic Siloah, Hannover, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Juozas Kupčinskas
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Luis Bujanda
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, Universidad del País Vasco, San Sebastian, Spain
| | - Antonio Julià
- Rheumatology Research Group, Vall d' Hebron Research Institute, Barcelona, Spain
| | - Sara Marsal
- Rheumatology Research Group, Vall d' Hebron Research Institute, Barcelona, Spain
| | - Maria Esteve
- Gastroenterology Department, Hospital Universitari Mútua de Terrassa, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - Danila Guagnozzi
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron University Hospital, Neuro-Immuno-Gastroenterology Group, Digestive System Research Unit, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Fernando Fernández-Bañares
- Gastroenterology Department, Hospital Universitari Mútua de Terrassa, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - Carmen Ferrer
- Pathology Department, Hospital Universitari Mútua de Terrassa, Barcelona, Spain
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Darrell Pardi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Bas Verhaegh
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Daisy Jonkers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Marieke Pierik
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Andreas Münch
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Gastroenterology and Hepatology, Linköping University, Linköping, Sweden
- Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Francesca Bresso
- Division of Gastroenterology, Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Hamed Khalili
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Jean-Frederic Colombel
- Dr Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mauro D'Amato
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Gastrointestinal Genetics Lab, CIC bioGUNE - BRTA, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Department of Medicine and Surgery, LUM University, Casamassima, Italy
| |
Collapse
|
43
|
Lori A, Pearce BD, Katrinli S, Carter S, Gillespie CF, Bradley B, Wingo AP, Jovanovic T, Michopoulos V, Duncan E, Hinrichs RC, Smith A, Ressler KJ. Genetic risk for hospitalization of African American patients with severe mental illness reveals HLA loci. Front Psychiatry 2024; 15:1140376. [PMID: 38469033 PMCID: PMC10925622 DOI: 10.3389/fpsyt.2024.1140376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Background Mood disorders such as major depressive and bipolar disorders, along with posttraumatic stress disorder (PTSD), schizophrenia (SCZ), and other psychotic disorders, constitute serious mental illnesses (SMI) and often lead to inpatient psychiatric care for adults. Risk factors associated with increased hospitalization rate in SMI (H-SMI) are largely unknown but likely involve a combination of genetic, environmental, and socio-behavioral factors. We performed a genome-wide association study in an African American cohort to identify possible genes associated with hospitalization due to SMI (H-SMI). Methods Patients hospitalized for psychiatric disorders (H-SMI; n=690) were compared with demographically matched controls (n=4467). Quality control and imputation of genome-wide data were performed following the Psychiatric Genetic Consortium (PGC)-PTSD guidelines. Imputation of the Human Leukocyte Antigen (HLA) locus was performed using the HIBAG package. Results Genome-wide association analysis revealed a genome-wide significant association at 6p22.1 locus in the ubiquitin D (UBD/FAT10) gene (rs362514, p=9.43x10-9) and around the HLA locus. Heritability of H-SMI (14.6%) was comparable to other psychiatric disorders (4% to 45%). We observed a nominally significant association with 2 HLA alleles: HLA-A*23:01 (OR=1.04, p=2.3x10-3) and HLA-C*06:02 (OR=1.04, p=1.5x10-3). Two other genes (VSP13D and TSPAN9), possibly associated with immune response, were found to be associated with H-SMI using gene-based analyses. Conclusion We observed a strong association between H-SMI and a locus that has been consistently and strongly associated with SCZ in multiple studies (6p21.32-p22.1), possibly indicating an involvement of the immune system and the immune response in the development of severe transdiagnostic SMI.
