1
|
Zaytseva AK, Kulichik OE, Kostareva AA, Zhorov BS. Biophysical mechanisms of myocardium sodium channelopathies. Pflugers Arch 2024; 476:735-753. [PMID: 38424322 DOI: 10.1007/s00424-024-02930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Genetic variants of gene SCN5A encoding the alpha-subunit of cardiac voltage-gated sodium channel Nav1.5 are associated with various diseases, including long QT syndrome (LQT3), Brugada syndrome (BrS1), and progressive cardiac conduction disease (PCCD). In the last decades, the great progress in understanding molecular and biophysical mechanisms of these diseases has been achieved. The LQT3 syndrome is associated with gain-of-function of sodium channels Nav1.5 due to impaired inactivation, enhanced activation, accelerated recovery from inactivation or the late current appearance. In contrast, BrS1 and PCCD are associated with the Nav1.5 loss-of-function, which in electrophysiological experiments can be manifested as reduced current density, enhanced fast or slow inactivation, impaired activation, or decelerated recovery from inactivation. Genetic variants associated with congenital arrhythmias can also disturb interactions of the Nav1.5 channel with different proteins or drugs and cause unexpected reactions to drug administration. Furthermore, mutations can affect post-translational modifications of the channels and their sensitivity to pH and temperature. Here we briefly review the current knowledge on biophysical mechanisms of LQT3, BrS1 and PCCD. We focus on limitations of studies that use heterologous expression systems and induced pluripotent stem cells (iPSC) derived cardiac myocytes and summarize our understanding of genotype-phenotype relations of SCN5A mutations.
Collapse
Affiliation(s)
- Anastasia K Zaytseva
- Almazov National Medical Research Centre, St. Petersburg, Russia.
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| | - Olga E Kulichik
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | | | - Boris S Zhorov
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- McMaster University, Hamilton, Canada
| |
Collapse
|
2
|
Marian AJ, Asatryan B, Wehrens XHT. Genetic basis and molecular biology of cardiac arrhythmias in cardiomyopathies. Cardiovasc Res 2021; 116:1600-1619. [PMID: 32348453 DOI: 10.1093/cvr/cvaa116] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/09/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiac arrhythmias are common, often the first, and sometimes the life-threatening manifestations of hereditary cardiomyopathies. Pathogenic variants in several genes known to cause hereditary cardiac arrhythmias have also been identified in the sporadic cases and small families with cardiomyopathies. These findings suggest a shared genetic aetiology of a subset of hereditary cardiomyopathies and cardiac arrhythmias. The concept of a shared genetic aetiology is in accord with the complex and exquisite interplays that exist between the ion currents and cardiac mechanical function. However, neither the causal role of cardiac arrhythmias genes in cardiomyopathies is well established nor the causal role of cardiomyopathy genes in arrhythmias. On the contrary, secondary changes in ion currents, such as post-translational modifications, are common and contributors to the pathogenesis of arrhythmias in cardiomyopathies through altering biophysical and functional properties of the ion channels. Moreover, structural changes, such as cardiac hypertrophy, dilatation, and fibrosis provide a pro-arrhythmic substrate in hereditary cardiomyopathies. Genetic basis and molecular biology of cardiac arrhythmias in hereditary cardiomyopathies are discussed.
Collapse
Affiliation(s)
- Ali J Marian
- Department of Medicine, Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston, 6770 Bertner Street, Suite C900A, Houston, TX 77030, USA
| | - Babken Asatryan
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Xander H T Wehrens
- Department of Biophysics and Molecular Physiology, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
3
|
Tadros R, Tan HL, El Mathari S, Kors JA, Postema PG, Lahrouchi N, Beekman L, Radivojkov-Blagojevic M, Amin AS, Meitinger T, Tanck MW, Wilde AA, Bezzina CR. Predicting cardiac electrical response to sodium-channel blockade and Brugada syndrome using polygenic risk scores. Eur Heart J 2020; 40:3097-3107. [PMID: 31504448 PMCID: PMC6769824 DOI: 10.1093/eurheartj/ehz435] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/11/2019] [Accepted: 06/04/2019] [Indexed: 12/19/2022] Open
Abstract