Collapse
Affiliation(s)
- Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Brad D. Pearce
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, United States
| | - Seyma Katrinli
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, United States
| | - Sierra Carter
- Department of Psychology, Georgia State University, Atlanta, GA, United States
| | - Charles F. Gillespie
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Bekh Bradley
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Aliza P. Wingo
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
- Mental Health Service Line, Department of Veterans Affairs Health Care System, Decatur, GA, United States
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University, Detroit, MI, United States
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Erica Duncan
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
- Mental Health Service Line, Department of Veterans Affairs Health Care System, Decatur, GA, United States
| | - Rebecca C. Hinrichs
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Alicia Smith
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, United States
| | - Kerry J. Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, United States
| |
Collapse
|
44
|
Martín-Sierra C, Bravo MJ, Sáez ME, De Rojas I, Santos M, Martín-Carmona J, Corma-Gómez A, González-Serna A, Royo JL, Pineda JA, Rivero A, Rivero-Juárez A, Macías J, Real LM. The absence of seroconversion after exposition to hepatitis C virus is not related to KIR-HLA genotype combinations (GEHEP-012 study). Antiviral Res 2024; 222:105795. [PMID: 38181855 DOI: 10.1016/j.antiviral.2024.105795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
BACKGROUND & AIMS It has been reported that specific killer-cell immunoglobulin-like receptors (KIRs) and HLA genotype combinations, such as KIR2DS4/HLA-C1 with presence of KIRDL2 or KIRDL3, homozygous KIRDL3/HLA-C1 and KIR3DL1/≥2HLA-Bw4, are strongly associated with the lack of active infection and seroconversion after exposition to hepatitis C virus (HCV). OBJECTIVE To determine whether these KIR-HLA combinations are relevant factors involved in that phenotype. PATIENTS AND METHODS In this retrospective case-control study, genotype data from a genome-wide association study previously performed on low susceptibility to HCV-infection carried out on 27 high-risk HCV-seronegative (HRSN) individuals and 743 chronically infected (CI) subjects were used. HLA alleles were imputed using R package HIBAG v1.2223 and KIR genotypes were imputed using the online resource KIR*IMP v1.2.0. RESULTS It was possible to successfully impute at least one KIR-HLA genotype combination previously associated with the lack of infection and seroconversion after exposition to HCV in a total of 23 (85.2%) HRSN individuals and in 650 (87.5%) CI subjects. No KIR-HLA genotype combination analyzed was related to the HRSN condition. CONCLUSIONS Our results suggest that those KIR-HLA genotype combinations are not relevant factors involved in the lack of infection and seroconversion after exposition to HCV. More studies will be needed to completely understand this phenotype.
Collapse
Affiliation(s)
- Carmen Martín-Sierra
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen de Valme /CSIC/Universidad de Sevilla, Sevilla, Spain
| | - María José Bravo
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Universidad de Málaga, Málaga, Spain
| | | | - Itziar De Rojas
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Marta Santos
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen de Valme /CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Jesica Martín-Carmona
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen de Valme /CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Anaïs Corma-Gómez
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen de Valme /CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Alejandro González-Serna
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen de Valme /CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Fisiología. Universidad de Sevilla, Sevilla, Spain
| | - José Luis Royo
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Universidad de Málaga, Málaga, Spain
| | - Juan A Pineda
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen de Valme /CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Medicina. Universidad de Sevilla, Sevilla, Spain
| | - Antonio Rivero
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBC), Hospital Universitario Reina Sofía de Córdoba, Universidad de Córdoba, Córdoba, Spain
| | - Antonio Rivero-Juárez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBC), Hospital Universitario Reina Sofía de Córdoba, Universidad de Córdoba, Córdoba, Spain
| | - Juan Macías
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen de Valme /CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Medicina. Universidad de Sevilla, Sevilla, Spain
| | - Luis Miguel Real
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen de Valme /CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Bioquímica Médica, Biología Molecular e Inmunología, Universidad de Sevilla, Sevilla, Spain.
| |
Collapse
|
45
|
Schurz H, Naranbhai V, Yates TA, Gilchrist JJ, Parks T, Dodd PJ, Möller M, Hoal EG, Morris AP, Hill AVS. Multi-ancestry meta-analysis of host genetic susceptibility to tuberculosis identifies shared genetic architecture. eLife 2024; 13:e84394. [PMID: 38224499 PMCID: PMC10789494 DOI: 10.7554/elife.84394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/23/2023] [Indexed: 01/17/2024] Open
Abstract
The heritability of susceptibility to tuberculosis (TB) disease has been well recognized. Over 100 genes have been studied as candidates for TB susceptibility, and several variants were identified by genome-wide association studies (GWAS), but few replicate. We established the International Tuberculosis Host Genetics Consortium to perform a multi-ancestry meta-analysis of GWAS, including 14,153 cases and 19,536 controls of African, Asian, and European ancestry. Our analyses demonstrate a substantial degree of heritability (pooled polygenic h2 = 26.3%, 95% CI 23.7-29.0%) for susceptibility to TB that is shared across ancestries, highlighting an important host genetic influence on disease. We identified one global host genetic correlate for TB at genome-wide significance (p<5 × 10-8) in the human leukocyte antigen (HLA)-II region (rs28383206, p-value=5.2 × 10-9) but failed to replicate variants previously associated with TB susceptibility. These data demonstrate the complex shared genetic architecture of susceptibility to TB and the importance of large-scale GWAS analysis across multiple ancestries experiencing different levels of infection pressure.
Collapse
Affiliation(s)
- Haiko Schurz
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch UniversityCape TownSouth Africa
| | - Vivek Naranbhai
- Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
- Massachusetts General HospitalBostonUnited States
- Dana-Farber Cancer InstituteBostonUnited States
- Centre for the AIDS Programme of Research in South AfricaDurbanSouth Africa
- Harvard Medical SchoolBostonUnited States
| | - Tom A Yates
- Division of Infection and Immunity, Faculty of Medical Sciences, University College LondonLondonUnited Kingdom
| | - James J Gilchrist
- Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
- Department of Paediatrics, University of OxfordOxfordUnited Kingdom
| | - Tom Parks
- Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
- Department of Infectious Diseases Imperial College LondonLondonUnited Kingdom
| | - Peter J Dodd
- School of Health and Related Research, University of SheffieldSheffieldUnited Kingdom
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch UniversityCape TownSouth Africa
| | - Eileen G Hoal
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch UniversityCape TownSouth Africa
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of ManchesterManchesterUnited Kingdom
| | - Adrian VS Hill
- Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
- Jenner Institute, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
46
|
Clancy J, Ritari J, Vaittinen E, Arvas M, Tammi S, Koskela S, Partanen J. Blood donor biobank as a resource in personalised biomedical genetic research. Eur J Hum Genet 2024:10.1038/s41431-023-01528-0. [PMID: 38212662 DOI: 10.1038/s41431-023-01528-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/14/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024] Open
Abstract
Health questionnaires and donation criteria result in accumulation of highly selected individuals in a blood donor population. To understand better the usefulness of a blood donor-based biobank in personalised disease-associated genetic studies, and for possible personalised blood donation policies, we evaluated the occurrence and distributions of common and rare disease-associated genetic variants in Finnish Blood Service Biobank. We analysed among 31,880 blood donors the occurrence and geographical distribution of (i) 53 rare Finnish-enriched disease-associated variants, (ii) mutations assumed to influence blood donation: four Bernard-Soulier syndrome and two hemochromatosis mutations, (iii) type I diabetes risk genotype HLA-DQ2/DQ8. In addition, we analysed the level of consanguinity in Blood Service Biobank. 80.3% of blood donors carried at least one (range 0-9 per donor) of the rare variants, many in homozygous form, as well. Donors carrying multiple rare variants were enriched in Eastern Finland. Haemochromatosis mutation HFE C282Y homozygosity was 43.8% higher than expected, whereas mutations leading to Bernard-Soulier thrombocytopenia were rare. The frequency of HLA-DQ2/DQ8 genotype was slightly lower than expected. First-degree consanguinity was higher in Blood Service Biobank than in the general population. We demonstrate that despite donor selection, the Blood Service Biobank is a valuable resource for personalised medical research and for genotype-selected samples from unaffected individuals. The geographical genetic substructure of Finland enables efficient recruitment of donors carrying rare variants. Furthermore, we show that blood donor biobank material can be utilised for personalised blood donation policies.