Aims Sodium-channel blockers (SCBs) are associated with arrhythmia, but variability of cardiac electrical response remains unexplained. We sought to identify predictors of ajmaline-induced PR and QRS changes and Type I Brugada syndrome (BrS) electrocardiogram (ECG). Methods and results In 1368 patients that underwent ajmaline infusion for suspected BrS, we performed measurements of 26 721 ECGs, dose–response mixed modelling and genotyping. We calculated polygenic risk scores (PRS) for PR interval (PRSPR), QRS duration (PRSQRS), and Brugada syndrome (PRSBrS) derived from published genome-wide association studies and used regression analysis to identify predictors of ajmaline dose related PR change (slope) and QRS slope. We derived and validated using bootstrapping a predictive model for ajmaline-induced Type I BrS ECG. Higher PRSPR, baseline PR, and female sex are associated with more pronounced PR slope, while PRSQRS and age are positively associated with QRS slope (P < 0.01 for all). PRSBrS, baseline QRS duration, presence of Type II or III BrS ECG at baseline, and family history of BrS are independently associated with the occurrence of a Type I BrS ECG, with good predictive accuracy (optimism-corrected C-statistic 0.74). Conclusion We show for the first time that genetic factors underlie the variability of cardiac electrical response to SCB. PRSBrS, family history, and a baseline ECG can predict the development of a diagnostic drug-induced Type I BrS ECG with clinically relevant accuracy. These findings could lead to the use of PRS in the diagnosis of BrS and, if confirmed in population studies, to identify patients at risk for toxicity when given SCB. ![]()
Collapse
Affiliation(s)
- Rafik Tadros
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, Meibergdreef 9, AZ Amsterdam, The Netherlands.,Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute and Faculty of Medicine, Université de Montréal, 5000 Belanger, Montreal, QC, Canada
| | - Hanno L Tan
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, Meibergdreef 9, AZ Amsterdam, The Netherlands
| | | | - Sulayman El Mathari
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, Meibergdreef 9, AZ Amsterdam, The Netherlands
| | - Jan A Kors
- Department of Medical Informatics, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, GD Rotterdam, The Netherlands
| | - Pieter G Postema
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, Meibergdreef 9, AZ Amsterdam, The Netherlands
| | - Najim Lahrouchi
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, Meibergdreef 9, AZ Amsterdam, The Netherlands
| | - Leander Beekman
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, Meibergdreef 9, AZ Amsterdam, The Netherlands
| | | | - Ahmad S Amin
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, Meibergdreef 9, AZ Amsterdam, The Netherlands
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Trogerstraße 32, Munich, Germany
| | - Michael W Tanck
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, AZ Amsterdam, The Netherlands
| | - Arthur A Wilde
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, Meibergdreef 9, AZ Amsterdam, The Netherlands.,Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, 7393 Al-Malae'b St, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Connie R Bezzina
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, Meibergdreef 9, AZ Amsterdam, The Netherlands
| |
Collapse
|
4
|
Tse G, Lee S, Liu T, Yuen HC, Wong ICK, Mak C, Mok NS, Wong WT. Identification of Novel SCN5A Single Nucleotide Variants in Brugada Syndrome: A Territory-Wide Study From Hong Kong. Front Physiol 2020; 11:574590. [PMID: 33071830 PMCID: PMC7531256 DOI: 10.3389/fphys.2020.574590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
Background The aim of this study is to report on the genetic composition of Brugada syndrome (BrS) patients undergoing genetic testing in Hong Kong. Methods Patients with suspected BrS who presented to the Hospital Authority of Hong Kong between 1997 and 2019, and underwent genetic testing, were analyzed retrospectively. Results A total of 65 subjects were included (n = 65, 88% male, median presenting age 42 [30–54] years old, 58% type 1 pattern). Twenty-two subjects (34%) showed abnormal genetic test results, identifying the following six novel, pathogenic or likely pathogenic mutations in SCN5A: c.674G > A, c.2024-11T > A, c.2042A > C, c.4279G > T, c.5689C > T, c.429del. Twenty subjects (31%) in the cohort suffered from spontaneous ventricular tachycardia/ventricular fibrillation (VT/VF) and 18 (28%) had incident VT/VF over a median follow-up of 83 [Q1–Q3: 52–112] months. Univariate Cox regression demonstrated that syncope (hazard ratio [HR]: 4.27 [0.95–19.30]; P = 0.059), prior VT/VF (HR: 21.34 [5.74–79.31; P < 0.0001) and T-wave axis (HR: 0.970 [0.944–0.998]; P = 0.036) achieved P < 0.10 for predicting incident VT/VF. After multivariate adjustment, only prior VT/VF remained a significant predictor (HR: 12.39 [2.97–51.67], P = 0.001). Conclusion This study identified novel mutations in SCN5A in a Chinese cohort of BrS patients.