Collapse
Affiliation(s)
- Jonna Clancy
- Blood Service Biobank, Finnish Red Cross Blood Service, Vantaa, Finland.
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland.
| | - Jarmo Ritari
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | | | - Mikko Arvas
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Silja Tammi
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Satu Koskela
- Blood Service Biobank, Finnish Red Cross Blood Service, Vantaa, Finland
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Jukka Partanen
- Blood Service Biobank, Finnish Red Cross Blood Service, Vantaa, Finland
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| |
Collapse
|
47
|
Zecher BF, Ellinghaus D, Schloer S, Niehrs A, Padoan B, Baumdick ME, Yuki Y, Martin MP, Glow D, Schröder-Schwarz J, Niersch J, Brias S, Müller LM, Habermann R, Kretschmer P, Früh T, Dänekas J, Wehmeyer MH, Poch T, Sebode M, Ellinghaus E, Degenhardt F, Körner C, Hoelzemer A, Fehse B, Oldhafer KJ, Schumacher U, Sauter G, Carrington M, Franke A, Bunders MJ, Schramm C, Altfeld M. HLA-DPA1*02:01~B1*01:01 is a risk haplotype for primary sclerosing cholangitis mediating activation of NKp44+ NK cells. Gut 2024; 73:325-337. [PMID: 37788895 PMCID: PMC10850656 DOI: 10.1136/gutjnl-2023-329524] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023]
Abstract
OBJECTIVE Primary sclerosing cholangitis (PSC) is characterised by bile duct strictures and progressive liver disease, eventually requiring liver transplantation. Although the pathogenesis of PSC remains incompletely understood, strong associations with HLA-class II haplotypes have been described. As specific HLA-DP molecules can bind the activating NK-cell receptor NKp44, we investigated the role of HLA-DP/NKp44-interactions in PSC. DESIGN Liver tissue, intrahepatic and peripheral blood lymphocytes of individuals with PSC and control individuals were characterised using flow cytometry, immunohistochemical and immunofluorescence analyses. HLA-DPA1 and HLA-DPB1 imputation and association analyses were performed in 3408 individuals with PSC and 34 213 controls. NK cell activation on NKp44/HLA-DP interactions was assessed in vitro using plate-bound HLA-DP molecules and HLA-DPB wildtype versus knock-out human cholangiocyte organoids. RESULTS NKp44+NK cells were enriched in livers, and intrahepatic bile ducts of individuals with PSC showed higher expression of HLA-DP. HLA-DP haplotype analysis revealed a highly elevated PSC risk for HLA-DPA1*02:01~B1*01:01 (OR 1.99, p=6.7×10-50). Primary NKp44+NK cells exhibited significantly higher degranulation in response to plate-bound HLA-DPA1*02:01-DPB1*01:01 compared with control HLA-DP molecules, which were inhibited by anti-NKp44-blocking. Human cholangiocyte organoids expressing HLA-DPA1*02:01-DPB1*01:01 after IFN-γ-exposure demonstrated significantly increased binding to NKp44-Fc constructs compared with unstimulated controls. Importantly, HLA-DPA1*02:01-DPB1*01:01-expressing organoids increased degranulation of NKp44+NK cells compared with HLA-DPB1-KO organoids. CONCLUSION Our studies identify a novel PSC risk haplotype HLA-DP A1*02:01~DPB1*01:01 and provide clinical and functional data implicating NKp44+NK cells that recognise HLA-DPA1*02:01-DPB1*01:01 expressed on cholangiocytes in PSC pathogenesis.
Collapse
Affiliation(s)
- Britta F Zecher
- Ist Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | | | | | | | | | - Yuko Yuki
- Basic Science Program, Frederick National Laboratory for Cancer Research and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Maureen P Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Dawid Glow
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer Schröder-Schwarz
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Sébastien Brias
- Ist Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
| | | | | | | | | | | | - Malte H Wehmeyer
- Ist Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Poch
- Ist Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Marcial Sebode
- Ist Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Ellinghaus
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Frauke Degenhardt
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | | | - Angelique Hoelzemer
- Ist Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karl J Oldhafer
- Department of General & Abdominal Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Andre Franke
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Madeleine J Bunders
- Leibniz Institute of Virology, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schramm
- Ist Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Martin Zeitz Center for Rare Diseases and Hamburg Centre for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcus Altfeld
- Leibniz Institute of Virology, Hamburg, Germany
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
48
|
Douillard V, Dos Santos Brito Silva N, Bourguiba-Hachemi S, Naslavsky MS, Scliar MO, Duarte YAO, Zatz M, Passos-Bueno MR, Limou S, Gourraud PA, Launay É, Castelli EC, Vince N. Optimal population-specific HLA imputation with dimension reduction. HLA 2024; 103:e15282. [PMID: 37950640 DOI: 10.1111/tan.15282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/29/2023] [Accepted: 10/14/2023] [Indexed: 11/13/2023]
Abstract
Human genomics has quickly evolved, powering genome-wide association studies (GWASs). SNP-based GWASs cannot capture the intense polymorphism of HLA genes, highly associated with disease susceptibility. There are methods to statistically impute HLA genotypes from SNP-genotypes data, but lack of diversity in reference panels hinders their performance. We evaluated the accuracy of the 1000 Genomes data as a reference panel for imputing HLA from admixed individuals of African and European ancestries, focusing on (a) the full dataset, (b) 10 replications from 6 populations, and (c) 19 conditions for the custom reference panels. The full dataset outperformed smaller models, with a good F1-score of 0.66 for HLA-B. However, custom models outperformed the multiethnic or population models of similar size (F1-scores up to 0.53, against up to 0.42). We demonstrated the importance of using genetically specific models for imputing populations, which are currently underrepresented in public datasets, opening the door to HLA imputation for every genetic population.
Collapse
Affiliation(s)
- Venceslas Douillard
- Nantes Université, INSERM, Ecole Centrale Nantes, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Nayane Dos Santos Brito Silva
- Nantes Université, INSERM, Ecole Centrale Nantes, Center for Research in Transplantation and Translational Immunology, Nantes, France
- São Paulo State University, Molecular Genetics and Bioinformatics Laboratory, School of Medicine, Botucatu, Brazil
| | - Sonia Bourguiba-Hachemi
- Nantes Université, INSERM, Ecole Centrale Nantes, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Michel S Naslavsky
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Marilia O Scliar
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Yeda A O Duarte
- Medical-Surgical Nursing Department, School of Nursing, University of São Paulo, São Paulo, Brazil
- Epidemiology Department, Public Health School, University of São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Sophie Limou
- Nantes Université, INSERM, Ecole Centrale Nantes, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Pierre-Antoine Gourraud
- Nantes Université, INSERM, Ecole Centrale Nantes, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Élise Launay
- Nantes Université, INSERM, Ecole Centrale Nantes, Center for Research in Transplantation and Translational Immunology, Nantes, France
- Department of Pediatrics and Pediatric Emergency, Hôpital Femme Enfant Adolescent, CHU de Nantes, Nantes, France