Collapse
Affiliation(s)
- Gary Tse
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China.,Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Sharen Lee
- Laboratory of Cardiovascular Physiology, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ho Chuen Yuen
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Kowloon, China
| | - Ian Chi Kei Wong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, China.,School of Pharmacy, University College London, London, United Kingdom
| | - Chloe Mak
- Department of Pathology, Hong Kong Children's Hospital, Kowloon, China
| | - Ngai Shing Mok
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Kowloon, China
| | - Wing Tak Wong
- State Key Laboratory of Agrobiotechnology (CUHK), School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| |
Collapse
|
5
|
Wang F, Liu Y, Liao H, Xue Y, Zhan X, Fang X, Liang Y, Wei W, Rao F, Zhang Q, Deng H, Lin Y, Liu F, Lin W, Zhang B, Wu S. Genetic Variants on SCN5A, KCNQ1, and KCNH2 in Patients with Ventricular Arrhythmias during Acute Myocardial Infarction in a Chinese Population. Cardiology 2019; 145:38-45. [PMID: 31751991 DOI: 10.1159/000502833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/20/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality worldwide. About half of sudden deaths from AMI are mainly because of malignant ventricular arrhythmias (VA) after AMI. The sodium channel gene SCN5A and potassium channel genes KCNQ1 and KCNH2 have been widely reported to be genetic risk factors for arrhythmia including Brugada syndrome and long QT syndrome (LQTS). A few studies reported the association of SCN5A variant with ventricular tachycardia (VT)/ventricular fibrillation (VF) complicating AMI. However, little is known about the role of KCNQ1 and KCNH2 in AMI with VA (AMI_VA). This study focuses on investigating the potential variants on SCN5A, KCNQ1, and KCNH2 contributing to AMI with VA in a Chinese population. MATERIALS AND METHODS In total, 139 patients with AMI_VA, and 337 patients with AMI only, were included. Thirty exonic sites were selected to be screened. Sanger sequencing was used to detect variants. A subsequent association study was also performed between AMI_VA and AMI. RESULTS Twelve variants [5 on KCNH2(NM_000238.3), 3 on KCNQ1(NM_000218.2), and 4 on SCN5A(NM_198056.2)] were identified in AMI_VA patients. Only 5 (KCNH2: c.2690A>C; KCNQ1: c.1927G>A, c.1343delC; SCN5A: c.1673A>G, c.3578G>A) of them are missense variants. Two (KCNQ1: c.1343delC and SCN5A: c.3578G>A) of the missense variants were predicted to be clinically pathogenic. All these variants were further genotyped in an AMI without VA group. The association study identified a statistically significant difference in genotype frequency of KCNH2: c.1539C>T and KCNH2: c.1467C>T between the AMI and AMI_VA groups. Moreover, 2 rare variants (KCNQ1: c.1944C>T and SCN5A: c.3621C>T) showed an elevated allelic frequency (more than 1.5-fold) in the AMI_VA group when compared to the AMI group. CONCLUSION Twelve variants (predicting from benign/VUS to pathogenic) were identified on KCNH2, KCNQ1, and SCN5A in patients with AMI_VA. Genotype frequency comparison between AMI_VA and AMI identified 2 significant common variants on KCNH2. Meanwhile, the allelic frequency of 2 rare variants on KCNQ1 and SCN5A, respectively, were identified to be enriched in AMI_VA, although there was no statistical significance. The present study suggests that the ion-channel genes KCNH2, KCNQ1, and SCN5A may contribute to the pathogenesis of VA during AMI.
Collapse
Affiliation(s)
- Feng Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yang Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hongtao Liao
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yumei Xue
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xianzhang Zhan
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xianhong Fang
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuanhong Liang
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wei Wei
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fang Rao
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qianhuan Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hai Deng
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yubi Lin
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fangzhou Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Weidong Lin
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bin Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China,
| | - Shulin Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
6
|
Yu R, Fan XF, Chen C, Liu ZH. Whole‑exome sequencing identifies a novel mutation (R367G) in SCN5A to be associated with familial cardiac conduction disease. Mol Med Rep 2017; 16:410-414. [PMID: 28534967 DOI: 10.3892/mmr.2017.6592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 03/16/2017] [Indexed: 11/05/2022] Open
Abstract
Cardiac conduction disease is a primary cause of sudden cardiac death. Sodium voltage‑gated channel‑α subunit 5 (SCN5A) mutations have been reported to underlie a variety of inherited arrhythmias. Numerous disease‑causing mutations of SCN5A have been identified in patients with ≥10 different conditions, including type 3 long‑QT syndrome and Brugada syndrome. The present study investigated a family with a history of arrhythmia, with the proband having a history of arrhythmia and syncope. Whole‑exome sequencing was applied in order to detect the disease‑causing mutation in this family, and Sanger sequencing was used to confirm the co‑segregation among the family members. A missense mutation (c.1099C>G/p.R367G) of SCN5A was identified in the family and was observed to be co‑segregated in all affected members of the family. The missense mutation results in a substitution of glycine for arginine, which may affect sodium transmembrane transport. The present study provides an accurate genetic test which may be used in individuals who exhibit no clinical symptoms.
Collapse
Affiliation(s)
- Rong Yu
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Xue-Feng Fan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410010, P.R. China
| | - Chan Chen
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Zheng-Hua Liu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
7
|
A1427S missense mutation in scn5a causes type 1 brugada pattern, recurrent ventricular tachyarrhythmias and right ventricular structural abnormalities. Res Cardiovasc Med 2017. [DOI: 10.5812/cardiovascmed.42085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|