| | - Erick C Castelli
- São Paulo State University, Molecular Genetics and Bioinformatics Laboratory, School of Medicine, Botucatu, Brazil
| | - Nicolas Vince
- Nantes Université, INSERM, Ecole Centrale Nantes, Center for Research in Transplantation and Translational Immunology, Nantes, France
| |
Collapse
|
49
|
Silva NSB, Bourguiba-Hachemi S, Douillard V, Koskela S, Degenhardt F, Clancy J, Limou S, Meyer D, Masotti C, Knorst S, Naslavsky MS, Franke A, Castelli EC, Gourraud PA, Vince N. 18th International HLA and Immunogenetics Workshop: Report on the SNP-HLA Reference Consortium (SHLARC) component. HLA 2024; 103:e15293. [PMID: 37947386 DOI: 10.1111/tan.15293] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
The SNP-HLA Reference Consortium (SHLARC), a component of the 18th International HLA and Immunogenetics Workshop, is aimed at collecting diverse and extensive human leukocyte antigen (HLA) data to create custom reference panels and enhance HLA imputation techniques. Genome-wide association studies (GWAS) have significantly contributed to identifying genetic associations with various diseases. The HLA genomic region has emerged as the top locus in GWAS, particularly in immune-related disorders. However, the limited information provided by single nucleotide polymorphisms (SNPs), the hallmark of GWAS, poses challenges, especially in the HLA region, where strong linkage disequilibrium (LD) spans several megabases. HLA imputation techniques have been developed using statistical inference in response to these challenges. These techniques enable the prediction of HLA alleles from genotyped GWAS SNPs. Here we present the SHLARC activities, a collaborative effort to create extensive, and multi-ethnic reference panels to enhance HLA imputation accuracy.
Collapse
Affiliation(s)
- Nayane S B Silva
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine, São Paulo State University - Unesp, Botucatu, Brazil
| | - Sonia Bourguiba-Hachemi
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
| | - Venceslas Douillard
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
| | - Satu Koskela
- Finnish Red Cross Blood Service Biobank, Helsinki, Finland
| | - Frauke Degenhardt
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, University Hospital Schleswig Holstein - Campus Kiel, Kiel, Germany
| | - Jonna Clancy
- Finnish Red Cross Blood Service Biobank, Helsinki, Finland
| | - Sophie Limou
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
| | - Diogo Meyer
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Cibele Masotti
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Stefan Knorst
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Michel Satya Naslavsky
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, University Hospital Schleswig Holstein - Campus Kiel, Kiel, Germany
| | - Erick C Castelli
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine, São Paulo State University - Unesp, Botucatu, Brazil
| | - Pierre-Antoine Gourraud
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
| | - Nicolas Vince
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
| |
Collapse
|
50
|
Zheng X, Lee J. Imputation-Based HLA Typing with GWAS SNPs. Methods Mol Biol 2024; 2809:127-143. [PMID: 38907895 DOI: 10.1007/978-1-0716-3874-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
SNP-based imputation approaches for human leukocyte antigen (HLA) typing take advantage of the haplotype structure within the major histocompatibility complex (MHC) region. These methods predict HLA classical alleles using dense SNP genotypes, commonly found on array-based platforms used in genome-wide association studies (GWAS). The analysis of HLA classical alleles can be conducted on current SNP datasets at no additional cost. Here, we describe the workflow of HIBAG, an imputation method with attribute bagging, to infer a sample's HLA classical alleles using SNP data. Two examples are offered to demonstrate the functionality using public HLA and SNP data from the latest release of the 1000 Genomes project: genotype imputation using pre-built classifiers in a GWAS, and model training to create a new prediction model. The GPU implementation facilitates model building, making it hundreds of times faster compared to the single-threaded implementation.
Collapse
Affiliation(s)
- Xiuwen Zheng
- Genomics Research Center, AbbVie Inc., North Chicago, IL, USA.
| | - John Lee
- Genomics Research Center, AbbVie Inc., North Chicago, IL, USA
| |
Collapse
|